Padova, July 8, 2013

Rings and Modules

FROM THE THEORY

- **1.** Let $F: \mathcal{C} \to \mathcal{D}$ be a functor between categories.
 - (1) Complete the definition: F is an equivalence if
 - (2) Prove that if F is an equivalence, then F is fully faithful and essentially surjective.

2. Let f be a morphism in a category C. Assume that $f = \operatorname{coker} g$ for some morphism g and that ker f exists.

Prove that $f = \operatorname{coker}(\ker f)$.

3. Let $Ch(\mathcal{A})$ be the category of cochain complexes with terms in the abelian category \mathcal{A} .

- Let $f: X \to Y$ be a cochain map in $Ch(\mathcal{A})$.
 - (1) Complete the definition: f is a "quasi-isomorphism" if ...
 - (2) Complete the definition: f is a homotopy equivalence if ...
 - (3) Prove that if f is a homotopy equivalence then f is a quasiisomorphism but that the converse doesn't hold.

4. Denote by r.gl.dim R the right global dimension of a ring R and by p.dim M the projective dimension of the right R-module M.

Prove that $r.gl.dim R = \sup\{p.dim (R/I) \mid I \text{ is a right ideal of } R\}.$

EXERCISES:

5. Let R be a ring and M_R be a right R-module. Let $\{N_i\}_{i\in I}$ be a directed system of submodules of M. Prove that $\varinjlim M/N_i \cong M/N$ where $N = \sum_{i\in I} N_i$.

6. $F: \mathcal{C} \to \mathcal{D}$ and $G: \mathcal{D} \to \mathcal{C}$ be functors between categories \mathcal{C}, \mathcal{D} such that $F \circ G$ is naturally isomorphic to $1_{\mathcal{D}}$ and $G \circ F$ is naturally isomorphic to $1_{\mathcal{C}}$. Prove that the pairs (F, G) and (G, F) are adjoint pairs.

7. (Kaplansky's Lemma) Let $0 \to A \to B \to C \to 0$ be a short exact sequence of *R*-modules and let *p.dim M* denote the projective dimension of the module *M*.

Prove that the following hold:

- (1) If two of *p.dim A*, *p.dim B*, *p.dim C* are finite so is the third.
- (2) One and only one of the following cases may occur
 - (a) $p.dim \ A < p.dim \ B = p.dim \ C$.
 - (b) p.dim B < p.dim A = p.dim C 1.
 - (c) $p.dim \ A = p.dim \ B \ge p.dim \ C 1.$

8. Let $0 \to L \xrightarrow{f} M \xrightarrow{g} N \to 0$ be a short exact sequence of cochain complexes with terms in an abelian category \mathcal{A} .

Assume that the sequence is degreewise splitting, i.e.

$$0 \to L^n \xrightarrow{f^n} M^n \xrightarrow{g^n} N^n \to 0$$

is splitting for every $n \in \mathbb{Z}$.

Prove that there is a cochain map $h: N[-1] \to L$ such that:

$$d_M^n = \left(\begin{array}{cc} d_L^n & h^{n+1} \\ 0 & d_N^n \end{array}\right)$$

where d_L, d_M, d_N are the differentials of L, M, N, respectively.