FROM THE THEORY

- 1. Let \mathcal{C} be a preadditive category having a zero object.
 - (1) Give the definition of kernel and cokernel of a morphism in \mathcal{C} .
 - (2) Prove that every kernel is a monomorphism (and every cokernel is an epimorphism).
 - (3) Give the definition of a pushout and prove that a cokernel is a pushout.

2. Let C be a preadditive category and I a small category.

Let $F: \to \mathcal{C}$ be a functor.

- (1) Give the definition of $\lim F$ and prove that, when it exists, $\lim F$ is unique up to isomorphism.
- (2) Assume that I is a discrete category (i.e. the only morphisms in I are the identities). Prove that $\lim F$ is isomorphic to the product $\prod_{i \in I} F(i)$.

3. Let \mathcal{C}, \mathcal{D} be abelian categories and $L: \mathcal{C} \to \mathcal{D}, R: \mathcal{D} \to \mathcal{C}$ be functors.

(1) Complete the definition:

(L, R) is an adjoint pair if ...

(Express also by diagrams the naturality of the bijections involved)

- (2) Define the unit and the counit of the adjunction.
- (3) Assume that R is exact and P is a projective object of \mathcal{C} . Show that L(P) is a projective object of \mathcal{D} .

4. Let X and Y be cochain complexes with terms in an abelian category \mathcal{A} and let $f, g: X \to Y$ be cochain maps.

Complete the definitions:

- (1) f is null homotopic if...
- (2) f and g are homotopic maps if ...
- (3) f is a homotopy equivalence if ...
- (4) Prove that two homotopic maps induce the same morphisms $H^n(X) \to H^n(Y)$, for every $n \in \mathbb{Z}$.

EXERCISES:

5. Let \mathcal{C} be a category and let I be a category consisting of the three objects 1, 2, 3 and morphisms the identities together with $\alpha: 1 \to 2$, $\beta: 2 \to 3$. Consider the category \mathcal{C}^I of the functors $F: I \to \mathcal{C}$ with morphisms the natural transformations between functors.

- (1) Describe the objects of \mathcal{C}^{I} as diagrams in \mathcal{C} .
- (2) Describe the morphisms in \mathcal{C}^I .
- **6.** Let \mathcal{A} be an abelian category and

be a commutative diagram in \mathcal{A} with exact rows. Show that the left square is a pull-back (and a push-out) diagram.

- 7. Let $F: \mathcal{A} \to \mathcal{B}$ be a faithful functor and let f be a morphism in \mathcal{A} .
 - (1) Prove that if F(f) is a monomorphism (resp. an epimorphism), then f is a monomorphism (resp. an epimorphism).
 - (2) Assume that F is fully faithful. Prove that if F(f) is an isomorphism, then f is an isomorphism.

8. Let $0 \to A \to B \to C \to 0$ be a short exact sequence of *R*-modules and let p.d.(M), i.d.(M) and f.d.(M) denote the projective, injective, flat dimension of the module M.

Prove that $p.d.(B) \leq \max\{p.d.(A), p.d.(C)\}$ and that equality holds except when p.d.(C) = p.d.(A) + 1.

Note that the same result holds for the injective and the flat dimensions.