Padova, July 6 2012

FROM THE THEORY

1. Let \mathcal{B} be a small additive category and let $\operatorname{Hom}(\mathcal{B}^{\operatorname{op}}, \mathcal{A}b)$ be the abelian category of the additive contravariant functors $F: \mathcal{B} \to \mathcal{A}b$. For every object B of \mathcal{B} let $h_B = \operatorname{Hom}_{\mathcal{B}}(-, B)$.

- (1) State Yoneda's Lemma and prove that h_B is a projective object of Hom $(\mathcal{B}, \mathcal{A}b)$.
- (2) Prove that the functor

$$h: \mathcal{B} \to \operatorname{Hom}(\mathcal{B}^{\operatorname{op}}, \mathcal{A}b), \quad B \mapsto h_B$$

is fully faithful.

(3) Assume that \mathcal{B} is abelian. Prove that h is a left exact functor.

2. Let \mathcal{A}, \mathcal{B} be abelian categories and $F \colon \mathcal{A} \to \mathcal{B}$ a right exact functor. Assume that \mathcal{A} has enough projectives.

- (1) Define projective resolutions of objects of \mathcal{A} .
- (2) Give the definition of the left derived functors

$$L_iF\colon \mathcal{A}\to \mathcal{B}.$$

- (3) Complete the definition: An object $Q \in \mathcal{A}$ is said *F*-acyclic if ...
- 3. State and prove the Horseshoe Lemma.

4. Consider the category Mod-*R* of right *R*-modules.

- (1) Give the definition of the flat dimension, w.d. (M) of a right R-module M.
- (2) Prove that a right R-module M is flat if and only if

$$\operatorname{Tor}_1^R(M, R/I) = 0$$

for every left ideal I of R.

EXERCISES:

- **5.** Let \mathcal{C} be an abelian category.
 - (1) Let α be a kernel of some morphism. Prove that $\alpha = \ker(\operatorname{coker} \alpha)$.
 - (2) Let α be a morphism in C. Prove that if α is an epimorphism, then $\alpha = \operatorname{coker}(\ker \alpha)$.
- **6.** Let \mathcal{A} be an abelian category and

$$\begin{array}{c|c} A & \stackrel{f}{\longrightarrow} B & \stackrel{g}{\longrightarrow} C \\ \alpha & & \beta & & \gamma \\ A' & \stackrel{f'}{\longrightarrow} B' & \stackrel{g'}{\longrightarrow} C' \end{array}$$

be a commutative diagram in \mathcal{A} .

Show that the outer rectangle is a pull-back (a push-out) if each of the two squares is a pull-back (a push-out).

7. Let $\mathcal{A}, \mathcal{B}, \mathcal{C}$ be abelian categories.

Let X be a complex with terms in \mathcal{B} and let $G: \mathcal{B} \to \mathcal{C}$ be an exact functor.

- (1) Prove that $H^i(G(X)) \cong G(H^i(X))$.
- (2) Let $F: \mathcal{A} \to \mathcal{B}$ be a left exact functor. Assume that \mathcal{A} has enough injectives and denote by $R^i F$ the right derived functors of F. Prove that for every $A \in \mathcal{A}$, $R^i(G \circ F(A)) \cong G(R^i F(A))$.

8. Let $Ch(\mathcal{A})$ be the category of cochain complexes with terms in the abelian category \mathcal{A} . For every object $A \in \mathcal{A}$ let \tilde{A} be the complex

 $\ldots \to 0 \to 0 \to A \xrightarrow{id} A \to 0 \to 0 \to \ldots'$

with the first A in degree 0. Let (X, d_X) be an arbitrary complex in $Ch(\mathcal{A})$.

- (1) Show that $\operatorname{Hom}_{\mathcal{C}h(\mathcal{A})}(\tilde{A}, X) \cong \operatorname{Hom}_{\mathcal{A}}(A, X^0).$
- (2) Conclude that every cochain map $\tilde{A} \to X$ is null homotopic.