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Abstract. A commutative domain is finitely stable if every nonzero
finitely generated ideal is stable, i.e. invertible over its endomorphism
ring. A domain satisfies the local stability property provided that every
locally stable ideal is stable.

We prove that a finitely stable domain satisfies the local stability
property if and only if it has finite character, that is every nonzero ideal
is contained in at most finitely many maximal ideals. This result allows
to answer to the open problem of whether every Clifford regular domain
is of finite character.

Introduction

An ideal of a commutative ring is stable if it is projective over its endo-
morphism ring and a commutative ring is said to be stable (finitely stable) if
every regular (finitely generated) ideal is stable. The notion of stable ideals
was first introduced in the case of noetherian rings and intensively studied
by Lipman, Sally and Vasconcelos ([11], [16] and [17]. Now it plays an im-
portant role for arbitrary commutative rings. (See [13], [14], [15], [16] and
[17].) In particular Olberding [14] proved that a stable commutative domain
is of finite character, that is every nonzero ideal is contained in at most a
finite number of maximal ideals; Rush [15] proved that the integral closure
of a finitely stable domain is a Prüfer domain.

We say that a commutative domain satisfies the local stability property if
every locally stable ideal is stable. Here a property is said to be satisfied
locally if it holds for every localization at a maximal ideal (see [1] and [4]
for more details on the subject).

The main result of this paper states that a finitely stable domain satis-
fies the local stability property if and only if it is of finite character (see
Theorem 4.5).

The motivation of this investigation is to obtain more information on the
class of Clifford regular domains, a class of domains properly intermediate
between the classes of stable and finitely stable domains.

Recall that an integral domain R is said to be Clifford regular if the
semigroup S(R) of the isomorphism classes of nonzero fractional ideals of
R is a Clifford semigroup, that is every element of S(R) is von Neumann
regular. The importance of a Clifford semigroup lies in the fact that it is
a disjoint union of groups each one associated to an idempotent element
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of the semigroup and connected by bonding homomorphisms induced by
multiplications by idempotent elements [5].

The study of Clifford regular domains was carried on by the author in
[1] and [4] where a complete characterization of integrally closed and of
noetherian Clifford regular domains was achieved. In both cases the domains
turned out to be of finite character. In particular, it was shown that the
class of integrally closed Clifford regular domains coincides with the class of
Prüfer domains of finite character. Moreover, the idempotent elements and
the constituent groups of the class semigroup of an integrally closed Clifford
regular domain have been characterized by the author in [2] and [3].

Until now it has not been known whether every Clifford regular is of
finite character. In this paper we show that the question has an affirmative
answer. The result is obtained as a corollary of our main theorem. In fact,
we proved in [4], that Clifford regular domains are finitely stable and that
they satisfy the local stability property.

Firstly in [4] we showed that Clifford regular domains satisfy the local
invertibility property , that is every locally invertible ideal is invertible and
we posed the following conjecture whose interest goes beyond the problem
of Clifford regularity of domains.

Conjecture 0.1. If R is a Prüfer domain with the local invertibility prop-
erty, then R is of finite character.

The conjecture attracted the interest of many authors. Holland, Mar-
tinez, McGovern and Tesemma [9] have proved its validity by translating
the problem into a statement on lattice ordered groups. Independently, al-
most at the same time, Halter-Koch [8] proved the conjecture using the
language of ideal systems on cancellative commutative monoids.

Since the integrally closed Clifford regular domains are exactly the Prüfer
domains of finite character ([4]) and the integral closure of a finitely stable
domain is a Prüfer domain ([15]), it was natural to ask the question:

Question 0.2. ([4, Question 6.3]) Let R be a finitely stable domain with the
local stability property. Is R of finite character?

The positive answer to this question (Theorem 4.5) allows us to conclude
that a Clifford regular domain is of finite character and that the integral
closure of a Clifford regular domain is again Clifford regular, hence it is a
Prüfer domain of finite character.

Acknowledgent: I wish to thank the referee for the careful reading of a
previous version of the paper and for suggesting to include Question 4.6.

1. Preliminaries and Basic properties

Throughout R will denote a commutative domain and Q its field of quo-
tients. For R-submodules A and B of Q, A : B is defined as follows:

A : B = {q ∈ Q | qB ⊆ A}.
A fractional ideal F of R is an R-submodule of Q such that R : F 6= 0. A
nonzero fractional ideal F of R is invertible if F (R : F ) = R. By an overring
of R is meant any ring between R and Q. If F is a fractional ideal of R,
F : F is the endomorphism ring EndF of F .
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Our local rings are not necessarily noetherian and Max(R) will denote the
set of maximal ideals of R. Recall that two submodules X, Y of an R-module
coincide if and only if Xm = Ym, for every maximal ideal m ∈ Max R.

If I is a proper ideal of R, ΩR(I) denotes the subset of Max(R) consisting
of the maximal ideals of R containing I. Two proper ideals I, J of R are
comaximal if I + J = R.

Definition 1.1. A domain R is of finite character if ΩR(I) is a finite set
for every nonzero proper ideal I of R.

We say that a nonzero element x ∈ R is of finite character if ΩR(xR) is
finite.

We list some basic and well known properties of invertible ideals.

