
COVERS AND DIRECT LIMITS:
A CONTRAMODULE-BASED APPROACH

SILVANA BAZZONI AND LEONID POSITSELSKI

Abstract. We present applications of contramodule techniques to the Enochs
conjecture about covers and direct limits, both in the categorical tilting context and
beyond. In the n-tilting-cotilting correspondence situation, if A is a Grothendieck
abelian category and the related abelian category B is equivalent to the category
of contramodules over a topological ring R belonging to one of certain four classes
of topological rings (e. g., R is commutative), then the left tilting class is covering
in A if and only if it is closed under direct limits in A, and if and only if all the
discrete quotient rings of the topological ring R are perfect. More generally, if M is
a module satisfying a certain telescope Hom exactness condition (e. g., M is Σ-pure-
Ext1-self-orthogonal) and the topological ring R of endomorphisms of M belongs
to one of certain seven classes of topological rings, then the class Add(M) is closed
under direct limits if and only if every countable direct limit of copies of M has an
Add(M)-cover, and if and only if M has perfect decomposition. In full generality,
for an additive category A with (co)kernels and a precovering class L ⊂ A closed
under summands, an object N ∈ A has an L-cover if and only if a certain object
Ψ(N) in an abelian category B with enough projectives has a projective cover. The
1-tilting modules and objects arising from injective ring epimorphisms of projective
dimension 1 form a class of examples which we discuss.
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Introduction

0.0. The main result (or one of the main results) of Bass’ 1960 paper [6] can be stated
as follows: given an associative ring R, every left R-module has a projective cover if
and only if the class of projective modules is closed under direct limits in the category
of left R-modules. Subsequently, in 1981 Enochs proved that any precovering class of
modules closed under direct limits is covering [14, Theorems 2.1 and 3.1], and in the
late 1990s he asked the question whether every covering class of modules is closed
under direct limits (see [19, Section 5.4]; cf. [4, Section 5]).

A hypothetical general positive answer to this question is sometimes called “the
Enochs conjecture”. A positive answer in many particular cases was recently obtained
by Angeleri Hügel, Šaroch, and Trlifaj [4, Theorem 5.2 and Corollary 5.5], based on
set-theoretical tools developed by Šaroch in [31]. (An alternative elementary proof
of a part of the results of [4] is suggested in the preprint [9].) The aim of this
paper is to offer a new approach to proving particular cases of the Enochs conjecture,
based on the recently developed techniques of contramodules and categorical tilting
theory [25, 26, 27, 23, 24, 28, 9].

0.1. The general idea of our approach can be explained as follows. Firstly, we extend
Bass’ theorem about projective covers from the categories of modules over associative
rings to some other abelian categories B with enough projective objects. This is the
subject of the paper [24].

Secondly, let A be an associative ring and M be a left A-module. More generally,
M could be an object of a good enough additive/abelian category A in lieu of A–mod.
We consider the full subcategory Add(M) ⊂ A consisting of all the direct summands
of coproducts of copies of M in A. The aim is to prove the Enochs conjecture for the
class of objects Add(M) in A.

For this purpose, we find an abelian category B such that the full subcategory
Bproj ⊂ B of projective objects in B is equivalent to the full subcategory Add(M) ⊂
A. Then we transfer our knowledge about the Enochs conjecture for the class of
projective objects Bproj in B to the class of objects Add(M) in A.

In fact, we do more. Extending the discussion in [4] to the category-theoretic
context, we consider covers in cotorsion pairs, self-pure-projective and lim−→-pure-rigid
objects, and objects with perfect decomposition. Under certain assumptions, we
prove that the class Add(M) is covering in A if and only if the object M ∈ Add(M)
has a perfect decomposition. This is based on some results of the papers [28] and [9].

One specific feature of our approach is that we consider topologies on (the oppo-
site ring to) the ring of endomorphisms R = HomA(M,M)op of the object M . In
particular, the endomorphism ring of a module M over an associative ring A always
has the so-called finite topology. Under certain assumptions, we prove that the class
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Add(M) is covering in A if and only if all the discrete quotient rings of the topological
ring R are left perfect.

0.2. The time has come to explain what our assumptions are. There are three kinds
of assumptions. Firstly, given an object M in a category A, there should exist a
topology on the ring R of endomorphisms of M for which the abelian category B
could be described as the category of left R-contramodules. This always holds when
A = A–mod is the category of modules over an associative ring, and more generally,
when A is a locally finitely generated abelian category (and in some other cases, too).

Secondly, the topological ring R has to satisfy one of the technical assumptions (a),
(b), (c), or (d) under which the main results of the paper [24] are proved. In particu-
lar, the condition (a) says that the ring R is commutative (and when it is not, there
are three other alternatives (b), (c), or (d) which may happen to hold for R).

Alternatively, there are three conditions (e), (f), and (g), under any one of which
some of our results in this paper can be proved using the main results of the papers [28,
29]. In particular, (e) says that R has a countable base of neighborhoods of zero.

Thirdly, there is a more conceptual assumption which we call “telescope Hom
exactness condition”, abbreviated as THEC. This condition is not very restrictive.
It says that right exactness of the telescope sequences computing countable direct
limits of copies of the object M in A is preserved by the functor HomA(M,−). All
Σ-pure-rigid and all self-pure-projective objects (hence, in particular, all n-tilting
objects) in abelian categories with exact countable direct limits satisfy THEC.

0.3. Having mentioned the assumptions, we can now formulate our main result.

Theorem 0.1. Let A be a locally presentable additive category and M ∈ A be an
object satisfying THEC. Denote by B the abelian category with enough projective
objects such that the full subcategory Add(M) ⊂ A is equivalent to the full subcategory
of projective objects Bproj ⊂ B. Assume that there exists a (complete, separated,
right linear) topological ring structure on the ring R = HomA(M,M)op such that
the abelian category B is equivalent to the abelian category of left R-contramodules
R–contra (this always holds for A = A–mod). Finally, assume that the topological
ring R satisfies one of the conditions (a), (b), (c), or (d) of the paper [24] (e. g., this
holds if R is commutative). Then the following conditions are equivalent:

(1) the class of objects Add(M) ⊂ A is covering;
(2) every countable direct limit of copies of M has an Add(M)-cover in A;
(3) the class of objects Add(M) is closed under direct limits in A;
(4) the class Bproj is covering in B;
(5) any countable direct limit of copies of the projective generator R ∈ B has a

projective cover in B;
(6) the class Bproj is closed under direct limits in B;
(7) the object M ∈ A has a perfect decomposition;
(8) all descending chains of cyclic discrete right R-modules terminate;
(9) all the discrete quotient rings of the topological ring R are left perfect.
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Replacing the assumption of one of the conditions (a–d) with that of one of the con-
ditions (e), (f), or (g) (e. g., if R has a countable base of neighborhoods of zero), the
eight conditions (1–8) are equivalent.

Notice that, even in the case of the category of modules A = A–mod, one can
sometimes choose between several topologies on the ring R for which the category
B in Theorem 0.1 is equivalent to R–contra. In particular, when the A-module
M is self-small, i. e., the natural map of abelian groups

⊕∞
i=0 HomA(M,M) −→

HomA(M,
⊕∞

i=0M) is an isomorphism, it suffices to endow the ring R with the
discrete topology. Then the condition (b) is satisfied.

Furthermore, suppose that a left A-module M =
∑∞

i=1Ei is the sum of a countable
family of its submodules Ei ⊂M such that the A-modules Ei are weakly finitely gen-
erated (known also as “small” or “dually slender”). This means that for any family of
left A-modules (Nx)x∈X , the natural map

⊕
x HomA(Ei, Nx) −→ HomA(Ei,

⊕
xNx)

is an isomorphism for every i = 1, 2, . . . Then one can endow the ring R with the
weakly finite topology, and the condition (e) is satisfied (cf. [9, Section 7.2]).

0.4. Specializing to the tilting context, we prove the following theorem with our
methods (cf. [4, Theorem 5.2 and Corollary 5.5]).

Theorem 0.2. Let A be a Grothendieck abelian category and T ∈ A be an n-tilting
object. Let (L,E) denote the induced n-tilting cotorsion pair in A, and let B denote
the heart of the related n-tilting t-structure on D(A). Assume that there exists a
(complete, separated, right linear) topology on the ring R = HomA(T, T )op such that
the abelian category B is equivalent to the abelian category of left R-contramodules
R–contra (this always holds when A is a locally weakly finitely generated abelian
category). Finally, assume that the topological ring R satisfies one of the conditions
(a), (b), (c), or (d). Then the following conditions are equivalent:

(1) the class L is covering in A;
(2) any countable direct limit of copies of T has an L-cover in A;
(3) the class L is closed under direct limits in A;
(4) the class Add(T ) is covering in A;
(5) any countable direct limit of copies of T has an Add(T )-cover in A;
(6) the class Add(T ) is closed under direct limits in A;
(7) any or all of the equivalent conditions (4–6) of Theorem 0.1 hold for the

category B = R–contra;
(8) the object T ∈ A has a perfect decomposition;
(9) all descending chains of cyclic discrete right R-modules terminate;

(10) all the discrete quotient rings of the topological ring R are left perfect.

Replacing the assumption of one of the conditions (a–d) with that of one of the con-
ditions (e), (f), or (g), the nine conditions (1–9) are equivalent.

0.5. In the full generality (without any of the assumptions mentioned in Section 0.2),
we make the following simple observations.

Let A be an additive category with cokernels and (weak) kernels, and L ⊂ A be
a precovering class of objects closed under direct summands. Viewing L as a full
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subcategory in A, we notice that L has weak kernels, too. So there exists a unique
abelian category B with enough projectives such that the full subcategory of projec-
tives in B is equivalent to L [16, Corollary 1.5], [21, Proposition 2.3]. Furthermore,
the equivalence of categories Bproj

∼= L can be naturally extended to a pair of adjoint
functors Φ: B −→ A and Ψ: A −→ B (where Ψ is the right adjoint).

Let N ∈ A be an object. Then N has an L-cover in A if and only if the object
Ψ(N) ∈ B has a projective cover. More specifically, given an object L ∈ L and
the related object Ψ(L) = P ∈ Bproj, a morphism l : L −→ N is an L-cover if and
only if the morphism Ψ(l) : P −→ Ψ(N) is a projective cover. Hence the class L is
covering in A if and only if all the objects in the essential image of the functor Ψ
have projective covers in B.

0.6. In the final sections of the paper, we discuss the class of examples for Theo-
rem 0.2 provided by the tilting modules and objects arising from injective homological
ring epimorphisms of projective dimension 1. Here our discussion is based on the pa-
per [8].

In fact, there are two classes of examples. Let u : R −→ U be an injective ho-
mological epimorphism of associative rings such that the projective dimension of the
left R-module U does not exceed 1. Then the left R-module U ⊕ U/R is 1-tilting. If
the ring R is commutative, then the condition (d) is satisfied for the topological ring
S of endomorphisms of the R-module U ⊕ U/R, and Theorem 0.2 is applicable for
A = R–mod and T = U ⊕ U/R.

Assume additionally that the flat dimension of the right R-module U does not
exceed 1. Then we consider the full subcategory A = R–modu-co of what we call
left u-comodules in the category of left R-modules R–mod. The category A is a
Grothendieck abelian category, and the left R-module U/R is a 1-tilting object in A.
If the ring R is commutative, then so is the topological ring R = HomR(U/R,U/R)op,
and Theorem 0.2 is applicable for A = R–modu-co and T = U/R.

0.7. In conclusion, let us say a few words about how our results compare to those of
the paper [4]. Our results are both more and less general than the results of [4]. On
the one hand, the paper [4] only deals with cotorsion pairs in module categories, while
we work in more general additive and abelian categories. On the other hand, the main
results of the present paper require one of the rather restrictive conditions (a), (b),
(c), (d), (e), (f), or (g), while there are no comparable assumptions in [4].

Even for module categories A = A–mod, our Theorem 0.1 is both stronger and
weaker than the results of [4]. On the one hand, we do not assume that the object
M belongs to the kernel of a cotorsion pair. The running assumption in [4] is that
of a cotorsion pair (L,E) in A–mod such that the right-hand class E is closed under
direct limits. Under this assumption, any module M ∈ L ∩ E satisfies our telescope
Hom exactness condition (in fact, it is enough that E be closed under countable
coproducts). So, in this respect, our setting is more general.

On the other hand, the assertions of [4, Theorem 5.2 and Corollary 5.5] tell more
than those of our theorems. In particular, [4, Corollary 5.5 (5)] allows to conclude
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that the module in the kernel of the cotorsion pair is Σ-pure-split, while we only
prove that our object M has a perfect decomposition.

0.8. Acknowledgement. The authors are grateful to Jan Št’ov́ıček, Michal Hrbek,
Rosanna Laking, and Jan Šaroch for very helpful discussions. We wish to thank an
anonymous referee for careful reading of the manuscript and for several helpful sugges-
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bras: Ring-Theoretical and Homological Approaches-CARTHA) and DOR1828909
of Padova University. The second-named author is supported by the GAČR project
20-13778S and research plan RVO: 67985840.

1. Contramodules over Topological Rings

Cocomplete abelian categories with enough projective objects, and more specifi-
cally contramodule categories, play a key role in this paper. In this section, we briefly
recall the basic material related to contramodules over complete, separated topolog-
ical rings with right linear topologies. More details can be found in [24, Section 1],
[23, Section 2], [25, Introduction and Section 5], [26, Section 6], and [22, Section 1].

1.1. Linear topological abelian groups. A topological abelian group A is said to
have a linear topology if open subgroups form a base of neighborhoods of zero in A.
A topological abelian group A with a linear topology (a “linear topological abelian
group”, for brevity) is separated if the natural map λA : A −→ lim←−U⊂AA/U , where

U ranges over the open subgroups of A, is injective, and A is complete if the map λA
is surjective. Obviously, A is separated if and only if the intersection of all its open
subgroups is zero.

For any abelian group A and a set X, we use the notation A[X] = A(X) for the
coproduct of X copies of A. The elements of A[X] are interpreted as finite formal
linear combinations of elements of X with the coefficients in A.

Let A be a complete, separated linear topological abelian group. For any set X,
we denote by A[[X]] the projective limit

A[[X]] = lim←−U⊂A(A/U)[X],

where U ranges over all the open subgroups of A. Equivalently, A[[X]] is the group
of all infinite formal linear combinations

∑
x∈X axx of elements of the set X with the

coefficients ax ∈ A such that the family of coefficients (ax)x∈X converges to zero in A
in the following sense: for any open subgroup U ⊂ A, the set of all indices x ∈ X for
which ax /∈ U must be finite.

For any complete, separated linear topological abelian group A and any map of
sets f : X −→ Y there is a naturally induced “push-forward” map A[[f ]] : A[[X]] −→
A[[Y ]] taking a formal linear combination

∑
x∈X axx to the formal linear combination∑

y∈Y byy with the coefficients by =
∑

x:f(x)=y ax. Here the latter sum is understood
as the limit of finite partial sums in the topology of A; the convergence condition
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on the family of elements (ax)x∈X together with the conditions of separatedness and
completeness of A guarantee that the coefficients by are well-defined (and form a
family of elements (by)y∈Y which again converges to zero in A). This construction
shows that the assignment X 7−→ A[[X]] is a functor from the category of sets to the
category of sets or even abelian groups.

1.2. Monads on Sets. A monad T on the category of sets is a functor T : Sets −→
Sets endowed with natural transformations of monad unit ε : IdSets −→ T and
monad multiplication φ : T ◦ T −→ T satisfying the following associativity and
unitality equations. The two natural maps T(φX) : T(T(T(X))) −→ T(T(X)) and
φT(X) : T(T(T(X))) −→ T(T(X)) should have equal compositions with the map
φX : T(T(X)) −→ T(X) for any set X,

T ◦ T ◦ T ⇒ T ◦ T −→ T,
and both the natural maps T(εX) : T(X) −→ T(T(X)) and εT(X) : T(X) −→ T(T(X))
composed with the natural map φX should be equal to the identity endomorphism
of the set T(X),

T ⇒ T ◦ T −→ T.
Here εX denotes the map X −→ T(X) assigned to an object X ∈ Sets by the natural
transformation ε, and similarly, φX : T(T(X)) −→ T(X) is the map assigned to X by
the natural transformation φ.

A module (or, in a more standard terminology, an algebra) over a monad
T : Sets −→ Sets is a set C endowed with a map of sets πC : T(C) −→ C, called the
monad action map, satisfying the following associativity and unitality equations.
The compositions of the two maps φC and T(πC) : T(T(C)) −→ T(C) with the
map πC should be equal to each other,

T(T(C)) ⇒ T(C) −→ C,

and the composition of the map εC : C −→ T(C) with the map πC : T(C) −→ C
should be equal to the identity map idC ,

C −→ T(C) −→ C.

A morphism of T-modules f : B −→ C is a map of sets for which the following
square diagram is commutative:

T(B) B

T(C) C

//
πB

��

T(f)

��

f

//
πC

The composition of morphisms of T-modules is defined in the obvious way.
For any monad T : Sets −→ Sets, the category of T-modules T–mod is complete

and cocomplete. For any set X, the set T(X) with the action map πT(X) = φX is
a T-module; such T-modules are called the free T-modules. For any T-module C,
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morphisms of T-modules T(X) −→ C are in bijective correspondence with maps of
sets X −→ C.

A monad T : Sets −→ Sets is said to be additive if the category of T-modules
T–mod is additive. In this case, the underlying set of every T-module has a natural
abelian group structure; so the forgetful functor T–mod −→ Sets lifts naturally to
a forgetful functor T–mod −→ Ab. For any additive monad T, the category T–mod
is abelian; the forgetful functor T–mod −→ Ab is faithful, exact, and preserves all
limits [22, Lemma 1.1]. For any additive monad T, the abelian category of T-modules
T–mod has enough projective objects. A T-module is projective if and only if it is a
direct summand of a free T-module.

1.3. Right linear topological rings. All rings in this paper are presumed to be
associative and unital. A topological ring R is said to have a right linear topology
if open right ideals form a base of neighborhoods of zero in R. A two-sided linear
topology on R is a topology in which open two-sided ideals form a base of neighbor-
hoods of zero. When the ring R is commutative, one simply says that “R has a linear
topology” if open ideals form a base of neighborhoods of zero. A topological ring
with a right (resp., two-sided) linear topology is called right (resp., two-sided) linear
topological (or just “linear topological”, if the ring is commutative).

Let R be a complete, separated right linear topological ring. Then the functor
TR : X 7−→ R[[X]] has a natural structure of a monad on the category of sets. By
the definition (see Section 1.2), this means that there are natural transformations of
monad unit ε : IdSets −→ TR and monad multiplication φ : TR ◦TR −→ TR satisfying
the associativity and unitality equations.

For any set X, the natural “point measure” map εX : X −→ R[[X]] assigns to an
element x ∈ X the formal linear combination

∑
z∈X rzz with the coefficients rx = 1

and rz = 0 for z 6= x. The natural “opening of parentheses” map φX : R[[R[[X]]]] −→
R[[X]] assigns to a formal linear combination

∑
y∈R[[X]] ryy, where y =

∑
x∈X sy,xx ∈

R[[X]] and ry, sy,x ∈ R, the formal linear combination
∑

x∈X txx ∈ R[[X]] with the
coefficients tx =

∑
y∈R[[X]] rysy,x ∈ R. Here the infinite sum in the construction of the

coefficient tx is understood as the limit of finite partial sums in the topology of R,
and the conditions of right linear topology, completeness, and separatedness imposed
on the ring R guarantee the convergence.

1.4. Contramodules. A left contramodule over a complete, separated right linear
topological ring R is a module (or, in the more standard terminology, an algebra)
over the monad TR. In other words, a left R-contramodule C is a set endowed with
a left contraaction map πC : R[[C]] −→ C satisfying the associativity and unitality
equations written down in Section 1.2.

Restricting the map πC to the subset of finite formal linear combinations R[X] ⊂
R[[X]], one obtains the structure of a module over the monad X 7−→ R[X] on the
underlying set of every left R-contramodule, which is the same as a left R-module
structure. This construction defines a natural forgetful functor R–contra −→ R–mod
from the category of left R-contramodules to the category of left R-modules. The
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monad TR is additive, the category R–contra is abelian, and the forgetful functor
R–contra −→ R–mod is exact and preserves infinite products (but not coproducts).

