Exercise 1. Let \mathcal{C} be an abelian category. Let $F: I \to \mathcal{C}$ be a functor from a small category I to \mathcal{C} and assume that both $\varinjlim F$ and $\varprojlim F$ exist in \mathcal{C} .

Prove that for every object C in C there are isomorphisms:

$$\operatorname{Hom}_{\mathcal{C}}(C, \operatorname{lim} F) \cong \operatorname{lim} \operatorname{Hom}_{\mathcal{C}}(C, F(i));$$

 $\operatorname{Hom}_{\mathcal{C}}(\lim F, C) \cong \lim \operatorname{Hom}_{\mathcal{C}}(F(i), C)$

where the limits and colimits in the right hand side are taken in category of abelian groups.

Exercise 2. Let \mathcal{T} denote the full subcategory of **Ab** consisting of the torsion abelian groups and let $\iota: \mathcal{T} \to \mathbf{Ab}$ denote the embedding functor. Let $t: \mathbf{Ab} \to \mathcal{T}$ be the functor sending an abelian group G to its torsion submodule.

Show that that the pair (ι, t) is an adjoint pair with t right adjoint to ι .

Exercise 3. Let $m, n \in \mathbb{N}$ and let:

$$0 \to \{A_n, f_{mn}\}_{m \le n} \xrightarrow{\phi} \{B_n, g_{mn}\}_{m \le n} \xrightarrow{\psi} \{C_n, h_{mn}\}_{m \le n} \to 0$$

be a short exact sequence of countable inverse systems of R-modules. Show that, if f_{mn} are epimorphisms for all $m \leq n$, then $\varprojlim \psi$ is an epimorphism.

Hint: without loss of generality, assume that $A_n \leq B_n$ and that f_{mn} are the restrictions of g_{mn} to A_n .

Exercise 4. Let C be an additive category admitting all (filtrant) direct limits.

(1) An object C of C is said to be of *finite type* if the natural map:

 $\varinjlim \operatorname{Hom}_{\mathcal{C}}(C, F(i)) \to \operatorname{Hom}_{\mathcal{C}}(C, \varinjlim F(i))$

is injective, for all functors $F: I \to \mathcal{C}$ from a filtered partially ordered set I.

Show that, if $\mathcal{C}=\operatorname{Mod} R$, for some ring R, then the above definition coincides with the notion of finitely generated module. (Hint: use the fact that, if \mathcal{F} denotes the set of finitely generated submodules of a module C, then $C/\sum_{A\in\mathcal{F}} A \cong \varinjlim_{A\in\mathcal{F}} C/A$.) (2*) An object C of C is said to be of *finite presentation* if for every filtered partially ordered set I the natural map:

 $\varinjlim \operatorname{Hom}_{\mathcal{C}}(C, F(i)) \to \operatorname{Hom}_{\mathcal{C}}(C, \varinjlim F(i))$

is bijective, for all functors $F: I \to \mathcal{C}$.

Show that, if C = Mod-R, for some ring R, then the above definition coincides with the notion of finitely presented module.

(Recall that a module M_R is finitely presented if there is a short exact sequence $0 \to K \to R^n \to M \to 0$, with K finitely generated. * means difficult. See e.g. "Foundations of Module and Ring Theory" by R. Wisbauer, Ch. 5, 25.4.)

Exercise 5. Let M be a finitely presented module and $\phi: F \to M$ an epimorphism with F a finitely generated module.

Prove that $\text{Ker}\phi$ is finitely generated.

Exercise 6. Let $L: \mathcal{C} \to \mathcal{D}$ and $R: \mathcal{D} \to \mathcal{C}$ be functors between abelian categories \mathcal{C}, \mathcal{D} such that (L, R) is an adjoint pair.

Let $F: I \to \mathcal{D}$ be a functor from a small category I to \mathcal{D} and assume that $(\lim F, p_i)$ exists in \mathcal{D} .

Show that $(R(\varprojlim F), R(p_i))$ is a limit of $R \circ F \colon I \to \mathcal{C}$.