Rings and Modules

FROM THE THEORY

1. In an additive category \mathcal{C} consider a diagram:

$$B \xrightarrow{f} C^{A}$$

- (1) Define a pullback (P, g_1, f_1) $(g_1: P \to B, f_1: P \to A)$ of the diagram.
- (2) Realize the kernel of a morphism and the product of two objects as suitable pullbacks (when they exist).
- (3) Prove that if f is mono, then f_1 is mono.
- (4) (Optional) If C is abelian, prove that if f is epi, then f_1 is epi.

2. Let C be an object of a category C.

- (1) Complete the definition: B is a suboject of C if there is a monomorphism $B \xrightarrow{f} C$ representing an equivalence class of monomorphisms, i.e. ...
- (2) If $A \xrightarrow{f} C$ and $B \xrightarrow{g} C$ are two subobjects of C, write $A \subseteq B$ in C if there is a morphism $\alpha \colon A \to B$ such that $f = g \circ \alpha$.
- (3) Let now \mathcal{C} be an abelian category and $A \xrightarrow{f} B \xrightarrow{g} C$ be a sequence of morphisms.

Prove that $g \circ f = 0$ if and only if $\text{Im} f \subseteq \text{Ker} g$.

3. Let $Ch(\mathcal{A})$ be the category of cochain complexes with terms in the abelian category \mathcal{A} .

Let $f: X \to Y$ be a cochain map in $Ch(\mathcal{A})$.

- (1) Complete the definition: f is a "quasi-isomorphism" if ...
- (2) Define the complex $\operatorname{Cone}(f)$.
- (3) Prove that f is a quasi-isomorphism if and only if Cone(f) is an acyclic complex.

4. Let *R* be a ring and let *M* be a right *R*-module. Denote by M^* the left *R*-module $\operatorname{Hom}_{\mathbb{Z}}(M, \mathbb{Q}/\mathbb{Z})$.

Prove that M is a flat right R-module if and only if M^* is an injective left R-module.

EXERCISES:

5. Let $F: \mathcal{C} \to Sets$ be a contravariant functor from a category \mathcal{C} to the category of sets. F is said to be representable if there is an object $Z \in \mathcal{C}$ such that F is isomorphic to $\operatorname{Hom}_{\mathcal{C}}(-, Z)$.

Assume that F is a representable functor. Prove that the object Z is uniquely determined up to isomorphism.

6. Let

$$A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$$

$$\alpha \Big| \qquad \beta \Big| \qquad \gamma \Big|$$

$$0 \longrightarrow L \xrightarrow{j} M \xrightarrow{h} N$$

be a commutative diagram in an abelian category \mathcal{A} with exact rows.

Show that there is a morphism $\lambda \colon C \to M$ such that $h \circ \lambda = \gamma$ if and only if there is a morphism $\theta \colon B \to L$ such that $\theta \circ f = \alpha$.

7. Let $L: \mathcal{C} \to \mathcal{D} R: \mathcal{D} \to \mathcal{C}$ be functors between additive categories such that (L, R) is an adjoint pair.

Prove that R is faithful if and only if the counit morphism

$$\xi_D \colon LR(D) \to D$$

is an epimorphism for every $D \in \mathcal{D}$.

8. Let $Ch(\mathcal{A})$ be the category of cochain complexes with terms in an abelian category \mathcal{A} . For every object $A \in \mathcal{A}$ and every $n \in \mathbb{Z}$ consider the complexes

$$D^{n}(A) = \dots \to 0 \to A^{n} \xrightarrow{id_{A}} A^{n+1} \to 0 \to \dots,$$

$$S^{n}(A) = \dots \to 0 \to 0 \to A^{n} \to 0 \to 0 \to \dots,$$

with $A^n = A^{n+1} = A$.

Let (X, d_X) be an arbitrary complex in $\mathcal{C}h(\mathcal{A})$. Show that:

- (1) $\operatorname{Hom}_{\mathcal{C}h(\mathcal{A})}(X, D^n(A)) \cong \operatorname{Hom}_{\mathcal{A}}(X^{n+1}, A).$
- (2) $\operatorname{Hom}_{\mathcal{C}h(\mathcal{A})}(X, S^n(A)) \cong \operatorname{Hom}_{\mathcal{A}}(X^n/B^n(X), A)$, where for every $n \in \mathbb{Z}, B^n(X)$ is the n^{th} -boundary of X.