For any set X, the free TR-module TR(X) = R[[X]] (with the contraaction map
πR[[X]] = φX) is called the free left R-contramodule generated by X. Following
the discussion in Section 1.2, for every left R-contramodule C, left R-contramodule
morphisms R[[X]] −→ C are in bijective correspondence with maps of sets X −→ C,

HomR(R[[X]],C) ∼= HomSets(X,C),

where we denote by HomR(C,D) the group of morphisms between any two objects C
and D in the category R–contra. There are enough projective objects in the abelian
category R–contra; a left R-contramodule is projective if and only if it is a direct
summand of a free left R-contramodule.

1.5. Discrete modules. Let R be a right linear topological ring. A right R-module
N is said to be discrete if, for every element x ∈ N , the annihilator of x in R is
an open right ideal. Equivalently, this means that the action map N × R −→ N
is continuous in the given topology on R and the discrete topology on N . The full
subcategory of discrete right R-modules discr–R is closed under subobjects, quotient
objects, and infinite direct sums in the abelian category of right R-modules mod–R
(in other words, discr–R ⊂ mod–R is a hereditary pretorsion class). It follows that
discr–R is a locally finitely generated Grothendieck abelian category.

2. Generalized Tilting Theory

Let A be an additive category with set-indexed coproducts, and let B be an additive
category with set-indexed products. For any object T ∈ A and any set X, we denote
by T (X) ∈ A the coproduct of X copies of T in A. For any object W ∈ B and any set
X, we denote by WX ∈ B the product of X copies of W in B.

Furthermore, we denote by Add(T ) = AddA(T ) ⊂ A the class of all direct summands
of the coproducts T (X) of copies of the object T in the category A. Similarly, we denote
by Prod(W ) = ProdB(W ) ⊂ B the class of all direct summands of the products WX

of copies of the object W in B.
Given an exact category E (in Quillen’s sense), we denote by Einj and Eproj ⊂ E the

classes of all injective and projective objects in A, respectively. In particular, this
notation applies to abelian categories.

Let A be an idempotent-complete additive category with set-indexed coproducts,
and let M ∈ A be an object. In this section we recall the description of the category
Add(M) as the category Bproj of projective objects in a certain abelian category B.
This material first appeared in [26, Section 6] and [27, Section 1].

Remark 2.1. The latter two references are papers in tilting theory. So let us briefly
explain the connection, which will also explain the title of this section and its first
subsection, following below. In the infinitely generated tilting theory, one assigns to
a cocomplete abelian category A with an n-tilting object T another abelian category
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B, which is constructed as the heart of the tilting t-structure on the derived category
D(A). One observes that the abelian category B has enough projective objects, and
the full subcategory of projective objects in B is equivalent to the full subcategory
Add(T ) ⊂ A. (See Section 11 for a detailed discussion.) The next observation is that
one does not need a tilting object to perform such a construction: for any object
M ∈ A, there exists a unique abelian category B with enough projective objects such
that Bproj

∼= Add(M). Hence the name “generalized tilting theory” which we give to
this categorical construction and its basic properties.

2.1. Generalized tilting theory. Let A be a category with coproducts and M ∈ A
be an object. Consider the pair of adjoint functors

Φ: Sets � A :Ψ

defined as follows. For any set X, the object Φ(X) = M (X) is the coproduct of X
copies of M in A. For any object N ∈ A, the set Ψ(N) = HomA(M,N) is the set of all
morphisms M −→ N in the category A. The composition of the two adjoint functors
TM = Ψ ◦ Φ: Sets −→ Sets, taking a set X to the set TM(X) = HomA(M,M (X)),
acquires a natural structure of a monad on the category of sets (see Section 1.2).
According to [26, Proposition 6.2], the full subcategory formed by the objects M (X),
X ∈ Sets, in the category A is equivalent to the full subcategory of free TM -modules
TM(X) in T–mod.

Let B be a cocomplete abelian category with a projective generator P . Then the
related monad TP : X 7−→ HomB(P, P (X)) is additive, and the abelian category B is
equivalent to the abelian category of TP -modules [26, Corollary 6.3]:

(2.1) B ∼= TP–mod.

The equivalence of categories (2.1) takes the projective generator P ∈ B to the free
TP -module with one generator TP (∗).

Let A be an idempotent-complete additive category with coproducts and M ∈ A
be an object. Then TM : Sets −→ Sets is an additive monad, and B = TM–mod
is a complete, cocomplete abelian category with enough projective objects. The
full subcategory of projective objects Bproj ⊂ B is equivalent to the full subcategory
Add(M) ⊂ A [27, Theorem 1.1(a)], [28, Theorem 3.13]:

(2.2) B ⊃ Bproj
∼= Add(M) ⊂ A.

The equivalence of categories (2.2) takes the object M ∈ Add(M) to the free
TM -module with one generator P = TM(∗) ∈ TM–mod = B, which is a projective
generator of B.

Assume that A is a cocomplete additive category. Then the equivalence of full
subcategories (2.2) extends naturally to a pair of adjoint functors between the ambient
additive/abelian categories [27, Section 1]:

(2.3) ΦM : B � A :ΨM .
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The right adjoint functor ΨM : A −→ TM–mod takes an object N ∈ A to the set
HomA(M,N) endowed with the TM -module structure provided by the map

πΨM (N) : TM(HomA(M,N)) = HomA(M,M (HomA(M,N))) −→ HomA(M,N)

of composition with the natural morphism M (HomA(M,N)) −→ N in the category A
(cf. [26, Remark 6.4]). The left adjoint functor ΦM : B −→ A can be obtained as
the extension of the fully faithful embedding Bproj

∼= Add(M) −→ A to a right exact
functor B −→ A. The restrictions of the functors ΦM and ΨM to the full subcategories
Bproj ⊂ B and Add(M) ⊂ A take these two full subcategories into each other, providing
the equivalence Bproj

∼= Add(M).

2.2. Contramodules in generalized tilting theory. For many additive categories
A with coproducts, the monads TM associated with objects M ∈ A have the form
TM ∼= TR for certain complete, separated, right linear topological rings R. In par-
ticular, this is the case for the categories A = A–mod of modules over associative
rings A.

The first related observation is that, for every monad T on the category of sets,
the set T(∗) assigned by the functor T to a one-element set ∗ has a natural monoid
structure. In fact, the set T(∗) = HomT–mod(T(∗),T(∗)) is the set of T-module endo-
morphisms of the free T-module with one generator T(∗). We will follow the conven-
tion that the multiplication in T(∗) is opposite to the composition of endomorphisms
(so the monoid T(∗) acts in the object T(∗) ∈ T–mod on the right).

For every additive monad T, the set T(∗) has a natural structure of associative
ring. In the case of the monad TM for an object M ∈ A, the related ring TM(∗) =
HomA(M,M)op is the opposite ring to the ring of endomorphisms of the object M .
In the case of the monad TR for a topological ring R, the related ring is TR(∗) = R.
Thus, given an object M ∈ A, in order to find a topological ring R for which the
monad TM is isomorphic to the monad TR, one has to endow the endomorphism ring
R = HomA(M,M)op with an appropriate complete, separated right linear topology.

Additive categories A with set-indexed coproducts in which the groups of mor-
phisms HomA(M,N) carry topologies appropriate for the task are called topologically
agreeable categories in [28]. In fact, it often happens that a given category A can be
endowed with several topologically agreeable structures, differing slightly from one
another.

Examples 2.2. (1) Let A be an associative ring and A = A–mod be the category
of left A-modules. Then, for M , N ∈ A, the abelian group HomA(M,N) can be
endowed with what is known as the finite topology, in which annihilators of finite
subsets (or equivalently, of finitely generated submodules) E ⊂ M form a base of
neighborhoods of zero in HomA(M,N).

The finite topology on HomA(M,N) is complete and separated; and the ring
HomA(M,M) is a left linear topological ring in the finite topology. So the ring
R = HomA(M,M)op is a right linear topological ring. The monad TM : X 7−→
HomA(M,M (X)) is isomorphic to the monad TR : X 7−→ R[[X]]. Thus the abelian
category B = TM–mod is equivalent to R–contra [26, Theorem 7.1].
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(2) In the setting of (1), we say that a left A-module E is weakly finitely generated
if, for any family of left A-modules (Nx)x∈X , the natural map

⊕
x HomA(E,Nx) −→

HomA(E,
⊕

xNx) is an isomorphism. Equivalently, this means that every A-module
morphism E −→

⊕
xNx factorizes through the direct sum of the modules Nx over

a finite subset of indices x ∈ Z ⊂ X, |Z| < ∞. Such modules E are known in the
literature as “dually slender” or “small”.

For any left A-modules M and N , the weakly finite topology on the abelian group
HomA(M,N) has a base of neighborhoods of zero consisting of the annihilators
of weakly finitely generated submodules E ⊂ M . The weakly finite topology on
HomA(M,N) is complete and separated, and once again, the ring HomA(M,M) is
a left linear topological ring in the weakly finite topology. Denoting by R′ the ring
HomA(M,M)op with the weakly finite topology on it, we once again obtain a com-
plete, separated right linear topological ring. The monad TR′ : X 7−→ R′[[X]] is still
isomorphic to the monad TM : X 7−→ HomA(M,M (X)) [26, Theorem 9.9].

In fact, while the finite topology and the weakly finite topology on the endomor-
phism ring of a module may well differ, the sets R[[X]] and R′[[X]] are the same
for any set X, as a family of A-module morphisms rx : M −→ M converges to zero
in the finite topology if and only if it converges to zero in the weakly finite one,
and if and only if the morphism r : M −→ MX with the components rx factorizes
though the submodule M (X) ⊂MX . Thus the abelian category B = TM–mod can be
alternatively described as the category R′–contra. (Cf. [28, Examples 3.10].)

(3) A left A-module M is said to be self-small if any A-module morphism M −→
M (X) factorizes though the coproduct M (Z) ⊂ M (X) of copies of M indexed over a
finite subset Z ⊂ X. Equivalently, M is self-small if and only if the natural map of
abelian groups

⊕∞
i=0 HomA(M,M) −→ HomA(M,

⊕∞
i=0 M) is an isomorphism.

For a self-small left A-module M , the ring R = HomA(M,M)op endowed with the
discrete topology has the property that the monad TM : X 7−→ HomA(M,M (X)) is
isomorphic to the monad TR : X 7−→ R[X]. So the abelian category B is equivalent
to the category of left R-modules, B ∼= R–mod.

(4) Let N be a fixed left A-module. We say that a left A-module E is N-small if
the natural map of abelian groups

⊕∞
i=0 HomA(E,N) −→ HomA(E,

⊕∞
i=0N) is an

isomorphism. Equivalently, E is N -small if and only if, for any set X, any A-module
morphism E −→ N (X) factorizes through the subcoproduct N (Z) ⊂ N (X) indexed
over a finite subset Z ⊂ X. An A-module E is weakly finitely generated or “small” (as
defined in (2)) if and only if it is N -small for all left A-modules N . It is important for
the present example that the class of all N -small A-modules is closed under quotients
(while, e. g., the class of all self-small A-modules is not, generally speaking). In
addition, the class of N -small A-modules is closed under extensions.

For any left A-modules M and N , the N-small topology on the abelian group
HomA(M,N) has a base of neighborhoods of zero consisting of the annihilators of
N -small submodules E ⊂ M . The N -small topology on HomA(M,N) is complete
and separated. The ring HomA(M,M) is a left linear topological ring in the M -small
topology. Denoting by R′′ the ring HomA(M,M)op with the M -small topology, we
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obtain yet another complete, separated right linear topological ring structure for
which the monad TR′′ : X 7−→ R′′[[X]] coincides with the monads TR and TR′ from
(1) and (2). Consequently, the monad TR′′ is also isomorphic to the monad TM , and
the abelian category B can be described as the category R′′–contra.

Examples 2.3. Further examples of topologically agreeable additive/abelian cate-
gories include:

(1) all the locally finitely generated abelian categories A (in particular, all the
locally finitely presentable abelian categories), endowed with the finite topology [28,
Example 3.7 (2)];

(2) all the locally weakly finitely generated abelian categories A, endowed with the
weakly finite topology [26, Section 9.2];

(3) all the additive categories A with set-indexed coproducts admitting a closed
functor F : A −→ C into a locally weakly finitely generated abelian category C [26,
Section 9.3], or more generally, into a topologically agreeable additive category C [28,
Example 3.9 (3)]. In particular, the additive/abelian categories of comodules over
corings and semimodules over semialgebras belong to the class (3) [26, Section 10.3].

So, for any object M in an additive category A satisfying (1), (2), or (3), the monad
TM : X 7−→ HomA(M,M (X)) is isomorphic to the monad TR : X 7−→ R[[X]] for a
certain complete, separated right linear topology on the ring R = HomA(M,M)op.
The abelian category B = TM–mod is equivalent to R–contra.

2.3. Accessible monads and locally presentable categories. We refer to the
book [1] for the definitions and general discussion of accessible and locally presentable
categories, and only recall here that a category is called locally presentable if it is
accessible and cocomplete [1, Corollary 2.47]. A monad T : Sets −→ Sets is said to
be accessible if its underlying functor T is accessible, i. e., there exists a cardinal κ
such that T preserves κ-directed colimits.

The category T–mod is locally presentable if and only if the monad T is accessible.
For any accessible category A with coproducts and an object M ∈ A, the monad
TM is accessible (so the category B = TM–mod is locally presentable). For any
complete, separated right linear topological ring R, the monad TR is accessible and
the category R–contra is locally presentable. We refer to the paper [25, Introduction
and Section 5] for the details.

3. Seven Classes of Topological Rings

Let A be a complete, separated linear topological group. A closed subgroup K ⊂ A
is said to be strongly closed if the quotient group A/K is complete in the quotient
topology and, for every set X, the induced map of sets/abelian groups A[[X]] −→
(A/K)[[X]] is surjective. We refer to [24, Sections 1.11–12] for a discussion of strongly
closed subgroups in topological groups and strongly closed ideals in topological rings.

Let R be a separated topological ring. A subset K ⊂ R is said to be topologically
left T-nilpotent if, for every sequence of elements a1, a2, a3, . . . ∈ K, the sequence of
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products a1, a1a2, . . . , a1a2 · · · an, . . . converges to zero in the topology of R. We refer
to [28, Section 7] and [24, Section 5] for a discussion of topologically left T-nilpotent
subsets and topologically left T-nilpotent ideals in right linear topological rings.

Let R be a complete, separated right linear topological ring. The following four
classes of such topological rings R are considered in [24, Sections 10 and 12]:

(a) the ring R is commutative; or
(b) R has a countable base of neighborhoods of zero consisting of open two-sided

ideals; or
(c) R is a two-sided linear topological ring having only a finite number of classi-

cally semisimple (semisimple Artinian) discrete quotient rings; or
(d) there is a topologically left T-nilpotent strongly closed two-sided ideal K ⊂ R

such that the quotient ring R/K is isomorphic, as a topological ring, to the
product

∏
δ∈∆ Tδ of a family of two-sided linear topological rings Tδ, each of

which satisfies one of the conditions (a), (b), or (c).

Note that all the topological rings satisfying (a), (b), or (c) must be two-sided linear,
while a topological ring satisfying (d) can well be only right linear.

Furthermore, our discussion of the following two classes of (right linear) topological
rings R is based on the results of the paper [28, Sections 12 and 13]:

(e) R has a countable base of neighborhoods of zero; or
(f) the abelian category discr–R is locally coherent.

We refer to the papers [29, 28] for the definition of a locally coherent abelian category.
Note that (d) and (e) are two different generalizations of (b), while (d) is also a
common generalization of (a), (b), and (c).

Finally, we consider the following common generalization of all the previous six
conditions (a–f):

(g) there is a topologically left T-nilpotent strongly closed two-sided ideal K ⊂ R
such that the quotient ring R/K is isomorphic, as a topological ring, to the
product

∏
δ∈∆ Tδ of a family of right linear topological rings Tδ, each of which

satisfies one of the conditions (a), (c), (e), or (f).

Lemma 3.1. (i) Let (Rγ)γ∈Γ be a family of topological rings each of which satisfies
one of the conditions (a), (b), (c), (d), (e), (f), or (g). Then the topological ring
R =

∏
γ∈Γ Rγ satisfies (g).

(ii) Let R be a complete, separated right linear topological ring, and let J ⊂ R
be a topologically left T-nilpotent strongly closed two-sided ideal. Assume that the
topological quotient ring R/J satisfies (g). Then the topological ring R satisfies (g).

Proof. Part (i) is similar to [24, Lemma 12.6(a)]. Condition (b) is a particular case
of (e), and therefore (d) is a particular case of (g). Conditions (a), (c), (e), and (f)
are also particular cases of (g). Hence without loss of generality we can assume that
Rγ satisfies (g) for every γ ∈ Γ.

Let Kγ ⊂ Rγ be the related topologically left T-nilpotent strongly closed two-sided
ideal. Then, in view of the discussion in [24, beginning of Section 7], K =

∏
γ Kγ

is a topologically left T-nilpotent strongly closed two-sided ideal in the topological
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ring R =
∏

γ Rγ, and the topological quotient ring R/K ∼=
∏

γ Rγ/Kγ is isomorphic
to the topological product of topological rings, each of which satisfies one of the
conditions (a), (c), (e), or (f).

Part (ii) is similar to [24, Lemma 12.6(b)]. Let K ⊂ R/J be a two-sided ideal
witnessing that the topological ring R/J satisfies (g), and let H ⊂ R be the full
preimage of K under the topological ring homomorphism R −→ R/J. Then the ideal
H is strongly closed in R by [24, Lemma 1.4(b)] and topologically left T-nilpotent
by [24, Lemma 5.3]. In view of the natural isomorphism of topological rings R/H ∼=
(R/J)/K, the ideal H ⊂ R witnesses that the topological ring R satisfies (g). �

The following definition was given in the paper [28, Section 10]. A complete,
separated right linear topological ring R is called topologically left perfect if there
is a topologically left T-nilpotent strongly closed two-sided ideal H ⊂ R such that
the quotient ring R/H is isomorphic, as a topological ring, to the product S =∏

γ∈Γ HomDγ (D
(Υγ)
γ , D

(Υγ)
γ )op of the endomorphism rings of vector spaces over skew-

fields (division rings) Dγ. Here Γ is a set, Υγ are nonempty sets, the endomorphism

ring of the vector space D
(Υγ)
γ is endowed with the finite topology, and the product of

such endomorphism rings is endowed with the product topology. Right linear topo-
logical rings S of the above form are called topologically semisimple [28, Section 6].

Lemma 3.2. All topologically left perfect topological rings R satisfy condition (g).

Proof. The assertion holds because all topologically semisimple right linear topologi-
cal rings S satisfy condition (f). Indeed, S is topologically semisimple if and only if
the category of discrete right S-modules discr–S is semisimple [28, Theorem 6.2 (2)].
Any semisimple Grothendieck abelian category is locally Noetherian (with simple
objects forming a set of Noetherian generators); hence it is locally coherent. �

Lemma 3.3. Let R be a complete, separated right linear topological ring, and let
K ⊂ R be a topologically left T-nilpotent strongly closed two-sided ideal. Then the
quotient ring R/K, endowed with the quotient topology, is topologically left perfect if
and only if the topological ring R is.

Proof. “If”: assume that R is topologically left perfect, and let H ⊂ R be the related
two-sided ideal, as per the definition. Then H is the (topological) Jacobson radical
of R [28, Lemma 10.3], and any topologically left T-nilpotent ideal in R is contained
in H [24, Lemma 6.6(a)]. Hence we have K ⊂ H. The two-sided ideal H/K ⊂ R/K
is topologically left T-nilpotent, since the ideal H ⊂ R is. By [28, Lemma 1.4(c)],
H/K is strongly closed in R/K. Finally, we have an isomorphism of topological rings
(R/K)/(H/K) ∼= R/H, and the topological ring R/H is topologically semisimple by
assumption. Hence the topological ring R/K is topologically left perfect.

“Only if”: assuming that R/K is topologically left perfect, an argument based
on [28, Lemmas 1.4(b) and 5.3] and similar to the proof of Lemma 3.1(ii) shows that
R is topologically left perfect as well. �

Lemma 3.4. The class of all topologically left perfect topological rings is closed under
(infinite) topological products.
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Proof. The argument is based on the discussion in [24, beginning of Section 7] and
similar to the proof of Lemma 3.1(i). �

Theorem 3.5. Let R be a complete, separated right linear topological ring. Then
the topological ring R is topologically left perfect if and only if it satisfies one of the
conditions (a), (b), (c), (d), (e), (f), or (g) and every descending chain of cyclic
discrete right R-modules terminates.

