Exercise 1. Let $L: \mathcal{C} \to \mathcal{D}$ and $R: \mathcal{D} \to \mathcal{C}$ be functors between abelian categories \mathcal{C}, \mathcal{D} such that (L, R) is an adjoint pair.

Prove that if R is exact, then L preserves projectives; that is, if P is a projective object of C, then L(P) is a projective object of D. Dually, prove that if L is exact, then R preserves injective objects.

Exercise 2. Let $F: \mathcal{C} \to \mathcal{D}$ be an exact functor between abelian categories \mathcal{C}, \mathcal{D} .

- (1) Prove that F is faithful iff $F(C) \neq 0$ for every non-zero object C of C
- (2) Prove that a projective object P of C is a generator iff, for every non-zero object $C \in C$ there is a non-zero morphism $P \to C$.

Recall that P is a projective object (a generator) if the functor $\operatorname{Hom}_{\mathcal{C}}(P, -)$ is exact (faithful).

Exercise 3. An object V of a category C is called a cogenerator if $\operatorname{Hom}_{\mathcal{C}}(-, V)$ is faithful.

- (1) Prove that, if \mathcal{C} admits products, an object V is a cogenerator iff for every object $C \in \mathcal{C}$ there is a monomorphism $\mu \colon C \to V^I$, for some set I.
- (2) An object V of an abelian category \mathcal{C} is injective if $\operatorname{Hom}_{\mathcal{C}}(-, V)$ is exact.

Prove that an injective object V is a cogenerator iff for every non-zero object $C \in \mathcal{C}$ there is a non-zero morphism $C \to V$.

Exercise 4. Let $F: \mathcal{C} \to \mathcal{D}$ be an additive functor between abelian categories \mathcal{C}, \mathcal{D} .

We say that F reflects exactness if $A \to B \to C$ is exact in \mathcal{C} provided that $F(A) \to F(B) \to F(C)$ is exact in \mathcal{D} .

Prove that, if F is exact and fully faithful, then F reflects exactness.

Exercise 5. Let \mathcal{A} be a small additive category and let $\operatorname{Hom}(\mathcal{A}^{\operatorname{op}}, \mathcal{A}b)$ denote the category of additive contravariant functors from \mathcal{A} to the category $\mathcal{A}b$ of abelian groups.

For each object A in \mathcal{A} , let h_A be the functor $\operatorname{Hom}_{\mathcal{A}}(-, A)$.

Prove that the functor $P = \prod_{A \in \mathcal{A}} h_A$ is faithful and a project object of $\operatorname{Hom}(\mathcal{A}^{\operatorname{op}}, \mathcal{A}b)$.