Rings and Modules

FROM THE THEORY

1. Let $F: \mathcal{C} \rightarrow \mathcal{D}$ be a functor between categories.
(1) Complete the definition: F is an equivalence if
(2) Prove that if F is an equivalence, then F is fully faithful and essentially surjective.
2. Let f be a morphism in a category \mathcal{C}. Assume that $f=\operatorname{coker} g$ for some morphism g and that $\operatorname{ker} f$ exists.

Prove that $f=\operatorname{coker}(\operatorname{ker} f)$.
3. Let $\operatorname{Ch}(\mathcal{A})$ be the category of cochain complexes with terms in the abelian category \mathcal{A}.

Let $f: X \rightarrow Y$ be a cochain map in $\mathcal{C} h(\mathcal{A})$.
(1) Complete the definition: f is a "quasi-isomorphism" if ...
(2) Complete the definition: f is a homotopy equivalence if \ldots
(3) Prove that if f is a homotopy equivalence then f is a quasiisomorphism but that the converse doesn't hold.
4. Denote by r.gl.dim R the right global dimension of a ring R and by p. $\operatorname{dim} M$ the projective dimension of the right R-module M.

Prove that r.gl. $\operatorname{dim} R=\sup \{p \cdot \operatorname{dim}(R / I) \mid I$ is a right ideal of $R\}$.

EXERCISES:

5. Let R be a ring and M_{R} be a right R-module.

Let $\left\{N_{i}\right\}_{i \in I}$ be a directed system of submodules of M.
Prove that $\underset{i \in I}{\lim } M / N_{i} \cong M / N$ where $N=\sum_{i \in I} N_{i}$.
6. $F: \mathcal{C} \rightarrow \mathcal{D}$ and $G: \mathcal{D} \rightarrow \mathcal{C}$ be functors between categories \mathcal{C}, \mathcal{D} such that $F \circ G$ is naturally isomorphic to $1_{\mathcal{D}}$ and $G \circ F$ is naturally isomorphic to $1_{\mathcal{C}}$.

Prove that the pairs (F, G) and (G, F) are adjoint pairs.
7. (Kaplansky's Lemma) Let $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ be a short exact sequence of R-modules and let p. $\operatorname{dim} M$ denote the projective dimension of the module M.

Prove that the following hold:
(1) If two of $p \cdot \operatorname{dim} A, p \cdot \operatorname{dim} B, p \cdot \operatorname{dim} C$ are finite so is the third.
(2) One and only one of the following cases may occur
(a) $p \cdot \operatorname{dim} A<p \cdot \operatorname{dim} B=p \cdot \operatorname{dim} C$.
(b) $p \cdot \operatorname{dim} B<p \cdot \operatorname{dim} A=p \cdot \operatorname{dim} C-1$.
(c) $p \cdot \operatorname{dim} A=p \cdot \operatorname{dim} B \geq p \cdot \operatorname{dim} C-1$.
8. Let $0 \rightarrow L \xrightarrow{f} M \xrightarrow{g} N \rightarrow 0$ be a short exact sequence of cochain complexes with terms in an abelian category \mathcal{A}.

Assume that the sequence is degreewise splitting, i.e.

$$
0 \rightarrow L^{n} \xrightarrow{f^{n}} M^{n} \xrightarrow{g^{n}} N^{n} \rightarrow 0
$$

is splitting for every $n \in \mathbb{Z}$.
Prove that there is a cochain map $h: N[-1] \rightarrow L$ such that:

$$
d_{M}^{n}=\left(\begin{array}{cc}
d_{L}^{n} & h^{n+1} \\
0 & d_{N}^{n}
\end{array}\right)
$$

where d_{L}, d_{M}, d_{N} are the differentials of L, M, N, respectively.