Proof. “Only if”: for any topologically left perfect topological ring R, any descending
chain of cyclic discrete right R-modules terminates by [28, Theorem 14.4 (iv)⇒ (v)],
and condition (g) is satisfied by Lemma 3.2.

“If”: cases (a–c) are covered by [24, Theorem 10.1 (v)⇒ (iv)], and case (d) is [24,
Theorem 12.4 (v)⇒ (iv)] (see also [28, Remark 14.6 and Corollary 14.7]). Case (e)
is [28, Theorem 12.4 or 14.8], and case (f) is [28, Theorem 13.3 or 14.12].

To prove case (g), assume that K ⊂ R is a topologically left T-nilpotent strongly
closed two-sided ideal for which the topological ring R/K is isomorphic to the topo-
logical product

∏
δ∈∆ Tδ, where each topological ring Tδ satisfies one of the condi-

tions (a), (c), (e), or (f). Then Tδ is a topological quotient ring of the topological ring
R for every δ ∈ ∆. Hence discr–Tδ is the full subcategory in discr–R consisting of all
the modules annihilated by the kernel ideal of the surjective continuous ring homo-
morphism R −→ Tδ. Since every descending chain of cyclic discrete right R-modules
terminates, so does every descending chain of cyclic discrete right Tδ-modules. Ac-
cording to the previous paragraph, in each of the cases (a), (c), (e), or (f) it follows
that Tδ is a topologically left perfect topological ring. Using Lemmas 3.3 and 3.4, we
can conclude that R is a topologically left perfect topological ring. �

4. The Enochs Conjecture

Throughout this paper, by “direct limits” in a category we mean inductive limits
indexed by directed posets. Otherwise, these are known as the directed or filtered
colimits. For any class of objects M in a cocomplete category A, we denote by
lim−→M = lim−→

A M ⊂ A the class of all direct limits of objects from M in A. This means
the direct limits of diagrams A : Θ −→ A indexed by directed posets Θ and such that
A(θ) ∈ M for all θ ∈ Θ.

Let A be a category and L ⊂ A be a class of objects. A morphism l : L −→ C
in A is called an L-precover (of the object C) if L ∈ L and all the morphisms from
objects of L to the object C factorize through the morphism l in the category A, that
is, for every morphism l′ : L′ −→ C with L′ ∈ L there exists a morphism f : L′ −→ L
such that l′ = lf . A morphism l : L −→ C in A is called an L-cover if it is an
L-precover and, for any endomorphism e : L −→ L, the equation le = l implies that
e is an automorphism of L. We will say that a class of objects L in a category A is
precovering if every object of A has an L-precover. Similarly, the class L is said to be
covering if every object of A has an L-cover.
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Given another class of objects E ⊂ A, the definitions of an E-preeenvelope and an
E-envelope of an object C ∈ A are dual to the above definitions of an L-precover
and an L-cover. These notions are due to Enochs [14]; a detailed discussion of their
properties in a relevant context can be found in the book [37].

Example 4.1. If A is an additive category with coproducts and M ∈ A is an object,
then the class of objects Add(M) ⊂ A is precovering. Indeed, for any object N ∈ A,
the obvious morphism M (HomA(M,N)) −→ N is an Add(M)-precover of N .

Example 4.2. Let B be an abelian category with enough projective objects and
L = Bproj ⊂ B be the class of all projective objects. Then a morphism L −→ C in
B with L ∈ L is an L-precover if and only if it is an epimorphism. So the class of
all projective objects in an abelian category with enough projective objects is always
precovering; but it is rarely covering, as we will see. A Bproj-cover in B is called a
projective cover.

The first assertion of the following theorem is one of the main results of Bass’
paper [6]. In fact, it is a part of the famous [6, Theorem P].

Theorem 4.3. Let B = R–mod be the category of modules over an associative ring,
and let L = R–modproj ⊂ R–mod be the class of projective left R-modules. Then the
class L is covering in R–mod if and only if L is closed under direct limits in R–mod.

Moreover, if every countable direct limit of copies of the free left R-module R has
a projective cover in R–mod, then all flat left R-modules are projective and all left
R-modules have projective covers.

Proof. The first assertion is [6, Theorem P (2)⇔ (5)]. The second assertion stems
from the proof of the implication [6, Theorem P (5)⇒ (6)], which only uses projec-
tivity of the countable direct limits of copies of the R-module R. Such direct limits
are now known as Bass flat R-modules. Associative rings R satisfying the equivalent
conditions of [6, Theorem P] are called left perfect. So it is shown in [6] that a ring
R is left perfect whenever all Bass flat left R-modules are projective.

A proof of the assertion that any flat module having a projective cover is projective
can be found in [36, Section 36.3]. �

The idea of the proof of the following result goes back to Enochs’ paper [14, The-
orems 2.1 and 3.1].

Theorem 4.4. In a locally presentable category A, any precovering class closed under
direct limits is covering.

Proof. For module categories, this was established by Enochs in [14]. For
Grothendieck abelian categories, a proof of this assertion can be found in [5,
Theorem 1.2]; and for locally presentable categories, in [25, Theorem 2.7 or Corol-
lary 4.17]. �

It is easy to prove that, in any category A, any covering class L ⊂ A is closed under
retracts, and any precovering class that is closed under retracts is also closed under
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coproducts (cf. [14, Proposition 2.1] or [37, Theorem 2.5.1]). Hence any covering
class is closed under coproducts. The following inverse assertion to Theorem 4.4 (for
module categories) is known as “the Enochs conjecture” (see [19, Section 5.4]; cf. [4,
Section 5]).

Conjecture 4.5. Let A = A–mod be the category of modules over an associative
ring A, and let L ⊂ A–mod be a covering class. Then L is closed under direct limits
in A–mod.

Far-reaching results confirming particular cases of the Enochs conjecture were ob-
tained in the paper [4], based on the tools developed in [31]. (See also the preprint [9]
for an alternative elementary proof of some of the results of [4].) The idea of our cat-
egorical approach to the Enochs conjecture is expressed in the following conjectural
extension of Bass’ theorem.

Main Conjecture 4.6. Let B be a locally presentable abelian category with a pro-
jective generator P . Then the following conditions are equivalent.

(1) the class Bproj is covering in B;
(2) any direct limit of projective objects has a projective cover in B;
(3) any countable direct limit of copies of P has a projective cover in B;
(4) any countable direct limit of copies of P is a projective object in B;
(5) the class Bproj is closed under direct limits in B.

Notice that the implications (1) =⇒ (2) =⇒ (3) and (5) =⇒ (4) =⇒ (3) in the Main
Conjecture are obvious, while the implication (5) =⇒ (1) holds by Example 4.2 and
Theorem 4.4. The implications (3) =⇒ (2) =⇒ (1) =⇒ (5) and (3) =⇒ (4) =⇒ (5) are
nontrivial (and unknown).

For the categories of contramodules over topological rings, some of the equivalences
in Conjecture 4.6 are provided by the results of the paper [28].

Theorem 4.7. Let R be a complete, separated right linear topological ring. Then
the following equivalences of conditions in Main Conjecture 4.6 hold for the abelian
category B = R–contra with the projective generator P = R[[∗]]] = R:

(1)⇐⇒ (2)⇐⇒ (5) and (3)⇐⇒ (4).

Proof. The equivalences (1)⇐⇒ (2)⇐⇒ (5) are [28, Theorem 14.1 (ii)⇔ (i′)⇔ (iii′)].
The equivalence (3)⇐⇒ (4) is [28, Theorem 14.4 (i[)⇔ (iii[)]. �

A more refined version of Main Conjecture 4.6 in the particular case of contramod-
ules over topological rings can be found in [28, Conjecture 14.3].

The following special cases of Main Conjecture 4.6 for the categories of contramod-
ules over topological rings are provable with our methods.

Theorem 4.8. Let R be a complete, separated right linear topological ring satisfying
one of the conditions (a), (b), (c), (d), (e), (f), or (g). Then Main Conjecture 4.6
holds for the abelian category R–contra with the projective generator R, i. e., the
conditions (1), (2), (3), (4), and (5) are equivalent for B = R–contra and P = R.
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Proof. Follows from Theorem 3.5 and [28, Theorem 14.4]. �

The next lemma, generalizing the “if” assertion of Lemma 3.3, is an application of
projective covers to topological algebra.

Lemma 4.9. The class of topologically left perfect complete, separated right linear
topological rings is closed under the passages to topological quotient rings by strongly
closed two-sided ideals.

Proof. We use the following characterization: a right linear topological ring R is topo-
logically left perfect if and only if all left R-contramodules have projective covers [28,
Theorem 14.1 (ii)⇔ (iv)]. Assume that R is topologically left perfect, J ⊂ R is a
strongly closed two-sided ideal, and T = R/J is the topological quotient ring. Let us
show that every left T-contramodule C has a projective cover. Using the contrarestric-
tion of scalars [24, Section 1.9], one can consider C as a left R-contramodule. As such,
C has a projective cover p : P −→ C in R–contra. Then the reduction construction
of [24, Lemma 3.3] produces a projective cover of C in T–contra. �

5. Covers Reduced to Projective Covers

Let A be an additive category and f : A −→ B be a morphism in A. A morphism
k : K −→ A is said to be a weak kernel of f if fk = 0 and for any object C ∈ A and
any morphism c : C −→ A such that fc = 0 there exists a (not necessarily unique)
morphism h : C −→ K such that c = kh. A morphism k is a kernel of f if and only
if k is a weak kernel of f and k is a monomorphism.

Let L ⊂ A be a precovering class of objects. We are interested in conditions under
which L is a covering class. First of all, if L is covering, then L is closed under direct
summands in A. If L is precovering and closed under direct summands, then L is
closed under coproducts (see the discussion in the previous section). In particular,
the full subcategory L ⊂ A is additive.

Lemma 5.1. Let A be an additive category with weak kernels and L ⊂ A be an
additive full subcategory. Assume that the class of objects L is precovering in A.
Then the category L also has weak kernels.

Proof. Let f : L −→ M be a morphism in L and a : A −→ L be a weak kernel of f
in A. Let p : K −→ A be an L-precover of the object A ∈ A. Then the composition
k = ap : K −→ L is a weak kernel of f in L. �

Lemma 5.2. Let A be an idempotent-complete additive category with weak kernels
and L ⊂ A be an additive full subcategory closed under direct summands. Assume
that the class of objects L is precovering in A. Then there exists a unique abelian
category B with enough projectives such that the full subcategory of projective objects
Bproj ⊂ B is equivalent to the full subcategory L ⊂ A.
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Proof. By Lemma 5.1, the category L has weak kernels. Hence the category B can
be constructed as the category of finitely presented (or “coherent”) functors Lop −→
Ab [16, Corollary 1.5], [21, Lemma 2.2 and Proposition 2.3] (see also [27, proof of
Theorem 1.1(a)] for a discussion with further references). �

Proposition 5.3. Let A be an additive category with cokernels and weak kernels and
L ⊂ A be an additive full subcategory closed under direct summands. Assume that the
class of objects L is precovering in A. Let B be the abelian category from Lemma 5.2.
Then the equivalence of full subcategories B ⊃ Bproj

∼= L ⊂ A can be extended, in a
unique way, to a pair of adjoint functors

ΦL : B � A :ΨL,

where the functor ΦL is the left adjoint and the functor ΨL is the right adjoint.

Proof. The inclusion functor Bproj
∼= L −→ A extends uniquely to a right exact functor

ΦL : B −→ A. This suffices to prove uniqueness of the desired adjoint pair.
To construct the functor ΨL, we assign to every object N ∈ A the functor

HomA(−, N)|L : Lop −→ Ab. Let us check that the functor HomA(−, N)|L is finitely
presented. Choose an L-precover l : L −→ N of the object N . Let a : A −→ L
be a weak kernel of the morphism l in the category A, and let p : K −→ A be an
L-precover of the object A ∈ A. Consider the morphism m = pa : K −→ L in the
category L. Then the functor HomA(−, N)|L is the cokernel of the morphism of
representable functors HomL(−,m) : HomL(−, K) −→ HomL(−, L).

So the functor ΨL : A −→ B assigning to an object N the functor HomA(−, N)|L is
well-defined. By the Yoneda lemma, a natural isomorphism HomB(ΨL(M),ΨL(N)) ∼=
HomA(M,N) holds for all objects M ∈ L and N ∈ A. Hence we have an adjunc-
tion isomorphism HomB(P,ΨL(N)) ∼= HomA(ΦL(P ), N) for all objects P ∈ Bproj

and N ∈ A. The latter isomorphism extends uniquely to a functorial isomorphism
HomB(B,ΨL(N)) ∼= HomA(ΦL(B), N) for all objects B ∈ B and N ∈ A by right
exactness of the functor ΦL. �

Proposition 5.4. Let A and B be two categories, and let Φ: B � A : Ψ be a pair
of adjoint functors, where Ψ is the right adjoint, such that the restrictions of Φ
and Ψ are mutually inverse equivalences between a full subcategory L ⊂ A and a full
subcategory P ⊂ B. Then

(a) a morphism l : L −→ N in A with L ∈ L is an L-precover if and only if the
morphism Ψ(l) : Ψ(L) −→ Ψ(N) is a P-precover;

(b) a morphism l : L −→ N in A with L ∈ L is an L-cover if and only if the
morphism Ψ(l) : Ψ(L) −→ Ψ(N) is a P-cover;

(c) an object N ∈ A has an L-precover if and only if the object Ψ(N) ∈ B has a
P-precover;

(d) an object N ∈ A has an L-cover if and only if the object Ψ(N) ∈ B has a
P-cover.

Proof. Part (a): given an object P ∈ P, the map of sets

HomA(Φ(P ), l) : HomA(Φ(P ), L) −−→ HomA(Φ(P ), N)
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is isomorphic to the map of sets

HomB(P,Ψ(l)) : HomB(P,Ψ(L)) −−→ HomB(P,Ψ(N)).

Hence former map is surjective if and only if the latter map is. Since one has Φ(P ) ∈ L
for all P ∈ P, and every object L′ ∈ L is isomorphic to an object Φ(P ) for some P ∈ P,
the assertion follows.

Part (b): given an endomorphism e : L −→ L, one has le = l if and only if
Ψ(e)Ψ(l) = Ψ(l), since the map

HomA(L,N) ∼= HomA(ΦΨ(L), N) −−→ HomB(Ψ(L),Ψ(N))

is bijective. Since the map HomA(L,L) −→ HomB(Ψ(L),Ψ(L)) is bijective, too, the
assertion follows in view of part (a).

Finally, part (a) implies (c), and part (b) implies (d), because any morphism
p : P −→ Ψ(N) in B with P ∈ P has the form p = Ψ(l) for a (uniquely defined)
morphism l : L = Φ(P ) −→ N in A. �

Proposition 5.3 describes one situation in which Proposition 5.4 is applicable. Let
A be an additive category with cokernels and (weak) kernels, and let L ⊂ A be
a precovering class closed under direct summands. Consider the related abelian
category B, and put P = Bproj ⊂ B. Then an object N ∈ A has an L-cover if and only
if the object ΨL(N) ∈ B has a projective cover. Hence the class L ⊂ A is covering if
and only if all objects of the form ΨL(N), N ∈ A, have projective covers in B.

Another such situation is described in Section 2.1. Let A be a cocomplete additive
category and M ∈ A be an object. Consider the related abelian category B =
TM–mod, and put L = Add(M) ⊂ A and P = Bproj ⊂ B. By Proposition 5.4(d),
an object N ∈ A has an Add(M)-cover if and only if the object ΨM(N) ∈ B has a
projective cover. Once again, we conclude that the class Add(M) ⊂ A is covering if
and only if all objects of the form ΨM(N), N ∈ A, have projective covers in B.

Remark 5.5. In both contexts above, the existence of cokernels in the category A
was used in order to extend the equivalence Bproj

∼= L ⊂ A to a right exact functor
Φ: B −→ A. However, looking into the proof of Proposition 5.4, one can observe that
the functor Φ is never applied to any objects outside of the full subcategory P ⊂ B.
So one can relax the assumptions of that proposition by requiring the functor Φ to
be defined on the full subcategory P ⊂ B only. For this reason, the assumption of
existence of cokernels in the category A can be replaced by the weaker assumption
of idempotent-completeness. Then, in the first of the above two settings (based on
Proposition 5.3), the existence of weak kernels in A is sufficient; and in the second
one (based on Section 2.1), it suffices to assume that A has coproducts.

6. Telescope Hom Exactness Condition

In this section we introduce the most general setting in which we can show that
Main Conjecture 4.6 implies some instances of the Enochs conjecture.
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Definition 6.1. Let A be an additive category with countable direct limits, and
let M ∈ A be an object. Given a sequence of endomorphisms f1, f2, f3, . . . ∈
HomA(M,M), we form the inductive system

M
f1−−→ M

f2−−→ M
f3−−→ · · ·

and consider the related telescope sequence

(6.1)
∐∞

n=1
M −−→

∐∞

n=1
M −−→ lim−→n≥1

M −−→ 0.

The short sequence (6.1) is always right exact, i. e., the direct limit lim−→n≥1
M is the

cokernel of the morphism id− shift :
∐∞

n=1 M −→
∐∞

n=1 M .
We will say that the object M ∈ A satisfies the telescope Hom exactness condi-

tion (THEC ) if, for any sequence of endomorphisms (fn ∈ HomA(M,M))n≥1 of the
object M , the short sequence (6.1) remains right exact after applying the functor
HomA(M,−), that is, the short sequence of abelian groups
(6.2)

HomA (M,
∐∞

n=1 M) −→ HomA (M,
∐∞

n=1M) −→ HomA(M, lim−→n≥1
M) −→ 0

is right exact.

Example 6.2. Let A be an abelian category with exact functors of countable direct
limit. Then the telescope sequence (6.1) is exact at its leftmost term, too,

0 −−→
∐∞

n=1
M −−→

∐∞

n=1
M −−→ lim−→n≥1

M −−→ 0,

as it is a countable direct limit of the split exact sequences

0 −−→
∐n−1

i=1
M −−→

∐n

i=1
M −−→ M −−→ 0.

In this case, the exactness of the short seqeunce of Hom groups (6.2) at the mid-
dle term is obvious, and the telescope Hom exactness condition simply means ex-
actness of the sequence (6.2) at the rightmost term. In other words, this means
that any morphism M −→ lim−→n≥1

M in the category A can be lifted to a mor-

phism M −→
∐∞

n=1M . This is equivalent to the condition that the morphism∐∞
i=1 M −→ lim−→n≥1

M in (6.1) is an Add(M)-precover.

Examples 6.3. (1) Let A be an abelian category with exact countable direct limits.
Then the telescope Hom exactness condition holds for any Σ-rigid (or Σ-Ext1-self-
orthogonal) object M ∈ A, that is, any object such that Ext1

A(M,M (ω)) = 0.

(2) More generally, if there is a notion of purity in the abelian category A, then for
any two object M , N ∈ A one can consider the group PExt1

A(M,N) of equivalence
classes of pure short exact sequences 0 −→ N −→ A −→M −→ 0. An object M ∈ A
is called Σ-pure-rigid (or Σ-pure-Ext1-self-orthogonal) if PExt1

A(M,M (ω)) = 0.
For any meaningful notion of purity, one expects that split short exact sequences

should be pure exact. It is also reasonable to assume that the class of pure short
exact sequences in A is closed under countable direct limits and pullbacks, among
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other things. If this is the case, then any Σ-pure-rigid object in A satisfies THEC. In
particular, this applies to the module categories A = A–mod over associative rings A.

One specific notion of purity in abelian categories, called the functor purity, will
be discussed below in Section 8. It has the above-mentioned properties.

Example 6.4. Let A be an abelian category with exact countable direct limits and a
class of pure short exact sequences satisfying the conditions of Example 6.3 (2). We
will say that an object M ∈ A is ω-self-pure-projective if for any pure short exact
sequence 0 −→ K −→ M (ω) −→ L −→ 0 in A the induced morphism of abelian
groups HomA(M,M (ω)) −→ HomA(M,L) is surjective. Any ω-self-pure-projective
object M ∈ A satisfies the telescope Hom exactness condition.

For the rest of this section, we are working with a fixed object M in a cocomplete
additive category A. We consider the related abelian category B = TM–mod and the
pair of adjoint functors Ψ: A −→ B and Φ: B −→ A, as in Section 2.1.

Furthermore, we denote by G ⊂ A the full subcategory formed by all the objects
G ∈ A for which the adjunction morphism Φ(Ψ(G)) −→ G is an isomorphism, and
by H ⊂ B the full subcategory of all the objects H ∈ B for which the adjunction
morphism H −→ Ψ(Φ(H)) is an isomorphism. One has Ψ(G) ⊂ H and Φ(H) ⊂ G,
and the restrictions of the functors Ψ and Φ to the full subcategories G and H are
mutually inverse equivalences between them [15, Theorem 1.1],

(6.3) Ψ|G : G ∼= H :Φ|H.
By construction, we have Add(M) ⊂ G and Bproj ⊂ H, since Ψ|Add(M) : Add(M) −→
Bproj and Φ|Bproj

: Bproj −→ Add(M) are mutually inverse equivalences.

Lemma 6.5. Let A be a cocomplete additive category, M ∈ A be an object, and
B = TM–mod be the related abelian category. Suppose that the class of all projective
objects in B is closed under (arbitrary or countable) direct limits. Then the class of
objects Add(M) ⊂ A is also closed under (arbitrary or countable, resp.) direct limits.
More specifically, if every countable direct limit of copies of the projective generator
P = TM(∗) is projective in B, then every countable direct limit of copies of M in A
belongs to Add(M).

Proof. Let Θ be a directed poset and A : Θ −→ A be a diagram such that the object
A(θ) belongs to the class Add(M) for all θ ∈ Θ. Applying the functor Ψ, we obtain
a diagram B = Ψ ◦ A : Θ −→ B such that B(θ) is a projective object in B for all
θ ∈ Θ. Applying the functor Φ to get back to the category A, we come to the original
diagram A ∼= Φ ◦ B. Now the functor Φ, being a left adjoint, preserves all colimits,
so the natural morphism lim−→θ∈Θ

A(θ) ∼= lim−→θ∈Θ
Φ(B(θ)) −→ Φ

(
lim−→θ∈Θ

B(θ)
)

is an

isomorphism in A. Since lim−→θ∈Θ
B(θ) is a projective object in B by assumption and

Φ(Bproj) = Add(M), the desired conclusion follows. �

Proposition 6.6. Let A be a cocomplete additive category and M ∈ A be an object
satisfying THEC. Let B = TM–mod be the related cocomplete abelian category with
a projective generator P = TM(∗) ∈ B corresponding to the object M ∈ A, and let
G ⊂ A and H ⊂ B be the related two full subcategories.
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Then all countable direct limits of copies of the object M in A belong to the class G,
and all the countable direct limits of copies of the object P in B belong to the class H.
The functor Ψ preserves countable direct limits of copies of the object M ∈ A (taking
them to countable direct limits of copies of the object P ∈ B).

Proof. Let M
f1−→ M

f2−→ M
f3−→ · · · be a countable inductive system of copies of

the object M in A. Then we have the right exact sequence (6.1) in the category A
and the right exact sequence (6.2) in the category of abelian groups.

Now, the abelian category B = TM–mod is endowed with a faithful exact forgetful
functor TM–mod −→ Ab, and the composition of the functor Ψ with this forgetful
functor is isomorphic to the functor HomA(M,−). It follows that the image of the
sequence (6.1) under the functor Ψ is right exact in B.

The functors Ψ and Φ restrict to mutually inverse equivalences between Add(M) ⊂
A and Bproj ⊂ B; so, in particular, they transform coproducts of objects from Add(M)
in A to coproducts of projective objects in B and vice versa. The short sequence

(6.4)
∐∞

n=1
Ψ(M) −−→

∐∞

n=1
Ψ(M) −−→ lim−→n≥1

Ψ(M) −→ 0

is right exact in B; and the natural morphism from the sequence (6.4) to the image
of the sequence (6.1) under the functor Ψ is an isomorphism at the leftmost and the
middle terms. Hence it is also an isomorphism at the rightmost terms, that is, the
natural morphism lim−→n

Ψ(M) −→ Ψ(lim−→n
M) is an isomorphism.

The functor Φ, being a left adjoint, preserves all colimits. Since the adjunction
morphism ΦΨ(M) −→M is an isomorphism, it follows that the adjunction morphism
ΦΨ(lim−→n

M) −→ lim−→n
M is an isomorphism, too. Thus lim−→n

M ∈ G.
We have shown that countable direct limits of copies of the object M in A belong

to G, and we have also seen that the functor Ψ transforms countable direct limits of
copies of M in A to countable direct limits of copies of P in B. Therefore, countable
direct limits of copies of P belong to Ψ(G) = H. �

Corollary 6.7. Let A be a cocomplete additive category and M ∈ A be an object
satisfying THEC. Let B = TM–mod be the related cocomplete abelian category with
a projective generator P = TM(∗) ∈ B corresponding to the object M ∈ A. Then the
following two conditions are equivalent:

(1) any countable direct limit of copies of M has an Add(M)-cover in A;
(2) any countable direct limit of copies of P has a projective cover in B.

The following three conditions are also equivalent to each other:

(3) any countable direct limit of copies of M in A belongs to Add(M);
(4) any countable direct limit of copies of P in B is projective;
(5) any countable direct limit of copies of M in A belongs to Add(M), and the

related natural epimorphism
∐∞

n=1M −→ lim−→n≥1
M (6.1) splits.

All the five conditions (1–5) are equivalent when A is an abelian category with exact
countable direct limits. Also, all the five conditions (1–5) are equivalent when B =
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R–contra is the category of left contramodules over a complete, separated, right linear
topological ring R.

Proof. Both the equivalences (1)⇐⇒ (2) and (3)⇐⇒ (4) follow from Proposition 6.6
and the equivalence of categories (6.3). Since any epimorphism onto a projective
object splits in B, we also obtain the equivalence (4)⇐⇒ (5). Alternatively, the
equivalence (3)⇐⇒ (5) follows directly from THEC.

When A is an abelian category with exact countable direct limits, the equivalence
(1)⇐⇒ (3) holds by (the proof of) [9, Theorem 4.4]. When B = R–contra, the
equivalence (2)⇐⇒ (4) is provided by [9, Theorem 2.1 or Corollary 2.10]. �

The following theorem is the main result of this section.

Theorem 6.8. Let A be a locally presentable additive category and M ∈ A be an
object satisfying THEC. Assume that Main Conjecture 4.6 holds for the locally pre-
sentable abelian category B = TM–mod. Then the following conditions are equivalent:

(1) the class of objects Add(M) ⊂ A is covering;
(2) any direct limit of objects from Add(M) has an Add(M)-cover in A;
(3) any countable direct limit of copies of M has an Add(M)-cover in A;
(4) any countable direct limit of copies of M in A belongs to Add(M);
(5) the class of objects Add(M) is closed under direct limits in A;
(6) the class Bproj is covering in B;
(7) any direct limit of projective objects has a projective cover in B;
(8) any countable direct limit of copies of the projective generator P = TM(∗) ∈ B

has a projective cover in B;
(9) any countable direct limit of copies of the projective generator P = TM(∗) is

projective in B;
(10) the class Bproj is closed under direct limits in B.

Proof. The implications (1) =⇒ (2) =⇒ (3) and (5) =⇒ (4) =⇒ (3) are obvious. The
implication (5) =⇒ (1) holds by Example 4.1 and Theorem 4.4.

Conditions (6–10) are equivalent to each other by assumption. The implications
(9) =⇒ (4) and (10) =⇒ (5) are provided by Lemma 6.5.

Finally, the conditions (3) and (8) are equivalent by Corollary 6.7 (1)⇔ (2). �

7. Perfect Decompositions

The following definitions and terminology can be found in the manuscript [12].
Let A be an additive category with set-indexed products and coproducts. Then

the category A is called agreeable if, for every family of objects (Nx ∈ A)x∈X , the
natural morphism from the coproduct to the product∐

x∈X
Nx −−→

∏
x∈X

Nx

is a monomorphism in A.
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More generally, let A be an additive category with coproducts (but not neces-
sarily with products). Consider an object M ∈ A and a family of objects (Nx ∈
A)x∈X . For every index y ∈ X, one has the natural coordinate projection morphism
πy :

∐
x∈X Nx −→ Ny. Given a morphism f : M −→

∐
x∈X Nx, one can compose it

with the morphism πy, obtaining a morphism πy ◦ f : M −→ Ny. Consider the map
of abelian groups

η : HomA

(
M,

∐
x∈X

Nx

)
−−→

∏
x∈X

HomA(M,Nx)

assigning to a morphism f the collection of morphisms fx = πx ◦ f , x ∈ X.
Following [12], we will say that the category A is agreeable if the map η is injective

for all objects M and families of objects Nx ∈ A. When the category A has products
as well as coproducts, this definition is clearly equivalent to the previous one.

We will say that a family of morphisms (fx : M → Nx) in an agreeable category
A is summable if there exists a morphism f : M −→

∐
x∈X Nx such that fx = πx ◦ f

for every x ∈ X. When Nx = N is one and the same object for all x ∈ X, one can
construct the sum g =

∑
x∈X fx of a summable family of morphisms (fx : M → N)x∈X

as the composition g = Σ ◦ f of the morphism f : M −→ N (X) with the natural
summation morphism Σ: N (X) −→ N .

In this paper, we will not be dealing with the sums of summable families of mor-
phisms. Instead, we will use the notion of a summable family in order to extend the
classical concept of a module with perfect decomposition [3] to the categorical realm.

Let A be an agreeable additive category and (Mξ ∈ A)ξ∈Ξ be a family of objects.
For any sequence of indices ξ1, ξ2, ξ3, . . . ∈ Ξ and any sequence of morphisms
fi : Mξi −→Mξi+1

in A, we consider the sequence of compositions

fnfn−1 · · · f1 : Mξ1 −→Mξn+1 , n ≥ 1.

The family of objects (Mξ)ξ∈Ξ is said to be locally T-nilpotent if for every sequence
of indices ξi and every sequence of nonisomorphisms fi : Mξi −→ Mξi+1

, the family
of morphisms (fnfn−1 · · · f1)n≥1 is summable in A.

In the case of a module category A = A–mod, this reduces to the classical definition:
a family of modules (Mξ)ξ∈Ξ is locally T-nilpotent if for every sequence of indices ξi,
every sequence of nonisomorphisms fi : Mξi −→ Mξi+1

in A–mod, and every element
m ∈Mξ1 , there exists an integer n ≥ 1 such that fnfn−1 · · · f1(m) = 0 in Mξn+1 .

An object M of an agreeable additive category A is said to have a perfect decom-
position if there exists a locally T-nilpotent family of objects (Mξ ∈ A)ξ∈Ξ such that
M ∼=

∐
ξ∈Ξ Mξ. More generally, one can (and we will) drop the assumption that

A is agreeable and just assume that the full subcategory Add(M) ⊂ A is agreeable
instead. Thus, let A be an additive category with coproducts and let M ∈ A be an
object. We will say that M has a perfect decomposition if the category Add(M) is
agreeable and there exists a locally T-nilpotent family of objects (Mξ ∈ Add(M))ξ∈Ξ

such that M ∼=
∐

ξ∈Ξ Mξ.
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The definition of a topologically left perfect topological ring, which was introduced
in [28, Section 10] and reproduced above in Section 3, is the topological ring coun-
terpart of the notion of an object with perfect decomposition. The following result
obtained in the paper [28] illustrates the connection. In the case of module categories,
the equivalence of conditions (i) and (iii) was established in [3, Theorem 1.4].

Theorem 7.1. Let A be an idempotent-complete additive category with coproducts
and M ∈ A be an object. Assume that the monad TM : Sets −→ Sets is isomorphic
to the monad TR for a complete, separated right linear topological ring R. Consider
the following three properties:

(i) the object M ∈ A has a perfect decomposition;
(ii) the topological ring R is topologically left perfect;

(iii) for any directed poset Θ and a diagram A : Θ −→ Add(M), the direct limit
lim−→θ∈Θ

A(θ) exists in A, belongs to Add(M), and the natural epimorphism∐
θ∈Θ A(θ) −→ lim−→θ∈Θ

A(θ) is split.

Then the implications (i) ⇐⇒ (ii) =⇒ (iii) hold.
If A is a cocomplete abelian category with exact direct limits, then all the three con-

ditions (i–iii) are equivalent. If A = R–contra is the category of contramodules over a
complete, separated right linear topological ring and M = R is the free contramodule,
then all the three conditions (i–iii) are equivalent as well.

Proof. (i)⇐⇒ (ii) By the definition, an object M ∈ A having a perfect decomposition
means that M has a perfect decomposition as an object of the category Add(M).
Following (2.2), the category Add(M) is equivalent to TM–modproj; so an isomorphism
of monads TM ∼= TR implies that Add(M) is equivalent to the category of projective
left R-contramodules R–contraproj. This equivalence of categories takes the object
M ∈ Add(M) to the object R ∈ R–contraproj. According to [28, Remark 3.11],
the category R–contraproj is topologically agreeable. Now the equivalence of the two
conditions (i)⇐⇒ (ii) is provided by [28, Theorem 10.4].

(i) =⇒ (iii) By [28, Theorem 10.2], condition (i) implies (in fact, is equivalent to) the
category Add(M) having split direct limits in the sense of [28, Section 9]. According
to [28, Lemma 9.2(b)], it follows that the direct limits of diagrams in Add(M) exist in
A and belong to Add(M); and by [28, Lemma 9.1 (1)⇒ (3)], the natural epimorphisms∐

θ∈Θ A(θ) −→ lim−→θ∈Θ
A(θ) are split.

(iii) =⇒ (i) By [28, Theorem 10.2], in order to prove (i) it suffices to check that the
category Add(M) has split direct limits. Now in the case of an abelian category A with
exact direct limits, the desired implication is provided by [28, Corollary 9.3 (3)⇒ (0)].
In the case when A = R–contra and M = R, [28, Proposition 9.6] is applicable. �

Countable direct limits of copies of the free R-contramodule with one generator
R = R[[∗]] in R–contra are called Bass flat R-contramodules [24, Section 4].

Corollary 7.2. Let A be a cocomplete additive category and M ∈ A be an object
satisfying THEC. Assume that the monad TM : Sets −→ Sets is isomorphic to the
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monad TR for a complete, separated right linear topological ring R. Consider the
following ten properties:

(1) the object M ∈ A has a perfect decomposition;
(2) the topological ring R is topologically left perfect;
(3) the class R–contraproj is closed under direct limits in R–contra;
(4) the class of objects Add(M) is closed under direct limits in A;
(5) every countable direct limit of copies of M in A belongs to Add(M);
(6) all Bass flat left R-contramodules are projective;
(7) all Bass flat left R-contramodules have projective covers in R–contra;
(8) every countable direct limit of copies of M has an Add(M)-cover in A;
(9) all descending chains of cyclic discrete right R-modules terminate;

(10) all the discrete quotient rings of the topological ring R are left perfect.

Then the following implications hold:

(1)⇐⇒ (2)⇐⇒ (3) =⇒ (4) =⇒ (5)⇐⇒ (6)⇐⇒ (7)⇐⇒ (8) =⇒ (9) =⇒ (10).

If the topological ring R satisfies one of the conditions (a), (b), (c), or (d), then all
the conditions (1–10) are equivalent. If the topological ring R satisfies one of the
conditions (e), (f), or (g), then the nine conditions (1–9) are equivalent.

Proof. (1)⇐⇒ (2) is Theorem 7.1(i)⇔ (ii).
(2)⇐⇒ (3) is [28, Theorem 14.1 (iv)⇔ (iii′)].
(1) =⇒ (4) is Theorem 7.1(i)⇒ (iii); (3) =⇒ (4) is Lemma 6.5.
The implications (4) =⇒ (5) =⇒ (8) and (3) =⇒ (6) =⇒ (7) are obvious.
The equivalences (5)⇐⇒ (6)⇐⇒ (7)⇐⇒ (8) are provided by Corollary 6.7.
(7) =⇒ (10) is [24, Corollary 4.7]; (6) =⇒ (10) is [24, Corollary 4.5].
(6) =⇒ (9) is [24, Proposition 4.3 and Lemma 6.3]; (9) =⇒ (10) is explained in [24,

proof of Theorem 10.1] (see also [28, Theorem 14.4]).
The last two assertions of the corollary follow from Corollary 7.3 below. �

Left modules M over an associative ring A for which there exists a topological ring
R satisfying (e) such that the monad TM is isomorphic to TR are discussed under
the name of weakly countably generated modules in the paper [9, Section 7.2].

The next corollary, covering the assertions of Theorem 0.1 from the introduction,
is our main result in the setting of Sections 4–7.

Corollary 7.3. Let A be a locally presentable additive category and M ∈ A be an
object satisfying THEC. Assume that the monad TM : Sets −→ Sets is isomorphic to
the monad TR for a complete, separated right linear topological ring R satisfying one
of the conditions (a), (b), (c), or (d). Let B = TM–mod ∼= R–contra be the related
abelian category of contramodules. Then the following conditions are equivalent:

(1) the class of objects Add(M) ⊂ A is covering;
(2) any direct limit of objects from Add(M) has an Add(M)-cover in A;
(3) every countable direct limit of copies of M has an Add(M)-cover in A;
(4) every countable direct limit of copies of M in A belongs to Add(M);
(5) the class of objects Add(M) is closed under direct limits in A;
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(6) the class Bproj is covering in B;
(7) any direct limit of projective objects has a projective cover in B;
(8) every countable direct limit of copies of the projective generator R ∈ B has a

projective cover in B;
(9) every countable direct limit of copies of the projective generator R ∈ B is a

projective object in B;
(10) the class Bproj is closed under direct limits in B;
(11) the object M ∈ A has a perfect decomposition;
(12) the topological ring R is topologically left perfect;
(13) all descending chains of cyclic discrete right R-modules terminate;
(14) there is a topologically left T-nilpotent strongly closed two-sided ideal H ⊂ R

such that the quotient ring S = R/H is isomorphic, as a topological ring, to
a product of simple Artinian discrete rings endowed with the product topology;

(15) all the discrete quotient rings of the topological ring R are left perfect.

Replacing the assumption of one of the conditions (a–d) with that of one of the con-
ditions (e), (f), or (g), the thirteen conditions (1–13) are equivalent.

Proof. The conditions (1–10) are equivalent to each other by Theorem 6.8, whose
applicability follows from any one of the conditions (a), (b), (c), (d), (e), (f), or (g)
by Theorem 4.8. Under any one of the conditions (a), (b), (c), or (d), the condi-
tions (6–10) and (13–15) are equivalent to each other by [24, Theorem 12.4], while the
conditions (6–10) and (12–13) are equivalent to each other by [28, Corollary 14.7]. As-
suming (e), (f), or (g), the conditions (6–10) and (12–13) are equivalent to each other
by Theorems 4.8 and 3.5, and [28, Theorem 14.4]. The equivalence (11)⇐⇒ (12)
holds by Theorem 7.1 (i)⇔ (ii).

This suffices to prove the corollary; but alternatively, here is a direct proof of
the equivalence (12)⇐⇒ (14) under the assumption of condition (d). By the Artin–
Wedderburn classification of simple Artinian rings, (14) implies (12) unconditionally.
In fact, the only difference between (14) and (12) is that the sets Υγ can be infinite
in (12); the class of topological rings S in (14) is obtained by such class in (12) by
imposing the condition that all the sets Υγ are finite (cf. [28, Remark 14.6]).

Let R be a topologically left perfect topological ring satisfying (d). Let H ⊂ R be
the ideal from the defintion of a topologically left perfect topological ring, and K ⊂ R
be the ideal from condition (d). Then the argument from the proof of Lemma 3.3
(based on [28, Lemma 10.3] and [24, Lemma 6.6(a)]) shows that K ⊂ H. So the
topological ring S = R/H is a quotient ring of the topological ring R/K. Hence for

every γ ∈ Γ the topological ring Sγ = HomDγ (D
(Υγ)
γ , D

(Υγ)
γ )op is also a quotient ring

of the topological ring R/K.
The ring R/K ∼=

∏
δ∈∆ Tδ = T, on the other hand, is the product of two-sided

linear topological rings Tδ, so T is a two-sided linear topological ring, too. As any
topological quotient ring of a two-sided linear topological ring is two-sided linear,
the ring Sγ must be two-sided linear, i. e., it has a base of neighborhoods of zero
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consisting of two-sided ideals. Since, in fact, there are no nonzero proper open two-
sided ideals in Sγ, it follows that Sγ must be discrete, which happens exactly when
the set Υγ is finite. �

8. Functor Purity in Abelian Categories

Let A be an associative ring. A short exact sequence of left A-modules 0 −→ K −→
M −→ L −→ 0 is said to be pure if the map of abelian groups N ⊗AK −→ N ⊗AM
is injective for every right A-module N , or equivalently, if the map HomA(E,M) −→
HomA(E,L) is surjective for every finitely presented left A-module E. A short exact
sequence of left A-modules is pure if and only if it is a direct limit of split short exact
sequences of left A-modules [19, Lemma 2.19].

The aim of this section is to suggest a simple way to extend the notion of purity
to arbitrary cocomplete abelian categories. We will use it in the next Section 9.

Let A be a cocomplete abelian category. We will say that a monomorphism
f : K −→ M is pure (or functor pure) in A if for every cocomplete abelian category
V with exact direct limit functors, and any additive functor F : A −→ V preserving
all colimits (that is, a right exact covariant functor preserving coproducts), the mor-
phism F (f) : F (K) −→ F (M) is a monomorphism in V. If this is the case, the object
K is said to be a (functor) pure subobject of the object M ∈ A.

A short exact sequence 0 −→ K −→ M −→ L −→ 0 in A is called (functor)
pure if the monomorphism K −→ M is pure, or equivalently, if the short sequence
0 −→ F (K) −→ F (M) −→ F (L) −→ 0 is exact in V for every functor F : A −→ V
as above. The morphism M −→ L is then said to be a (functor) pure epimorphism,
and the object L a pure quotient of M . A long exact sequence M • in A is said to
be pure if it is obtained by splicing pure short exact sequences in A, or equivalently,
if the complex F (M •) is exact in V for every abelian category V with exact direct
limits and any colimit-preserving functor F : A −→ V.

Lemma 8.1. Let A = A–mod be the abelian category of left modules over an asso-
ciative ring A. Then a monomorphism (or a short exact sequence, or a long exact
sequence) in A–mod is functor pure if and only if it is pure in the conventional sense
of the word (as in [19]).

Proof. A functor A–mod −→ Ab from the category of left A-modules to the category
of abelian groups Ab preserves colimits if and only if it is isomorphic to the functor
of tensor product M 7−→ N ⊗AM with a certain right A-module N [35, Theorem 1].
(Colimit-preserving functors A–mod −→ V can be similarly described as the functors
of tensor product with an object in V endowed with a right action of the ring A.)
So any functor pure exact sequence in A–mod remains exact after taking the tensor
product with any right A-module N , i. e., it is pure exact in the conventional sense.

Conversely, any pure short exact sequence of left A-modules is a direct limit of split
short exact sequences. Hence its image under any colimit-preserving functor (and
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more generally, under any direct limit-preserving additive functor) F : A–mod −→ V,
taking values in an abelian category V with exact direct limits, is exact. �

Lemma 8.2. In any cocomplete abelian category A, the class of functor pure
monomorphisms is closed under pushouts and compositions. The class of functor
pure epimorphisms is closed under pullbacks and compositions.

Proof. Essentially, the lemma claims that the category A with the class of all pure
short exact sequences is a Quillen exact category. To prove such an assertion, it
suffices to check that the class of pure monomorphisms is closed under pushouts
and compositions, and the class of pure epimorphisms is closed under pullbacks.
Closedness of the class of pure epimorphisms with respect to compositions will then
follow [20, Section A.1].

Let 0 −→ K −→ M −→ L −→ 0 be a pure short exact sequence in A and
L′ −→ L be a morphism. Since A is an abelian category, the pullback sequence
0 −→ K −→ M ′ −→ L′ −→ 0 is exact. To show that the epimorphism M ′ −→ L′

is pure, it suffices to check that the monomorphism K −→ M ′ is pure. Indeed, the
composition K −→ M ′ −→ M is a pure monomorphism. Since for any colimit-
preserving functor F : A −→ V the morphism F (K) −→ F (M) is a monomorphism,
the morphism F (K) −→ F (M ′) is a monomorphism, too.

Let K −→ K ′′ be a morphism in A and 0 −→ K ′′ −→ M ′′ −→ L −→ 0 be
the pushout sequence. Once again, since A is abelian, the pushout sequence is ex-
act. Any colimit-preserving functor F : A −→ V preserves pushouts; so F (K) −→
F (M) −→ F (M ′′), F (K) −→ F (K ′′) −→ F (M ′′) is a pushout square. Since the
morphism F (K) −→ F (M) is a monomorphism, the morphism F (K ′′) −→ F (M ′′)
is a monomorphism, too.

The assertion that the composition of any two pure monomorphisms is a pure
monomorphism is obvious. �

Example 8.3. Let A be a cocomplete abelian category with exact countable direct
limits. Then, for any sequence of objects and morphisms A1 −→ A2 −→ A3 −→ · · ·
in A, the short sequence

(8.1) 0 −→
∐∞

n=1
An −−→

∐∞

n=1
An −−→ lim−→n≥1

An −−→ 0.

is pure exact. Indeed, the sequence (8.1) is exact as the countable direct limit of
split exact sequences 0 −→

∐n−1
i=1 Ai −→

∐n
i=1 Ai −→ An −→ 0. The image of (8.1)

under a colimit-preserving functor F : A −→ V is the similar short sequence for the
inductive system F (A1) −→ F (A2) −→ F (A3) −→ · · · in the category V, which is
exact whenever countable direct limits are exact in V.

Example 8.4. Let A be a cocomplete abelian category with exact direct limits. Let
Θ be a directed poset and A : Θ −→ A be a Θ-indexed diagram in A. Then the
augmented bar-complex
(8.2)

· · · −−→
∐

θ0≤θ1≤θ2

A(θ0) −−→
∐
θ0≤θ1

A(θ0) −−→
∐
θ0

A(θ0) −−→ lim−→
θ∈Θ

A(θ) −−→ 0
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is pure exact in A. Indeed, the complex (8.2) is the direct limit (over δ ∈ Θ) of the
similar bar-complexes related to the subposets Θδ = {θ ∈ Θ: θ ≤ δ} ⊂ Θ and the
subdiagrams A|Θδ of A. The bar-complex of any diagram indexed by a poset with a
greatest element is easily seen to be contractible (by the explicit contracting homotopy
given by the morphisms taking the summand A(θ0) indexed by θ0 ≤ · · · ≤ θn to the
summand A(θ0) indexed by θ0 ≤ · · · ≤ θn ≤ δ).

This proves exactness of (8.2). To prove the pure exactness, one observes that
the image of (8.2) under a colimit-preserving functor F : A −→ V is the similar
augmented bar-complex for the diagram F ◦A : Θ −→ V in the category V, which is
exact for the same reason explained above whenever direct limits are exact in V.

In addition, we have shown that all the objects of cycles in the bar-complex (8.2)
are direct limits (over the poset Θ) of direct sums of copies of the objects A(θ),
θ ∈ Θ. Indeed, one easily observes that all the objects of cycles in the bar-complexes
related to the subposets Θδ ⊂ Θ are direct sums of copies of the objects A(θ).

9. Self-Pure-Projective and lim−→-Pure-Rigid Objects

The aim of this section is to prove the analogues of such results as Proposition 6.6,
Corollary 6.7, and the related equivalence of properties in Corollary 7.2 for uncount-
able direct limits, under appropriate assumptions.

Let A be a cocomplete abelian category. We use the notion of (functor) purity
defined in Section 8.

An object M ∈ A is said to be pure-split if every pure monomorphism K −→ M
is split in A. One says that an object T ∈ A is Σ-pure-split if all the objects M from
the class Add(T ) ⊂ A are pure-split in A.

An object Q ∈ A is said to be pure-projective if, for any pure short exact sequence
0 −→ K −→M −→ L −→ 0 in the category A, the short sequence of abelian groups
0 −→ HomA(Q,K) −→ HomA(Q,M) −→ HomA(Q,L) −→ 0 is exact. In other
words, an object of A is pure-projective if it is projective with respect to the pure
exact structure on A.

We will say that an object M ∈ A is self-pure-projective if, for any pure short exact
sequence 0 −→ K −→ M ′ −→ L −→ 0 in A with M ′ ∈ Add(M), the short sequence
of abelian groups 0 −→ HomA(M,K) −→ HomA(M,M ′) −→ HomA(M,L) −→ 0
is exact. The following examples mention classes of objects that are known to be
self-pure-projective, showing that self-pure-projective objects and, in particular, self-
pure-projective modules are not uncommon.

Examples 9.1. The following objects in a cocomplete abelian category A are self-
pure-projective:

(1) all pure-projective objects;
(2) all Σ-pure-split objects;
(3) all the objects belonging to Add(M), if M ∈ A is a self-pure-projective object.
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Examples 9.2. (1) Let L and E ⊂ A be two classes of objects such that Ext1
A(L,E) =

0 for all L ∈ L and E ∈ E (cf. Section 10 below). Assume that the class E ⊂ A is
closed under coproducts and pure subobjects. Then all objects in the intersection
L ∩ E ⊂ A are self-pure-projective.

Indeed, M ∈ L ∩ E and M ′ ∈ Add(M) implies M ′ ∈ E; and if a (pure) subobject
K of M ′ also belongs to E, then Ext1

A(M,K) = 0. Consequently HomA(M,M ′) −→
HomA(M,M ′/K) is a surjective map.

(2) In particular, let A = A–mod be the category of modules over an associative
ring A. Then any n-tilting left A-module (cf. Section 11 below) is self-pure-projective.
Indeed, any n-tilting class E in A–mod is definable, which implies, in particular,
that it is closed under direct sums and pure submodules [19, Definition 6.8 and
Corollary 13.42].

Remarks 9.3. (1) A pair of classes of objects (E, L) in abelian category A is said
to be a cotorsion pair if both the classes L and E are maximal with respect to the
property that Ext1

A(L,E) = 0 for all L ∈ L and E ∈ E (see Section 10). Notice that
if A is a complete, cocomplete abelian category with exact direct limits and (L,E)
is a cotorsion pair in A such that the class E ⊂ A is closed under pure subobjects,
then the class E is also closed under coproducts in A. Indeed, the right class E in a
cotorsion pair (L,E) is always closed under products in A [13, Appendix A]. For any
family of objects Aα ∈ A, the natural morphism

∐
αAα −→

∏
αAα is a direct limit

of split monomorphisms, hence
∐

αAα is a pure subobject of
∏

αAα. It follows that
all the objects in the class L ∩ E are self-pure-projective.

(2) Let (L,E) be a cotorsion pair in the category of left modules over an associative
ring A. In this context, if the class E is closed under direct limits in R–mod, then it is
definable [31, Theorem 6.1]. If the cotorsion pair (L,E) is hereditary and the class E
is closed under unions of well-ordered chains in A–mod, then the class E is definable
as well [32, Theorem 3.5]. In both cases, the class E ⊂ A–mod is closed under (direct
sums and) pure submodules, and it follows that all the A-modules in the class L ∩ E
are self-pure-projective.

Let A be a cocomplete abelian category. We will say that an object M ∈ A
is lim−→-pure-rigid if PExt1

A(M,N) = 0 for any object N ∈ lim−→
A Add(M). Here

PExt1
A(−,−) denotes the group Ext1 in the functor pure exact structure on the cat-

egory A (cf. Example 6.3(2)) and the notation lim−→
A M was defined in the beginning

of Section 4. Any lim−→-pure-rigid object is Σ-pure-rigid by definition.

Example 9.4. Let L and E ⊂ A be two classes of objects such that PExt1
A(L,E) = 0

for all L ∈ L and E ∈ E. Assume that the class E ⊂ A is closed under direct limits.
Then all objects in the intersection L ∩ E are lim−→-pure-rigid.

Let A be a cocomplete abelian category and M ∈ A be an object. As in Section 2.1,
we consider the related abelian category B = TM–mod and the pair of adjoint functors
Ψ: A −→ B and Φ: B −→ A. As in Section 6, we also consider the related pair of
full subcategories G ⊂ A and H ⊂ B.
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The following proposition is the uncountable version of Proposition 6.6.

Proposition 9.5. Let A be a cocomplete abelian category with exact direct limits,
M ∈ A be an object that is either self-pure-projective or lim−→-pure-rigid, B = TM–mod
be the related abelian category, and G ⊂ A and H ⊂ B be the related two full sub-
categories. Then one has lim−→

A Add(M) ⊂ G and lim−→
B Bproj ⊂ H. The functor Ψ

preserves direct limits of objects from Add(M) in A (taking them to direct limits of
the corresponding projective objects in B).

Proof. Let Θ be a directed poset and A : Θ −→ A be a diagram in A with A(θ) ∈
Add(M) for all θ ∈ Θ. Then the augmented bar-complex (8.2) is pure exact in A, and
the objects of cycles in the complex (8.2) are direct limits of objects from Add(M)
(see Example 8.4). As all the terms of this complex, except perhaps the rightmost
one, belong to Add(M) and the object M is either self-pure-projective or lim−→-pure-
rigid, it follows that the functor HomA(M,−) takes the complex (8.2) to an exact
sequence of abelian groups. As in the proof of Proposition 6.6, we conclude that the
functor Ψ transforms the complex (8.2) into an exact complex in B.

On the other hand, for any cocomplete abelian category B, any poset Θ, and any
diagram B : Θ −→ B, the augmented bar-complex
(9.1)

· · · −−→
∐

θ0≤θ1≤θ2

B(θ0) −−→
∐
θ0≤θ1

B(θ0) −−→
∐
θ0

B(θ0) −−→ lim−→
θ∈Θ

B(θ) −−→ 0

is exact, at least, at its rightmost term.
In the situation at hand, put B = Ψ ◦ A : Θ −→ B. Then the natural morphism

from the complex (9.1) to the image of the complex (8.2) under Ψ is an isomorphism
at all the terms, except perhaps the rightmost one. It follows that this morphism
of complexes is an isomorphism at the rightmost terms, too; that is, the natural
morphism lim−→θ∈Θ

Ψ(A(θ)) −→ Ψ(lim−→θ∈Θ
A(θ)) is an isomorphism.

The argument finishes in the same way as the proof of Proposition 6.6. �

The next corollary is an uncountable version of Corollary 6.7.

Corollary 9.6. Let A be a cocomplete abelian category with exact direct limits and
M ∈ A be an object that is either self-pure-projective or lim−→-pure-rigid. Let B =
TM–mod be the related abelian category. Then the following conditions are equivalent:

(1) all the objects from lim−→Add(M) have Add(M)-covers in A;
(2) all the objects from lim−→Bproj have projective covers in B;
(3) the class of objects Add(M) ⊂ A is closed under direct limits;
(4) the class of all projective objects in B is closed under direct limits;
(5) the object M ∈ A satisfies the condition (iii) of Theorem 7.1.

Proof. Both the equivalences (1)⇐⇒ (2) and (3)⇐⇒ (4) follow from Proposition 9.5
and the equivalence of categories (6.3). Since any epimorphism onto a projective
object splits in B, we also obtain the equivalence (4)⇐⇒ (5). Alternatively, the
equivalence (3)⇐⇒ (5) follows from self-pure-projectivity/lim−→-pure-rigidity of M and
the properties of the augmented bar-complex mentioned in Example 8.4.
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Finally, the equivalence (1)⇐⇒ (3) is [9, Corollary 7.2] (for lim−→-pure-rigid ob-
jects M) or a particular case of [9, Theorem 4.4] (for self-pure-projective objects M).

�

In particular, in the assumptions of Corollary 9.6, the two properties (3) and (4)
in Corollary 7.2 are equivalent.

10. Covers in Hereditary Cotorsion Pairs

In this section we discuss L-covers in an abelian category A with a hereditary
cotorsion pair (L,E), aiming to gradually pass from Theorem 0.1 of the introduction
to Theorem 0.2.

Let us recall the relevant definitions. Let A be an abelian category, and let L and
E ⊂ A be two classes of objects. We denote by L⊥1 ⊂ A the class of all objects X ∈ A
such that Ext1

A(L,X) = 0 for all L ∈ L, and by ⊥1E ⊂ A the class of all objects Y ∈ A
such that Ext1

A(Y,E) = 0 for all E ∈ E. The pair of classes of objects (L,E) in A is
called a cotorsion pair (or a cotorsion theory) if E = L⊥1 and L = ⊥1E. A cotorsion
pair (L,E) is called hereditary if ExtnA(L,E) = 0 for all L ∈ L, E ∈ E, and n ≥ 1.
These concepts go back to Salce [30].

An epimorphism l : L −→ C in A is called a special L-precover if L ∈ L and
ker(l) ∈ L⊥1 . A monomorphism b : B −→ E in A is called a special E-preenvelope
if E ∈ E and coker(b) ∈ ⊥1E. The following lemma summarizes the properties of
precovers, special precovers, and covers.

Lemma 10.1. Let L be a class of objects in an abelian category A. Then the following
assertions hold true:

(a) Any special L-precover is an L-precover.
(b) If the class L is closed under extensions in A, then the kernel of any L-cover

belongs to L⊥1. In particular, any epic L-cover is special in this case.
(c) Let l : L −→ C be an L-cover, and let l′ : L′ −→ C be an L-precover. Then

there exists a split epimorphism f : L′ −→ L forming a commutative triangle diagram
with the morphisms l and l′. The kernel K of the morphism f is a direct summand
of L′ contained in ker(l′) ⊂ L′. So one has L′ ∼= L⊕K and ker(l′) ∼= ker(l)⊕K.

(d) Assume that an object C ∈ A has an L-cover, and let l′ : L′ −→ C be an
L-precover. Then the morphism l′ is an L-cover if and only if the object L′ has no
nonzero direct summands contained in ker(l′).

Proof. Part (a) is [37, Proposition 2.1.3 or 2.1.4]. Part (b) is known as Wakamatsu
lemma; this is [37, Lemma 2.1.1 or 2.1.2]. Part (c) is [37, Proposition 1.2.2 or
Theorem 1.2.7], and part (d) is [37, Corollary 1.2.3 or 1.2.8]. �

Let (L,E) be a cotorsion pair in A. If c : L −→ C is an epimorphism in A with
L ∈ L and the object ker(c) ∈ A has a special E-preenvelope, then the object C has a
special L-precover. If b : B −→ E is a monomorphism in A with E ∈ E and the object
coker(b) ∈ A has a special L-precover, then the object B has a special E-preenvelope.
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In particular, if there are enough injective and projective objects in A, then, given
a cotorsion pair (L,E) in A, every object of A has a special L-precover if and only
if every object of A has a special E-preenvelope. These results are known as Salce
lemmas [30]. A cotorsion pair (L,E) in A is called complete if every object of A has
a special L-precover and a special E-preenvelope.

Lemma 10.2. Let (L,E) be a complete cotorsion pair in an abelian category A, and
let E ∈ E ⊂ A be an object. Then a morphism l : L −→ E in A is an L-cover if and
only if it is an L ∩ E-cover.

Proof. Since the cotorsion pair (L,E) is complete in A, every object of A has a spe-
cial L-precover, which is, in particular, an epic L-precover. It follows that all the
L-precovers in A are epic.

Assume that l is an L-cover. Then, by Lemma 10.1(b), the morphism l is a special
L-precover; so its kernel belongs to E. Since the class E is closed under extensions in
A, it follows that L ∈ L ∩ E. Therefore, l is an L ∩ E-cover.

Assume that l is an L ∩ E-cover. Let l′ : L′ −→ E be a special L-precover of the
object E in A. Following the above argument, we have L′ ∈ L ∩ E; so l′ is also an
L ∩ E-precover of E. According to Lemma 10.1(c) applied to the class of objects
L ∩ E ⊂ A, the object ker(l) is a direct summand of ker(l′). Hence ker(l) ∈ E. So l is
a special L-precover of E in A. In particular, by Lemma 10.1(a), l is an L-precover.
Since l is an L ∩ E-cover, we can conclude that l is an L-cover. �

Lemma 10.3. Let (L,E) be a hereditary complete cotorsion pair in an abelian cate-
gory A. Assume that every object of E has an L-cover in A. Then every object of A
has an L-cover.

Proof. Let A be an object in A. By assumption, A has a special E-preenvelope
a : A −→ E. Set L = coker(a); then we have a short exact sequence 0 −→ A −→
E −→ L −→ 0 in A with E ∈ E and L ∈ L. By assumption, the object E has an
L-cover m : M −→ E in A. Set F = ker(m); by Lemma 10.1(b), we have F ∈ E. Let
K denote the kernel of the composition of epimorphisms M −→ E −→ L; then we
have K ∈ L, since M , L ∈ L and the cotorsion pair (L,E) is assumed to be hereditary.
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We have constructed a commutative diagram of four short exact sequences

0 0

0 A E L 0

0 K M L 0

F F

0 0

//

OO

//
a

OO

// //

//

OO

k

//

OO

m

// //

OO OO

OO OO

The morphism k : K −→ A is an epimorphism with the kernel F ∈ E, so it is
a special L-precover. Let us show that it is an L-cover. Let h : K −→ K be an
endomorpism such that kh = k. Consider a pushout of the short exact sequence 0 −→
K −→ M −→ L −→ 0 by the morphism h and denote it by 0 −→ K −→ N −→
L −→ 0. We have N ∈ L, since K, L ∈ L and the class L is closed under extensions
in A. In view of the universal property of the pushout, we have a commutative
diagram of two morphisms of short exact sequences

0 A E L 0

0 K N L 0

0 K M L 0

// //
a

// //

//

OO

k

//

OO

n

// //

//

OO

h

//

OO

s

// //

with kh = k and ns = m. Since the morphism m : M −→ E is an L-cover and N ∈ L,
there exists a morphism r′ : N −→M such that mr′ = n. Moreover, one has mr′s =
ns = m, hence r′s : M −→M is automorphism. Setting r = (r′s)−1r′ : N −→M , we
have rs = idM and mr = m(r′s)−1r′ = mr′ = n.

It follows from the latter equality that the morphism r : N −→ M forms a com-
mutative triangle diagram with the epimorphisms N −→ L and M −→ L. Passing
to the kernels of these two epimorphisms, we obtain a morphism g : K −→ K such
that gh = idK . We have constructed a commutative diagram of two morphisms of
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short exact sequences

0 K M L 0

0 K N L 0

0 K M L 0

// // // //

//

OO

g

//

OO

r

// //

//

OO

h

//

OO

s

// //

whose composition is the identity endomorphism of the short exact sequence 0 −→
K −→M −→ L −→ 0.

Thus we have shown that any endomorphism h : K −→ K such that kh = k
is a (split) monomorphism. Furthermore, there is a commutative diagram of two
morphisms of short exact sequences

0 A E L 0

0 K M L 0

0 K N L 0

// //
a

// //

//

OO

k

//

OO

m

// //

//

OO

g

//

OO

r

// //

where kg = k, because mr = n (indeed, since a is a monomorphism, it suffices to
show that akg = ak, which follows from the equality mr = n and the commutativity
of the left squares of our diagrams).

Therefore, the morphism g : K −→ K is a (split) monomorphism, too, and we can
conclude that both g and h are isomorphisms. �

Corollary 10.4. Let (L,E) be a hereditary complete cotorsion pair in an abelian
category A. Then the following three conditions are equivalent:

(1) every object of A has an L-cover;
(2) every object of E has an L-cover in A;
(3) every object of E has an L ∩ E-cover.

Proof. (1)⇐⇒ (2) is Lemma 10.3; (2)⇐⇒ (3) is Lemma 10.2. �

11. The Tilting-Cotilting Correspondence

Let A be a complete, cocomplete abelian category with a fixed injective cogenerator
J ∈ A. So there are enough injective objects in the category A, and the class of all
injective objects is Ainj = Prod(J) ⊂ A.

Let n ≥ 0 be an integer, and let T ∈ A be an object satisfying the following two
conditions:
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(i) the projective dimension of T (as an object of A) does not exceed n, that is
ExtiA(T,A) = 0 for all A ∈ A and i > n; and

(ii) for any set X, one has ExtiA(T, T (X)) = 0 for all i > 0.

Denote by E ⊂ A the class of all objects E ∈ A such that ExtiA(T,E) = 0 for
all i > 0. Notice that, by the definition, one has Ainj = ProdA(J) ⊂ E and, by the
condition (ii), AddA(T ) ⊂ E.

Furthermore, for each integer m ≥ 0, denote by Lm ⊂ A the class of all objects
L ∈ A for which there exists an exact sequence of the form

0 −−→ L −→ T 0 −−→ T 1 −−→ · · · −−→ Tm −−→ 0

in the category A with the objects Tm ∈ Add(T ). By the definition, Add(T ) = L0 ⊂
L1 ⊂ L2 ⊂ · · · ⊂ A. According to [26, Lemma 3.2], one has Ln = Ln+1 = Ln+2 = · · ·
(so we set L = Ln) and L ∩ E = Add(T ) ⊂ A.

According to [26, Theorem 3.4], every object of E is a quotient of an object from
Add(T ) in A if and only if every object of A is a quotient of an object from L. If this
is the case, we say that the object T ∈ A is n-tilting. For an n-tilting object T , the
pair of classes of objects (L,E) in A is a hereditary complete cotorsion pair, called
the n-tilting cotorsion pair associated with T .

Let B be a complete, cocomplete abelian category with a fixed projective generator
P ∈ B. So there are enough projective objects in B, and one has Bproj = Add(P ) ⊂ B.

The definition of an n-cotilting object W ∈ B is dual to the above definition of
an n-tilting object. In other words, an object W ∈ B is said to be n-cotilting if the
object W op is n-tilting in the abelian category Bop opposite to B.

Specifically, this means, first of all, that the two conditions dual to (i) and (ii) have
to be satisfied:

(i*) the injective dimension of W (as an object of B) does not exceed n, that is
ExtiB(B,W ) = 0 for all B ∈ B and i > n; and

(ii*) for any set X, one has ExtiB(WX ,W ) = 0 for all i > 0.

On top of that, denoting by F ⊂ B the class of all objects F ∈ B such that
ExtiB(F,W ) = 0 for all i > 0, it is required that every object of F should be a
subobject of an object from Prod(W ) in B.

The following theorem from [26] describes the phenomenon of n-tilting-cotilting
correspondence.

Theorem 11.1. There is a bijective correspondence between (the equivalence classes
of) complete, cocomplete abelian categories A with an injective cogenerator J and an
n-tilting object T ∈ A, and (the equivalence classes of) complete, cocomplete abelian
categories B with a projective generator P and an n-cotilting object W ∈ B. The
abelian categories A and B corresponding to each other under this correspondence
are connected by the following structures:

(a) there is a pair of adjoint functors between A and B, with a left adjoint functor
Φ: B −→ A and a right adjoint functor Ψ: A −→ B;

(b) one has Φ(F) ⊂ E and Ψ(E) ⊂ F; the restrictions of the functors Φ and Ψ are
mutually inverse equivalences between the full subcategories E ⊂ A and F ⊂ B;
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(c) the full subcategory E ⊂ A is closed under extensions and the cokernels of
monomorphisms, while the full subcategory F ⊂ B is closed under extensions and the
kernels of epimorphisms; hence they inherit exact category structures (in Quillen’s
sense) from their ambient abelian categories; the equivalence of categories E ∼= F
provided by the functors Φ and Ψ is an equivalence of exact categories; in other
words, the functor Φ preserves exactness of short exact sequences of objects from F,
and the functor Ψ preserves exactness of short exact sequences of objects from E;

(d) both the full subcategories E ⊂ A and F ⊂ B are closed under both the products
and coproducts in their ambient abelian categories; the functor Φ: B −→ A preserves
the products (and coproducts) of objects from F, while the functor Ψ: A −→ B pre-
serves the (products and) coproducts of objects from E;

(e) under the equivalence of exact categories E ∼= F, the injective cogenerator J ∈
E ⊂ A corresponds to the n-cotilting object W ∈ F ⊂ B, and the n-tilting object
T ∈ E ⊂ A corresponds to the projective generator P ∈ F ⊂ B;

(f) there are enough projective and injective objects in the exact category E ∼= F;
the full subcategories of projectives and injectives in E are Eproj = Add(T ) and Einj =
Ainj = Prod(J), while the full subcategories of projectives and injectives in F are
Fproj = Bproj = Add(P ) and Finj = Prod(W );

(g) the equivalence of exact categories A ⊃ E ∼= F ⊂ B can be extended to a
triangulated equivalence between the derived categories D?(A) ∼= D?(B), which exists
for any conventional derived category symbol ? = b, +, −, or ∅.

Proof. The bijective correspondence is constructed in [26, Corollary 4.12] (based
on [26, Theorems 4.10 and 4.11]), and the assertions (e–f) are a part of that con-
struction (cf. [26, Proposition 2.6 and Theorem 3.4]). The adjoint functors Φ and Ψ
are described in [26, beginning of Section 5], and parts (b–c) are also explained there.
Part (d) is [26, Lemma 5.3 and Remark 5.4]. Part (g) is [26, Proposition 4.2 and/or
Corollary 5.6]. �

The following characterization of the n-tilting-cotilting correspondence situations
will be useful in Section 14. It may also be of an independent interest.

Proposition 11.2. Let A be a complete, cocomplete abelian category with an injective
cogenerator J , and let B be a complete, cocomplete abelian category with a projective
generator P . Suppose that there is a derived equivalence Db(A) ∼= Db(B) taking the
object J ∈ A to an object W ∈ B ⊂ Db(B) and the object P ∈ B to an object
T ∈ A ⊂ Db(A). Then, for any integer n ≥ 0, the following conditions are equivalent:

(I) the projective dimension of the object T in the category A does not exceed n;
(II) the injective dimension of the object W in the category B does not exceed n;

(III) the standard t-structures on the derived categories Db(A) and Db(B), viewed
as two t-structures on the same triangulated category D using the triangulated
equivalence Db(A) ∼= Db(B), satisfy the inclusion Db,≤0(A) ⊂ Db,≤n(B), or
equivalently, Db,≥n(B) ⊂ Db,≥0(A).

If any one of these conditions is satisfied, then the object T ∈ A is n-tilting; the
object W ∈ B is n-cotilting; and moreover, the abelian category A with the injective
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cogenerator J and the n-tilting object T and the abelian category B with the projective
generator P and the n-cotilting object W are connected by the n-tilting-cotilting corre-
spondence. The n-tilting class E ⊂ A is the intersection A∩B ⊂ D = Db(A) = Db(B)
viewed as a full subcategory in A, and the n-cotilting class F ⊂ B is the same inter-
section B ∩ A ⊂ D viewed as a full subcategory in B (hence the equivalence of exact
categories E ∼= F). The functor Ψ: A −→ B assigns to an object A ∈ A the degree-
zero cohomology of the related complex in Db(B), and the functor Φ: B −→ A assigns
to an object B ∈ B the degree-zero cohomology of the related complex in Db(A), that
is, Ψ(A) = H0

B(A) and Φ(B) = H0
A(B).

Proof. This is essentially the material of [26, Sections 2 and 4] (the description of the
functors Φ and Ψ can be found in the beginning of [26, Section 5]). So we only give
a brief sketch of the argument.

Notice, first of all, that the inclusions Db,≤0(B) ⊂ Db,≤0(A) and Db,≥0(A) ⊂ Db,≥0(B)
always hold in our assumptions, because an object Z ∈ D belongs to Db,≥0(B) if and
only if HomD(P,Z[i]) = 0 for all i < 0, while one has HomD(S, Z[i]) = 0 for all
Z ∈ Db,≥0(A), all i < 0, and all S ∈ A (in particular, for S = T ).

In the same way one shows that the two inclusions in (III) (which are obviously
equivalent to each other) are equivalent to (I) on the one hand and to (II) on the
other hand, (I)⇐⇒ (III)⇐⇒ (II). Indeed, an object Z ∈ D belongs to Db,≤n(B) if
and only if HomD(P,Z[i]) = 0 for all i > n, while the projective dimension of T in A
does not exceed n if and only if HomD(T, Z[i]) = 0 for all Z ∈ Db,≤0(A) and all i > n.
The argument for W is similar.

The inclusion A −→ Db(A) preserves coproducts, because the coproduct functors
are exact in A; and the inclusion B −→ Db(B) preserves products, because the product
functors are exact in B. Furthermore, we have A ∩ B = A ∩ Db,≤0(B) ⊂ D, since
B = Db,≤0(B)∩Db,≥0(B) and A ⊂ Db,≥0(A) ⊂ Db,≥0(B). The full subcategory Db,≤0(B)
is closed under coproducts in D (those coproducts that exist in D), because the left
part of any t-structure is closed under coproducts. Hence the full subcategory A ∩ B
is closed under coproducts in D, and consequently in A and B. Similary, the full
subcategory A ∩ B is closed under products in D, and consequently in A and B. So
the products and coproducts of objects of E computed in A agree with the products
and coproducts of objects of F computed in B. (Cf. [26, Lemma 5.3 and Remark 5.4].)

Now we can see that ExtiA(T, T (X)) = HomDb(A)(T, T
(X)[i]) = HomDb(B)(P, P

(X)[i])

= 0 for all i > 0, and similarly ExtiB(WX ,W ) = 0 for all i > 0 and all sets X. This
proves the n-tilting axiom (ii) for T and the n-cotilting axiom (ii*) for W ; while the
axioms (i) and (i*) are provided by the conditions (I) and (II). It remains to apply [26,
Proposition 2.5 and Corollary 4.4(b)] in order to conclude that the object T ∈ A is
n-tilting and the object W ∈ B is n-cotilting. It is also clear from the construction of
the n-tilting-cotilting correspondence in [26, Theorems 4.10–4.11 and Corollary 4.12]
that the triples (A, J, T ) and (B, P,W ) are connected by such. �

Remark 11.3. Given a complete, cocomplete abelian category A with an injective
cogenerator and an n-tilting object T , the related abelian category B can be described
as the category B = TT–mod of modules over the monad TT : X 7−→ HomA(T, T (X)).
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The functors Φ and Ψ from Section 2.1 can be identified with the functors Φ and Ψ
from Theorem 11.1 in this case [26, Remark 6.6].

Dually, given a complete, cocomplete abelian category B with a projective genera-
tor and an n-cotilting object W , the related abelian category A can be described as
the opposite category A = TW op–modop to the category of modules over the monad
TW op : X 7−→ HomB(WX ,W ) (cf. [27, Section 1]).

Examples 11.4. Suppose that there is an associative ring A such that the abelian
category A can be embedded into A–mod as a full subcategory closed under coprod-
ucts. So, in particular, the n-tilting object T ∈ A can be viewed as a left A-module.
Then it follows from [26, Theorem 7.1 or 9.9] that the abelian category B can be
described as the category of left contramodules R–contra over the topological ring
R = HomA(T, T )op from Examples 2.2 (1), (2) or (4). Further examples of classes of
abelian categories A for which the category B admits such a description are discussed
in [26, Sections 9–10] and [28, Section 3] (see Examples 2.3).

12. Direct Limits in Categorical Tilting Theory

In this section we discuss the properties of direct limits in the n-tilting-cotilting
correspondence context. We start with the case of the direct limits indexed by the
poset of natural numbers.

Lemma 12.1. In the context of the n-tilting-cotilting correspondence, assume that
countable direct limits are exact in the abelian category A. Then both the full subcat-
egories E ⊂ A and F ⊂ B are closed under countable direct limits in their am-
bient abelian categories, and the functor Ψ: A −→ B preserves countable direct
limits of objects from E. Furthermore, for any sequence of objects and morphisms
F1 −→ F2 −→ F3 −→ · · · with Fi ∈ F, the short sequence 0 −→

∐∞
i=1 Fi −→∐∞

i=1 Fi −→ lim−→i≥1
Fi −→ 0 with the map id− shift :

∐
i Fi −→

∐
i Fi is exact in B.

The functors of countable direct limit are exact in the exact category F.

Proof. The argument resembles the proof of Proposition 6.6. For any sequence of
objects and morphisms B1 −→ B2 −→ B3 −→ · · · in an abelian category B with
countable coproducts, the short sequence

∐∞
i=1 Bi −→

∐∞
i=1Bi −→ lim−→i≥1

Bi −→ 0

is right exact in B. Moreover, for any sequence of objects and morphisms A1 −→
A2 −→ A3 −→ · · · in an abelian category A with exact countable direct limits, the
short sequence 0 −→

∐∞
i=1Ai −→

∐∞
i=1Ai −→ lim−→i≥1

Ai −→ 0 is exact in A (see

Example 8.3). In particular, for any sequence of objects and morphisms E1 −→
E2 −→ E3 −→ · · · with Ei ∈ E, the short sequence 0 −→

∐
iEi −→

∐
iEi −→

lim−→i
Ei −→ 0 is exact in A. Hence it follows that lim−→i

Ei ∈ E, because the full
subcategory E ⊂ A is closed under coproducts and the cokernels of monomorphisms.

The functor Φ, being a left adjoint, preserves all colimits. Thus, for any sequence
of objects and morphisms F1 −→ F2 −→ F3 −→ · · · in F, the short sequence
0 −→ Φ(

∐
i Fi) −→ Φ(

∐
i Fi) −→ Φ(lim−→i

Fi) −→ 0, being isomorphic to the short
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sequence 0 −→
∐

i Φ(Fi) −→
∐

i Φ(Fi) −→ lim−→i
Φ(Fi) −→ 0, is exact in A. This is

a short exact sequence in A with all the three terms belonging to E, so the functor
Ψ transforms it into a short exact sequence in B with all the three terms belong-
ing to F. We have a natural (adjunction) morphism from the right exact sequence∐

i Fi −→
∐

i Fi −→ lim−→i
Fi −→ 0 to the exact sequence 0 −→ ΨΦ(

∐
i Fi) −→

ΨΦ(
∐

i Fi) −→ ΨΦ(lim−→i
Fi) −→ 0, which is an isomorphism at the first two terms,

and therefore at the third term, too. Hence the object lim−→i
Fi ∼= Ψ(lim−→i

Φ(Fi)) belongs

to F and the short sequence 0 −→
∐

i Fi −→
∐

i Fi −→ lim−→i
Fi −→ 0 is exact. Since

the coproduct functors are exact in F (because they are exact in E) and the cokernel
of an admissible monomorphism is an exact functor, it follows that the functors of
countable direct limit are exact in F. The functor Ψ|E : E −→ B preserves countable
direct limits, because both the equivalence of categories E ∼= F and the inclusion
functor F −→ B do. This proves all the assertions of the lemma. �

Corollary 12.2. In the context of the n-tilting-cotilting correspondence, assume that
countable direct limits are exact in the abelian category A. Then the following three
conditions are equivalent:

(i) the full subcategory L is closed under countable direct limits in A;
(ii) the class of objects Add(T ) is closed under countable direct limits in A;

(iii) the class of all projective objects Bproj is closed under countable direct limits
in B.

Proof. (i) =⇒ (ii) According to Lemma 12.1, the class E is closed under countable
direct limits in A. Hence, if the class L is closed under countable direct limits, too,
then so is the class L ∩ E = Add(T ).

(ii)⇐⇒ (iii) By the same lemma, the equivalence of categories E ∼= F transforms
countable direct limits of objects from E computed in A to countable direct limits
of objects from F computed in B. Thus the class Bproj = Ψ(Add(T )) ⊂ F is closed
under countable direct limits in B if and only if the class Add(T ) ⊂ E is closed under
countable direct limits in A.

(ii) =⇒ (i) Given an object L ∈ L, an exact sequence 0 −→ L −→ T 0 −→ · · · −→
T n −→ 0 with T j ∈ Add(T ) can be constructed in the following way. Let L −→ E
be a special E-preenvelope of L; then we have a short exact sequence 0 −→ L −→
E −→M −→ 0 with E ∈ E and M ∈ L. Since the class L is closed under extensions
in A, we have E ∈ L ∩ E = Add(T ). Set T 0 = E and M1 = M , and let M1 −→ T 1

be a special E-preenvelope of M1, etc. Proceeding in this way, one obtains an exact
sequence 0 −→ L −→ T 0 −→ T 1 −→ · · · −→ T n−1 −→ Mn −→ 0 with Mn ∈ L;
and one also has Mn ∈ E by cohomological dimension shifting, since the projective
dimension of T does not exceed n. It remains to set T n = Mn. Conversely, in any
exact sequence 0 −→ L −→ T 0 −→ T 1 −→ · · · −→ T n −→ 0 with L ∈ L and
T j ∈ Add(T ), the objects of cocycles belong to L, since the class L, being the left
class in a hereditary cotorsion pair, is closed under the kernels of epimorphisms.

Now, for any two objects A′ and A′′ ∈ A, their special E-preenvelopes A′ −→ E ′

and A′′ −→ E ′′, and a morphism A′ −→ A′′, there is a morphism E ′ −→ E ′′ forming
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a commutative triangle diagram with the composition A′ −→ A′′ −→ E ′′. Using this
observation, for any sequence of objects and morphisms L1 −→ L2 −→ L3 −→ · · · in
L and any exact sequences 0 −→ Li −→ T 0

i −→ · · · −→ T ni −→ 0 with T ji ∈ Add(T ),
one can extend the sequence of morphisms · · · −→ Li −→ Li+1 −→ · · · to a sequence
of morphisms of exact sequences · · · −→ (0 → Li → T 0

i → · · · → T ni → 0) −→
(Li+1 → T 0

i+1 → · · · → T ni+1 → 0) −→ · · · . Passing to the direct limit, we obtain an
exact sequence

0 −−→ lim−→i≥1
Li −−→ lim−→i≥1

T 0
i −−→ · · · −−→ lim−→i≥1

T ni −−→ 0

in the abelian category A. Since lim−→i
T ji ∈ Add(T ) for all j = 0, . . . , n, it follows that

lim−→i
Li ∈ L by the definition. �

The following proposition provides a generalization to uncountable direct limits.

Proposition 12.3. In the context of the n-tilting-cotilting correspondence, assume
that direct limits are exact in the abelian category A. Then both the full subcategories
E and F are closed under direct limits in their ambient abelian categories A and B,
and the functor Ψ: A −→ B preserves direct limits of objects from E. The functors
of direct limit are exact in the exact category F.

Proof. The argument resembles the proof of Proposition 9.5. Let E : Θ −→ E be a
diagram in the exact category E indexed by a directed poset Θ. Then the augmented
bar-complex (8.2) (from Example 8.4) for the diagram E is an unbounded resolution
of an object of A by objects of E (since the full subcategory E ⊂ A is closed under
coproducts). Since the full subcategory E ⊂ A is defined as the class of all objects
E ∈ A such that ExtiA(T,E) = 0 for all i > 0, and the tilting object T ∈ A has finite
projective dimension, a simple cohomological dimension shifting argument shows that
lim−→θ∈Θ

E(θ) ∈ E. Moreover, all the objects of cycles of the exact complex (8.2) for

the diagram E also belong to E. So this complex is exact in the exact category E.
Applying the functor Ψ to the augmented bar-complex for the diagram E, we get

an exact complex in the category F, which coincides, except possibly at his rightmost
term, with the augmented bar-complex (9.1) for the diagram Ψ ◦ E in B (because
both the equivalence of categories E ∼= F and the inclusion functor F −→ B preserve
coproducts). Since the bar-complex of any diagram in a cocomplete abelian category
is exact at its rightmost term, it follows that the natural morphism lim−→θ

Ψ(E(θ)) −→
Ψ(lim−→θ

E(θ)) is an isomorphism and lim−→θ
Ψ(E(θ)) ∈ F. As any diagram in F can be

obtained by applying the functor Ψ to a diagram in E, we can conclude that the full
subcategory F ⊂ B is also closed under direct limits, and the bar-complexes (9.1)
computing such direct limits in F are exact. Exactness of the direct limit functors in
F easily follows. �

Corollary 12.4. In the context of the n-tilting-cotilting correspondence, assume that
direct limits are exact in the abelian category A. Then the following three conditions
are equivalent:

(i) the full subcategory L is closed under direct limits in A;
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(ii) the class of objects Add(T ) is closed under direct limits in A;
(iii) the class of all projective objects Bproj is closed under direct limits in B.

Proof. Provable in the same way as Corollary 12.2, using Proposition 12.3 in place
of Lemma 12.1. Let us just say a few words about the implication (ii) =⇒ (i).

In view of [1, Sections 1.6–1.7], it suffices to show that L is closed under the direct
limits of well-ordered chains in A (in fact, it suffices to consider direct limits indexed
by regular cardinals). Let us prove that L is closed under λ-indexed direct limits for
any ordinal λ.

Let (Li → Lj)0≤i<j<λ be a λ-indexed diagram in L. Proceeding by transfinite
induction in 0 ≤ i < λ, we construct a λ-indexed diagram of exact sequences 0 −→
Li −→ T 0

i −→ · · · −→ T ni −→ 0 with T ki ∈ Add(T ), connected by morphisms of
exact sequences for all 0 ≤ i < j < λ.

The case i = 0 is clear. Assume that the desired directed diagram of exact se-
quences has been constructed for 0 ≤ i < j < α, where 0 < α < λ is some ordinal.
Then we have an exact sequence

(12.1) 0 −−→ lim−→i<α
Li −−→ lim−→i<α

T 0
i −−→ · · · −−→ lim−→i<α

T ni −−→ 0

in A with lim−→i<α
T ki ∈ Add(T ) by (ii) for all 0 ≤ k ≤ n, hence lim−→i<α

Li ∈ L.

Starting from the natural morphism lim−→i<α
Li −→ Lα and arguing as in the proof of

Corollary 12.2, we construct a morphism from the exact sequence (12.1) to an exact
sequence 0 −→ Lα −→ T 0

α −→ · · · −→ T nα −→ 0 with T kα ∈ Add(T ).
Having obtained the desired λ-indexed diagram of exact sequences, it remains

to say that, in the exact sequence 0 −→ lim−→i<λ
Li −→ lim−→i<λ

T 0
i −→ · · · −→

lim−→i<λ
T ni −→ 0 in A, the objects lim−→i<λ

T ki belong to Add(T ) by (ii) for all 0 ≤ k ≤ n.

Hence lim−→i<λ
Li ∈ L, so (i) holds. �

13. When is the Left Tilting Class Covering?

In this section we prove Theorem 0.2 from the introduction. As in the previous
sections, we start with weaker assumptions and then gradually strengthen them.

Proposition 13.1. In the context of the n-tilting-cotilting correspondence, the fol-
lowing four conditions are equivalent:

(1) the class L is covering in A;
(2) every object of E has an L-cover in A;
(3) the class Add(T ) is covering in E;
(4) the class Bproj is covering in F.

Furthermore, assume that countable direct limits are exact in the abelian cate-
gory A. Then the following six conditions (5–10) are equivalent:

(5) any countable direct limit of copies of the tilting object T has an L-cover in A;
(6) any countable direct limit of copies of the object T has an Add(T )-cover in A;
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(7) any countable direct limit of copies of the projective generator P has a pro-
jective cover in B;

(8) any countable direct limit of copies of the tilting object T in A belongs to L;
(9) any countable direct limit of copies of the object T in A belongs to Add(T );

(10) any countable direct limit of copies of the projective generator P in B is pro-
jective.

Moreover, let us assume that countable direct limits are exact in A and that B
is the abelian category of left contramodules over a complete, separated right linear
topological ring R. Consider the following six properties:

(11) the object T ∈ A has a perfect decomposition;
(12) the topological ring R is topologically left perfect;
(13) the class Bproj is closed under direct limits in B;
(14) the class Bproj is covering in B;
(15) all descending chains of cyclic discrete right R-modules terminate;
(16) all the discrete quotient rings of R are left perfect.

Then the following implications hold:

(11)⇐⇒ (12)⇐⇒ (13)⇐⇒ (14) =⇒ (4) =⇒ (7) =⇒ (15) =⇒ (16).

If the topological ring R satisfies one of the conditions (a), (b), (c), or (d), then all
the conditions (1–16) are equivalent to each other. If the topological ring R satisfies
one of the conditions (e), (f), or (g) of Section 3, then the fifteen conditions (1–15)
are equivalent to each other.

Proof. (1)⇐⇒ (2)⇐⇒ (3) is Corollary 10.4.
(3)⇐⇒ (4) holds in view of the equivalence of categories E ∼= F taking the class

Add(T ) ⊂ E to the class Bproj = Fproj ⊂ F (see Theorem 11.1(b,f)).
(5)⇐⇒ (6) By Lemma 12.1, any countable direct limit of copies of the object T in

A belongs to E. So Lemma 10.2 applies.
(6)⇐⇒ (7) The equivalence of categories E ∼= F identifies the class of objects

Add(T ) ⊂ E with the class Bproj ⊂ F. By Lemma 12.1, it also identifies countable
direct limits of copies of the object T in A with countable direct limits of copies of
the object P in B.

(8)⇐⇒ (9) holds, since any countable direct limit of copies of T in A belongs to E.
(9)⇐⇒ (10) is similar to Corollary 12.2 (ii)⇔ (iii).
(6)⇐⇒ (7)⇐⇒ (9)⇐⇒ (10) An n-tilting object T ∈ A satisfies THEC by Exam-

ple 6.3 (1), so Corollary 6.7 is applicable.
The implications (14) =⇒ (4) =⇒ (7) and (13)=⇒ (10) are obvious. So are the

implications (2) =⇒ (5) and (3) =⇒ (6), in view of Lemma 12.1.
(11)⇐⇒ (12)⇐⇒ (13) is Corollary 7.2 (1)⇔ (2)⇔ (3).
(13)⇐⇒ (14) is [28, Theorem 14.1 (iii′)⇔ (ii)].
(10) =⇒ (15) =⇒ (16) is Corollary 7.2 (6)⇒ (9)⇒ (10).
This proves all the assertions of the proposition except the last two (in which one of

the conditions (a), (b), (c), (d), (e), (f), or (g) is assumed). Now we assume (d) (which
is a common generalization of (a), (b), and (c)) and prove the related implications.
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(16) =⇒ (14) If all the discrete quotient rings of R are left perfect and (d) is satis-
fied, then all left R-contramodules have projective covers by Corollary 7.3 (15)⇒ (6)
or [24, Theorem 12.4 (vi)⇒ (ii)].

(16) =⇒ (13) Follows from Corollary 7.3 (15)⇒ (10) or [24, Theorem 12.4 (vi)⇒
(iii)] (since the direct limits of projective contramodules are always flat).

(16) =⇒ (12) is Corollary 7.3 (15)⇒ (12).
Finally, assuming that one of the conditions (e), (f), or (g) holds, all the condi-

tions (11–15) are equivalent by Corollary 7.3 (6)⇔ (10)⇔ (11)⇔ (12)⇔ (13). �

Theorem 13.2. In the context of the n-tilting-cotilting correspondence, assume that
A is a Grothendieck abelian category. Then the following conditions are equivalent:

(1) the class L is covering in A;
(2) any direct limit of objects from Add(T ) has an L-cover in A;
(3) the class L is closed under direct limits in A;
(4) the class Add(T ) is covering in A;
(5) any direct limit of objects from Add(T ) has an Add(T )-cover in A;
(6) the class Add(T ) is closed under direct limits in A;
(7) the class Bproj is covering in B;
(8) any direct limit of projective objects has a projective cover in B;
(9) the class Bproj is closed under direct limits in B.

Furthermore, assume that B is the abelian category of left contramodules over a
complete, separated right linear topological associative ring R. Consider the following
four properties:

(10) the object T ∈ A has a perfect decomposition;
(11) the topological ring R is topologically left perfect;
(12) all descending chains of cyclic discrete right R-modules terminate;
(13) all the discrete quotient rings of R are left perfect.

Then the following implications hold:

(9)⇐⇒ (10)⇐⇒ (11) =⇒ (12) =⇒ (13).

If the topological ring R satisfies one of the conditions (a), (b), (c), or (d), then all
the conditions (1–13) are equivalent to each other. If the topological ring R satisfies
one of the conditions (e), (f), or (g) of Section 3, then the twelve conditions (1–12)
are equivalent to each other.

Proof. The implications (1) =⇒ (2), (4) =⇒ (5), and (7) =⇒ (8) are obvious (as are
the implications (3) =⇒ (2), (6) =⇒ (5), and (9) =⇒ (8)).

The equivalences (3)⇐⇒ (6)⇐⇒ (9) hold by Corollary 12.4.
(3) =⇒ (1) holds by Theorem 4.4, since the class L is (special) precovering in A.
(6) =⇒ (4) is Example 4.1 and Theorem 4.4.
(9) =⇒ (7) is Example 4.2 and Theorem 4.4. Notice that Theorem 4.4 requires

the category A to be locally presentable for its applicability. An abelian category is
locally presentable and has exact direct limit functors if and only if it is Grothendieck;
that is why we assume that A is a Grothendieck category in the present theorem.
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(5)⇐⇒ (6) is a particular case of [9, Application 7.3].
(5)⇐⇒ (6)⇐⇒ (8)⇐⇒ (9) The object M ∈ A is lim−→-pure-rigid by Example 9.4,

since the n-tilting class E ⊂ A is closed under direct limits by Proposition 12.3.
Therefore, Corollary 9.6 is applicable.

(2)⇐⇒ (5) is Lemma 10.2.
This proves the first assertion of the theorem (see also [9, Remark 7.4] for a brief

summary of this argument). The remaining implications are provided by Corol-
lary 7.3 (10–15) as well as by Proposition 13.1 (11–16). �

Proof of Theorem 0.2. Follows from Proposition 13.1 and Theorem 13.2. �

14. Injective Ring Epimorphisms of Projective Dimension 1

In this section we discuss a certain tilting-cotilting correspondence situation associ-
ated with an injective homological ring epimorphism satisfying additional conditions
on the flat and projective dimension.

We recall that a ring epimorphism u : R −→ U is a homomorphism of associa-
tive rings such that the multiplication map U ⊗R U −→ U is an isomorphism of
U -U -bimodules. We refer to the book [34, Section XI.1] for background information
on ring epimorphisms, and to the paper [8] for more advanced recent results. A ring
epimorphism u is said to be homological if TorRi (U,U) = 0 for all i ≥ 1.

The two-term complex of R-R-bimodules K• = (R → U) plays a key role in the
theory developed in [8]. In the present paper, we deal with injective ring epimor-
phisms, i. e., ring epimorphisms u such that the map u is injective. In this case,
the two-term complex of R-R-bimodules K• is naturally isomorphic to the quotient
bimodule U/R. So we set K = U/R and use K in lieu of K•.

We will denote by pd RE the projective dimension of a left R-module E and by
fdER the flat dimension of a right R-module E. For any injective homological ring
epimorphism u : R −→ U such that pd RU ≤ 1, the left R-module U⊕K is 1-tilting [2,
Theorem 3.5]. In this section we discuss a different tilting-cotilting correspondence
situation, in which A ⊂ R–mod is a certain abelian subcategory.

Let u : R −→ U be an injective homological ring epimorphism. A left R-module
A is said to be u-torsionfree if it is an R-submodule of a left U -module, or equiva-
lently, if the R-module morphism u⊗R idA : A −→ U ⊗R A is injective. The class of
u-torsionfree left R-modules is closed under submodules, direct sums, and products.
Any left R-module A has a unique maximal u-torsionfree quotient module, which
can be constructed as the image of the R-module morphism A −→ U ⊗R A. When
fdUR ≤ 1, the class of u-torsionfree R-modules is also closed under extensions in
R–mod [8, Lemma 2.7(a)].

A left R-module B is said to be u-divisible if it is a quotient R-module of a left
U -module, or equivalently, if the R-module morphism HomR(u, idB) : HomR(U,B)
−→ B is surjective. (See [8, Remarks 1.2] for a terminological discussion.) The class
of all u-divisible left R-modules is closed under epimorphic images, direct sums, and
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products. Any left R-module B has a unique maximal u-divisible submodule, which
can be constructed as the image of the R-module morphism HomR(U,B) −→ B.
When pd RU ≤ 1, the class of u-divisible R-modules is also closed under extensions
in R–mod [8, Lemma 2.7(b)].

A left R-module M is called a u-comodule (or a left u-comodule) if U ⊗R M =
0 = TorR1 (U,M). Assuming that fdUR ≤ 1, the full subcategory R–modu-co of left
u-comodules is closed under kernels, cokernels, extensions, and direct sums in R–mod
[18, Proposition 1.1]; so R–modu-co is an abelian category and the embedding functor
R–modu-co −→ R–mod is exact. The embedding functor R–modu-co −→ R–mod has
a right adjoint (“coreflector”) Γu : R–mod −→ R–modu-co, computable as Γu(A) =
TorR1 (K,A) for all A ∈ R–mod. The category R–modu-co is a Grothendieck abelian
category with an injective cogenerator Γu(J), where J is any chosen injective cogen-
erator of R–mod [8, Proposition 3.1 and Corollary 3.6].

A left R-module C is called a u-contramodule (or a left u-contramodule) if
HomR(U,C) = 0 = Ext1

R(U,C). Assuming that pd RU ≤ 1, the full subcat-
egory R–modu-ctra of left u-contramodules is closed under kernels, cokernels,
extensions, and direct products in R–mod [18, Proposition 1.1]; so R–modu-ctra

is an abelian category and the embedding functor R–modu-ctra −→ R–mod is
exact. The embedding functor R–modu-ctra −→ R–mod has a left adjoint (“reflec-
tor”) ∆u : R–mod −→ R–modu-ctra, computable as ∆u(B) = Ext1

R(K,B) for all
B ∈ R–mod. The category R–modu-ctra is a locally presentable abelian category with
a projective generator ∆u(R) ∈ R–modu-ctra [8, Proposition 3.2 and Lemma 3.7].

The following two theorems are the main results of this section.

Theorem 14.1. Let u : R −→ U be an injective homological ring epimorphism. As-
sume that fdUR ≤ 1 and pd RU ≤ 1. Then the two abelian categories A = R–modu-co

and B = R–modu-ctra are connected by the 1-tilting-cotilting correspondence in the
following way. The injective cogenerator is J = Γu(HomZ(R,Q/Z)) ∈ A, and the
1-tilting object is T = K ∈ A. The projective generator is P = ∆u(R) ∈ B, and
the 1-cotilting object is W = HomZ(K,Q/Z) ∈ B. The functor Ψ: A −→ B is
Ψ = HomR(K,−), and the functor Φ: B −→ A is Φ = K ⊗R −. The 1-tilting class
E ⊂ A is the class of all u-divisible u-comodule left R-modules, and the 1-cotilting
class F ⊂ B is the class of all u-torsionfree u-contramodule left R-modules. The
equivalence of exact categories E ∼= F is the first Matlis category equivalence of [8,
Theorem 1.3].

Consider the topological ring R = HomR(K,K)op opposite to the ring of endomor-
phisms of the left R-module K, and endow it with the finite topology, as defined in
Example 2.2 (1). Then the right action of the ring R in the R-R-bimodule K induces
a homomorphism of associative rings R −→ R. We are interested in the composition
of the forgetful functor R–contra −→ R–mod defined in Section 1.4 with the obvious
functor of restriction of scalars R–mod −→ R–mod.

Theorem 14.2. Let u : R −→ U be an injective homological ring epimorphism. As-
sume that pd RU ≤ 1. Then the forgetful functor R–contra −→ R–mod is fully
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faithful, and its essential image coincides with the full subcategory of u-contramodule
left R-modules R–modu-ctra ⊂ R–mod. So we have an equivalence of abelian categories
R–contra ∼= R–modu-ctra.

Proof of Theorems 14.1 and 14.2. We discuss the proofs of the two theorems simul-
taneously, because they are closely related (even though the assumptions in Theo-
rem 14.1 are slightly more restrictive than in Theorem 14.2).

The argument is largely based in the following result, which is a particular case
of [11, Corollary 4.4] or [8, Corollary 7.3].

Theorem 14.3. Let u : R −→ U be an injective homological ring epimorphism. such
that fdUR ≤ 1 and pd RU ≤ 1. Then, for any derived category symbol ? = b, +, −,
or ∅, there is a triangulated equivalence between the derived categories of the abelian
categories of left u-comodules and left u-contramodules,

(14.1) D?(R–modu-co) ∼= D?(R–modu-ctra).

Proof. The additional assumptions of [11, Corollary 4.4] or [8, Corollary 7.3] hold for
all injective ring epimorphisms by [8, Example 7.4]. �

Theorem 14.1 is simplest obtained by applying Proposition 11.2 (for n = 1) to
the derived equivalence (14.1) (for ? = b). To be more precise, one needs to know
a bit about how the derived equivalence (14.1) is constructed. In the proof of [8,
Corollary 7.3], the triangulated equivalence is obtained from the recollement of [8,
Section 6], and it needs to be shifted by [1] before it becomes a tilting derived equiv-
alence. The triangulated equivalence in [8, Corollary 6.2] is provided by the functors
RHomR(K•[−1],−) and K•[−1]⊗L

R −, while in our present context one has to con-
sider the equivalence provided by the functors RHomR(K,−) and K ⊗L

R −.
Now one observes that the R-R-bimodule K is both a left and a right u-comodule,

and consequently HomZ(K,Q/Z) is a left u-contramodule. Furthermore, one can
compute that RHomR(K,K) = HomR(K,K) = Ext1

R(K,R) = ∆u(R) = P ,
since Ext1

R(K,K) = Ext2
R(K,R) = 0. Similarly, RHomR(K, J) = HomR(K, J) =

HomR(K,HomZ(R,Q/Z)) = HomZ(K,Q/Z) = W , since Ext1
R(K, J) = Ext1

A(K, J)
= 0 (as A = R–modu-co ⊂ R–mod is a full subcategory closed under extensions).
Finally, any one of the conditions (I–III) of Proposition 11.2 is easily verified. The
descriptions of the classes E ⊂ A and F ⊂ B follow from [8, Lemma 2.7]. This finishes
the proof of Theorem 14.1.

Alternatively, one can check that K ∈ R–modu-co is a 1-tilting object in the way
similar to the argument in [26, Example 5.7]. Following Examples 11.4, the abelian
category B corresponding to this tilting object in the abelian category A = R–modu-co

can be described as B = R–contra. The functor Ψ is then still computed as Ψ =
HomR(K,−) [26, Remark 6.6], while the left adjoint functor Φ is the functor of so-
called contratensor product Φ = K �R − with the discrete right R-module K [26,
formula (20)] (which is the same thing as the tensor product K ⊗R − provided that
the forgetful functor R–contra −→ R–mod is fully faithful, cf. [26, Lemma 7.11]).
Comparing this approach to the previous one yields R–contra ∼= B ∼= R–modu-ctra,
that is the assertion of Theorem 14.2 (in the assumpions of Theorem 14.1).
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A direct proof of Theorem 14.2 (in full generality) can be given based on [22,
Proposition 2.1]. For any set X, we have to construct a natural isomorphism of left
R-modules ∆u(R[X]) ∼= R[[X]]. Indeed,

∆u(R[X]) = Ext1
R(K,R[X]) ∼= HomR(K,K[X]) ∼= R[[X]]

by [26, proof of Theorem 7.1].
Let us spell out this argument a bit more explicitly. There are enough projec-

tive objects of the form P = ∆u(R[X]) in R–modu-ctra, and these are precisely
the images of the free R-contramodules R[[X]] under the forgetful functor. To
show that the whole image of the forgetful functor R–contra −→ R–mod lies inside
R–modu-ctra, observe that the forgetful functor preserves cokernels, the full subcate-
gory R–modu-ctra ⊂ R–mod is closed under cokernels, and every left R-contramodule
is the cokernel of a morphism of free left R-contramodules.

As an abelian category with enough projective objects is determined by its full
subcategory of projective objects, in order to prove that the functor R–contra −→
R–modu-ctra is an equivalence of categories it suffices to show that it is an equivalence
in restriction to the full subcategories of projective objects. In other words, we have
to check that the natural map HomR(R[[X]],R[[Y ]]) −→ HomR(R[[X]],R[[Y ]]) is
isomorphism for all sets X and Y . Indeed, we have

HomR(R[[X]],R[[Y ]]) ∼= R[[Y ]]X ∼= HomR(R[[X]],R[[Y ]]),

where the second isomorphism holds because, by [8, Theorem 1.3],

HomR(R[[X]],R[[Y ]]) ∼= HomR(K[X], K[Y ]) ∼= HomR(K,K[Y ])X ∼= R[[Y ]]X

as K[X] is a u-divisible left u-comodule and HomR(K,K[X]) ∼= R[[X]].
The proof of Theorems 14.1 and 14.2 is finished. �

Remark 14.4. The above “alternative” argument follows the lines of the exposition
in [26, Section 8] (see, in particular, [26, formulas (21–23)]). However, the assump-
tions in [26] presume existence of a left linear topological ring A such that A is the
category of discrete left A-modules, or in other words, a hereditary pretorsion class in
A–mod. In the context of the present section, A is the full abelian subcategory of left
u-comodules in R–mod, which is not necessarily a pretorsion class (see the discussion
in [8, Section 5] and the examples in [8, Section 8]).

Nevertheless, the arguments in the beginning of [26, Section 8] are still valid in
our present context. The key observation is that, for any associative ring S, any
R-S-bimodule E whose underlying left R-module is a u-comodule, and any left
S-module C, the left R-module E ⊗R C is a left u-comodule. This follows easily
from the fact that the full subcategory of left u-comodules is closed under cokernels
and direct sums in R–mod. So the functor Φ = K ⊗R− : R–modu-ctra −→ R–modu-co

is well-defined. A similar observation holds for the contratensor product in place
of the tensor product; so the functor Φ = K �R − : R–contra −→ R–modu-co is
well-defined, too.
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15. Covers and Direct Limits for Injective Ring Epimorphism

In this final section, we discuss the covering and direct limit closedness properties
of the tilting objects U ⊕ K ∈ R–mod and K ∈ R–modu-co in connection with the
perfectness properties of the related rings.

Let u : R −→ U be an injective homological ring epimorphism. Assuming that
pd RU ≤ 1, denote by (N,G) the 1-tilting cotorsion pair in R–mod associated with
the 1-tilting left R-module U ⊕ K. Assuming that fdUR ≤ 1 and pd RU ≤ 1, we
also have the 1-tilting cotorsion pair (L,E) in the abelian category A = R–modu-co

associated with the 1-tilting object K.

Lemma 15.1. (a) G ⊂ R–mod is the class of all u-divisible left R-modules.
(b) E = A ∩ G is the class of all u-divisible left u-comodules.
(c) One has L = A ∩ N.

Proof. By the definition, for a 1-tilting left R-module U ⊕ K we have G = {U ⊕
K}⊥1 ⊂ R–mod, and it is clear from the short exact sequence of left R-modules
0 −→ R −→ U −→ K −→ 0 that G = {K}⊥1 ⊂ R–mod. Similarly, E ⊂ A is
the right Ext1

A-orthogonal class to the 1-tilting object K ∈ A. Now part (a) is [2,
Theorem 3.5 (4)] or [8, Lemma 2.7(b)]. Part (b) is a part of Theorem 14.1 (essentially,
it holds because the functors Ext1

R and Ext1
A agree).

To prove part (c), we observe that the definitions of the class N as the left
Ext1

R-orthogonal class to G in R–mod and the class L as the left Ext1
A-orthogonal

class to E in A together with the inclusion E ⊂ G imply the inclusion L ⊃ A ∩ N. On
the other hand, the definitions of N as the class of all finitely Add(U ⊕K)-coresolved
objects in R–mod and L as the class of all finitely Add(K)-coresolved objects in A
(see the beginning of Section 11 or [26, Theorem 3.4]) imply the inverse inclusion
L ⊂ A ∩ N. �

Let us start with the 1-tilting object K ∈ R–modu-co. Recall that R denotes the
topological ring HomR(K,K)op with the finite topology (see Section 14). We keep
the notation F for the 1-cotilting class in the abelian category R–modu-ctra = B =
R–contra (so the exact category F is equivalent to E = A ∩ G).

Theorem 15.2. Assume that fdUR ≤ 1 and pd RU ≤ 1. Then the following sixteen
conditions are equivalent:

(1) every left R-module has an A ∩ N-cover;
(2) every module from G has an A ∩ N-cover;
(3) every module from A has an A ∩ N-cover;
(4) every module from A ∩ G has an A ∩ N-cover;
(5) any direct limit of modules from Add(K) has an A ∩ N-cover;
(6) the class of modules A ∩ N is closed under direct limits;
(7) every left R-module has an Add(K)-cover;
(8) every module from G has an Add(K)-cover;
(9) every module from A has an Add(K)-cover;

(10) every module from A ∩ G has an Add(K)-cover;
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(11) any direct limit of modules from Add(K) has an Add(K)-cover;
(12) the class of modules Add(K) is closed under direct limits;
(13) every object of B has a projective cover;
(14) the class of projective objects in B is closed under direct limits;
(15) the topological ring R is topologically perfect;
(16) the left R-module K has a perfect decomposition.

Proof. Notice first of all that the direct limits in A and R–mod agree (since A
is closed under direct limits in R–mod). The implications (1) =⇒ (2) =⇒ (4),
(3) =⇒ (4) =⇒ (5) and (7) =⇒ (8) =⇒ (10), (9) =⇒ (10) =⇒ (11) are obvious.

The implication (3) =⇒ (1) holds because the embedding functor A −→ R–mod
has a right adjoint Γu (in other words, A is coreflective in R–mod). Given a left
R-module C, let L −→ Γu(C) be an A ∩ N-cover of the module Γu(C) ∈ A; then the
composition L −→ Γu(C) −→ C is an A ∩ N-cover of C.

To check the implication (8) =⇒ (7), recall that G is the class of all u-divisible
left R-modules and Add(K) ⊂ G. Every left R-module C has a unique maximal
u-divisible R-submodule h(C). Let M −→ h(C) be an Add(K)-cover of h(C); then
the composition M −→ h(C) −→ C is an Add(K)-cover of C.

The implication (10) =⇒ (8) follows from [8, Lemma 3.3(a)]. Let C be a u-divisible
left R-module; then the left R-module Γu(C) belongs to A ∩ G. If M −→ Γu(C)
is an Add(K)-cover of Γu(C), then the composition M −→ Γu(C) −→ C is an
Add(K)-cover of C.

The equivalence of the three conditions (3), (4), and (10) is a particular case of the
equivalence of conditions (1–3) in Proposition 13.1. Finally, all the conditions (3),
(5), (6), (9), and (11–16) are equivalent by Theorem 13.2. Notice that A = R–modu-co

is a Grothendieck abelian category by [8, Corollary 3.6].
One can also observe that the class Add(K) is always precovering in R–mod by

Example 4.1; and the class A ∩ N is precovering in R–mod because A is coreflective
in R–mod and A ∩ N is special precovering in A. Hence the implications (6) =⇒ (1)
and (12) =⇒ (7) hold by Enochs’ theorem (see Theorem 4.4). �

We recall from [24, Section 10] that a topological ring R is said to be left pro-perfect
if it is separated and complete, two-sided linear, and all the discrete quotient rings
of R are left perfect.

Theorem 15.3. Let u : R −→ U be an injective homological ring epimorphism. As-
sume that fdUR ≤ 1 and pd RU ≤ 1, and assume further that the topological ring R
satisfies one of the conditions (a), (b), (c), or (d) of Section 3. Then the conditions
in Theorem 15.2 are equivalent to the following ones:

(1) any countable direct limit of copies of the left R-module K has an A∩N-cover;
(2) the class of left R-modules A ∩ N is closed under countable direct limits;
(3) any countable direct limit of copies of the R-module K has an Add(K)-cover;
(4) the class of left R-modules Add(K) is closed under countable direct limits;
(5) any countable direct limit of copies of the projective generator P = R has a

projective cover in B;
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(6) the class of objects Bproj is closed under countable direct limits in B;
(7) all descending chains of cyclic discrete right R-modules terminate;
(8) all the discrete quotient rings of the topological ring R are left perfect.

In particular, if the ring R is commutative and pd RU ≤ 1, then the eight condi-
tions (1–8) are equivalent to each other and to the conditions in Theorem 15.2. The
condition (8) can be rephrased by saying that the topological ring R is pro-perfect in
this case. Replacing the assumption of one of the conditions (a–d) with that of one
of the conditions (e), (f), or (g), the seven conditions (1–7) are equivalent to each
other and to all the conditions in Theorem 15.2.

Proof. The conditions (2), (4), and (6) are equivalent to each other by Corollary 12.2.
In the assumption of any one of the conditions (a–d), all the conditions (5–8)

are equivalent to each other and to the conditions in Theorem 15.2 (13–15) by [24,
Theorem 12.4]. In the assumption of any one of the conditions (a–g), all the con-
ditions (1), (3), and (5–7) are equivalent to each other and to the conditions in
Theorem 15.2 (3–4, 10, 13–16) by Proposition 13.1.

Alternatively, all the conditions (3–7) are equivalent to each other and to the
conditions in Theorem 15.2 (7–16) by Corollary 7.3. Notice that the left R-module K
is always self-pure-projective by Examples 9.1 (3) and 9.2 (2), as a direct summand
of a 1-tilting left R-module U⊕K. Besides, K is also Σ-rigid, of course; so it satisfies
THEC by Example 6.3 (1).

If the ring R is commutative, then so is the ring R by [8, Lemma 4.1]. So con-
dition (a) is satisfied. (It is worth recalling that pd RU ≤ 1 implies fd RU = 0 for
commutative rings R, by [8, Theorem 5.2].) �

Now let us discuss the 1-tilting left R-module U ⊕ K. We denote by S the
topological ring HomR(U ⊕ K, U ⊕ K)op with the finite topology, and denote by
H ⊂ S–contra the 1-cotilting class associated with the 1-cotilting left S-contramodule
HomZ(U ⊕K, Q/Z). So the exact category H is equivalent to G.

Lemma 15.4. (i) The topological ring S is topologically left perfect if and only if
the ring U is left perfect and the topological ring R is topologically left perfect.

(ii) All the discrete quotient rings of the topological ring S are left perfect if and
only if the ring U is left perfect and all the discrete quotient rings of the topological
ring R are left perfect.

(iii) If the topological ring R satisfies one of the conditions (a), (b), (c), or (d) of
Section 3, then the topological ring S satisfies condition (d).

(iv) If the topological ring R satisfies one of the conditions (e), (f), or (g) of
Section 3, then the topological ring S satisfies condition (g).

Proof. We have HomR(U,U)op = U , HomR(K,K)op = R, and HomR(U/R,U) = 0.
So S is the matrix ring (cf. [24, Example 12.1])(

U K
0 R

)
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where K = HomR(U,U/R) is a nilpotent strongly closed two-sided ideal in S (obvi-
ously, K2 = 0 in S). Now we have S/K = U ×R, so part (ii) of the lemma follows
from [24, Lemma 12.3]. Similarly, part (i) follows from Lemmas 3.3, 3.4, and 4.9.
Furthermore, the discrete ring U trivially satisfies the condition (b) of Section 3.
Hence it remains to apply [24, Lemma 12.6] in order to prove part (iii) of the lemma;
and part (iv) is a particular case of Lemma 3.1. �

Theorem 15.5. Let u : R −→ U be an injective homological ring epimorphism such
that pd RU ≤ 1. Then the following thirteen conditions are equivalent:

(1) all left R-modules have N-covers;
(2) any countable direct limit of copies of the R-module U ⊕K has an N-cover;
(3) the class of left R-modules N is closed under (countable) direct limits;
(4) all left R-modules have Add(U ⊕K)-covers;
(5) any countable direct limit of copies of the R-module U⊕K has an Add(U⊕K)-

cover;
(6) the class of left R-modules Add(U ⊕ K) is closed under (countable) direct

limits;
(7) the left R-module U ⊕K is Σ-pure-split;
(8) the left R-module U ⊕K has a perfect decomposition;
(9) all the objects of S–contra have projective covers;

(10) any countable direct limit of copies of the free left S-contramodule S has a
projective cover in S–contra;

(11) the class of all projective left S-contramodules is closed under (countable)
direct limits in S–contra;

(12) the topological ring S is topologically left perfect;
(13) the ring U is left perfect and the topological ring R is topologically left perfect.

Furthermore, consider the next four properties:

(14) all descending chains of cyclic discrete right S-modules terminate;
(15) the ring U is left perfect and all descending chains of cyclic discrete right

R-modules terminate;
(16) all the discrete quotient rings of the topological ring S are left perfect;
(17) the ring U is left perfect and all the discrete quotient rings of the topological

ring R are left perfect.

Then the following implications hold:

(13) =⇒ (14) =⇒ (15) =⇒ (16)⇐⇒ (17).

If the topological ring R satisfies one of the conditions (e), (f), or (g) of Section 3,
then all the conditions (1–14) are equivalent to each other. If the topological ring
R satisfies one of the conditions (a), (b), (c), or (d), then all the conditions (1–17)
are equivalent to each other. In particular, if the ring R is commutative, then the
seventeen conditions (1–17) are equivalent.
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Proof. The condition (3) (for uncountable direct limits) is equivalent to (7) by [19,
Proposition 13.55]. All the eight conditions (1–8) are equivalent to each other by [4,
Theorem 3.6, Theorem 5.2, and Corollary 5.5].

The conditions (3), (6), and (11) are equivalent to each other, for countable
direct limits, by Corollary 12.2, and for uncountable ones, by Corollary 12.4.
The conditions (2), (5), and (10) are equivalent to each other by Proposi-
tion 13.1 (5)⇔ (6)⇔ (7). All the conditions (1), (4), (8), (9), and (12), and the
uncountable versions of (3), (6), (11) are equivalent to each other by Theorem 13.2.

The implications (12) =⇒ (14) =⇒ (16) and (13) =⇒ (15) =⇒ (17) hold by [28, The-
orem 14.4 (iv)⇒ (v)⇒ (vi)]. The equivalences (12)⇐⇒ (13) and (16)⇐⇒ (17) hold
by Lemma 15.4(i–ii). The implication (14) =⇒ (15) is easy (cf. the discussion in the
proof of Theorem 3.5, case (g)).

If R satisfies one of the conditions (a), (b), (c), or (d), then all the conditions
(9–12), (14), and (16) are equivalent to each other by Lemma 15.4(iii) and [24, Theo-
rem 12.4]. In the assumption of any one of the conditions (a–g), all the conditions (1),
(2), (5), (8–12), and (14), are equivalent to each other by Lemma 15.4(iv) and Propo-
sition 13.1. This also establishes the equivalence of the countable and uncountable
versions of the condition (11).

Alternatively, all the conditions (4–6), (8–12), and (14) are equivalent to each
other by Corollary 7.3. Notice that the left R-module U ⊕ K satisfies THEC by
Example 6.3 (1) (it is also self-pure-projective by Example 9.2 (2)).

The last assertion of the theorem follows from [8, Lemma 4.1]. �

Example 15.6. Let R be a commutative ring and S ⊂ R be a multiplicative
subset consisting of regular elements. Denote the multiplicative subset of all reg-
ular elements in R by S ⊂ Sreg ⊂ R. Set U = S−1R; then the localization map
u : R −→ U is an injective flat epimorphism of commutative rings. The topological
ring R = HomR(U/R,U/R) is naturally topologically isomorphic to the S-completion
lim←−s∈S R/sR of the ring R (viewed as the topological ring in the projective limit topol-

ogy), which was discussed in [24, Example 11.2].
Assume that pd RS

−1R ≤ 1, and set K = U/R. Then the homomorphism of
commutative rings R −→ S−1R = U satisfies the assumptions of Theorems 15.3
and 15.5. By Theorem 15.3, the class of R-modules A ∩ N is covering (if and only if
the class Add(K) ⊂ R–mod is covering and) if and only if the ring R/sR is perfect
for every s ∈ S. By Theorem 15.5, the class of R-modules N is covering (if and only
if the class Add(U ⊕K) ⊂ R–mod is covering and) if and only if two conditions hold:
the ring R/sR is perfect for every s ∈ S, and the ring S−1R is perfect.

The latter two conditions are equivalent to the following two: one has S−1R =
S−1
regR, and the ring R is almost perfect (in the sense of the paper [17]). It is

worth noticing that the condition that all the rings R/sR are perfect already im-
plies pd RS

−1R ≤ 1 [17, Lemma 3.4], [7, Theorem 6.13].
For example, let R = Z be the ring of integers, p be a prime number, and S =
{1, p, p2, p3, . . . } ⊂ R be the multiplicative subset in Z generated by p. Then the class
of abelian groups A∩N ⊂ Ab is covering, but the class N ⊂ Ab is not. Alternatively,

56



let S ′ ⊂ Z be the multiplicative subset of all integers not divisible by p. Then, once
again, the related class A ∩ N′ ⊂ Ab is covering, but the class of abelian groups
N′ ⊂ Ab is not.
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[26] L. Positselski, J. Št’ov́ıček. The tilting-cotilting correspondence. Internat. Math. Re-
search Notices, published online at https://doi.org/10.1093/imrn/rnz116 in July 2019.
arXiv:1710.02230 [math.CT]
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[32] J. Šaroch, J. Št’ov́ıček. The countable telescope conjecture for module categories. Advances in
Math. 219, #3, p. 1002–1036, 2008. arXiv:0801.3936 [math.RA]
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