Lemma 1.2. Let R be a commutative domain and let A be an R-submodule
of Q. The following hold:

(1) If there is an R-submodule X of Q such that AX = R, then X =
R : A and A is an invertible fractional ideal of R.

(2) If A is an invertible fractional ideal of R and D is an overring of R,
then AD is an invertible fractional ideal of D and D : A = D : AD =
(R : A)D.

(3) If A is an invertible fractional ideal of R, then End(A) = A : A = R.

The notion of stable ideals is a generalization of the notion of invertible
ideals.

Definition 1.3. An nonzero ideal of an integral domain is said to be stable
provided that it is projective, or equivalently invertible, as an ideal of its
endomorphism ring.

In order to deal easily with stable ideals of overrings, we will consider also
the notion of stable fractional ideals, defined in the obvious way.

The following lemma states some easy but useful properties of stable
fractional ideals.

Lemma 1.4. Let R be a commutative domain and let A be a fractional ideal
of R. The following hold:

(1) If there exist an R-submodule X of Q and an overring E of R such
that AX = E, then AE is a stable fractional ideal of E with endo-
morphism ring E.

(2) If A is a stable fractional ideal of R with endomorphism ring E and
D is an overring of E, then AD is an invertible fractional ideal of
D and D : AD = (E : A)D.

(3) If A is a stable fractional ideal of R with endomorphism ring E and
D is an overring of E, then

ES = AS : AS , (A : A2)S = AS : A2
S , (D : A)S = DS : AS

for every multiplicative system S of R. In particular, AS is a stable
fractional ideal of RS .

Proof. (1) Since AEX = E, Lemma 1.2 implies that AE is an invertible
fractional ideal of E, hence End AE = E.
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(2) By assumption A is an invertible fractional ideal of E. Hence, the
statement follows by Lemma 1.2 (2).

(3) Follows easily by the fact that A = AE is a finitely generated fractional
ideal of E. (see [4, Lemma 5.8]).

�

2. Finitely stable domains

Definition 2.1. A commutative domain R is said to be stable (finitely
stable) if every nonzero (finitely generated) ideal of R is stable.

Note that an integral domain is stable (finitely stable) if and only if every
nonzero (finitely generated) fractional ideal of R is stable. We recall some
properties of finitely stable domains. R will denote the integral closure of a
domain R.
Fact A [15, Proposition 2.1] The integral closure of a finitely stable domain

is a Prüfer domain and every R-submodule of R containing R is an
overring.

Fact B [14, Lemma 2.4, Corollary 2.5] Every overring of a semilocal finitely
stable domain is semilocal and every overring of a finitely stable
domain is again finitely stable.

Other properties are illustrated by the next two lemmas.

Lemma 2.2. Let R be a commutative domain. The following hold:
(1) R is a finitely stable domain if and only if every localization of R at

a maximal ideal is finitely stable.
(2) If R is a semilocal finitely stable domain and I is a nonzero stable

ideal of R with endomorphism ring E, then I = aE for some element
0 6= a ∈ I and I2 = aI.

Proof. (1) If R is finitely stable, then it is locally finitely stable by Lemma 1.4 (3).
Conversely if I is a nonzero finitely generated ideal of R and E is its endomor-
phism ring, then for every maximal ideal m of R, Em is the endomorphism
ring of Im and by checking locally we get that I(E : I) = E.

(2) This is an easy generalization of [14, Lemma 3.1] noting that I is an
invertible ideal of the semilocal domain E, hence I is a principal ideal of
E. �

If (P) is any property, we say that a fractional ideal F of R satisfies (P)
locally if each localization FRm of F at a maximal ideal m of R satisfies
(P).

Lemma 2.3. Let R be a finitely stable domain and let I be a nonzero locally
stable ideal of R. The following hold

(1) EndI = EndI2.
(2) If I contains an element of finite character, then I is stable.

Proof. (1) Let q ∈ EndI; then qI ⊆ I, hence qI2 ⊆ I2 and q ∈ EndI2.
Conversely, assume qI2 ⊆ I2. To prove that qI ⊆ I it is enough to show
that qIm ⊆ Im for every maximal ideal m ∈ Max R. By Fact B, Rm is a
local finitely stable domain and by Lemma 2.2(2), I2

m = amIm, for some
nonzero element am ∈ I. Thus, qI2

m ⊆ I2
m implies qIm ⊆ Im.
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(2) Let 0 6= x ∈ I be such that x is contained in at most a finite number of
maximal ideals of R, say ΩR(xR) = {m1, m2, . . . ,mn}. By Lemma 2.2(2),
for each i = 1, 2, . . . , n, we can choose 0 6= ai ∈ I such that I2

mi
= aiImi .

Let A = x2R +
∑

1≤i≤n aiI. By checking locally we show that A = I2. In
fact, A ⊆ I2 and Ami = I2

mi
for every i = 1, 2, . . . , n. If n is a maximal ideal

of R and n /∈ ΩR(xR), then x2 /∈ n and I * n, hence Rn = An ⊆ I2
n = Rn

and so A = I2. Let B = xR +
∑

1≤i≤n aiR, then B ⊆ I and A ⊆ BI ⊆ I2,
so BI = I2. If qB ⊆ B, then qI2 ⊆ I2, hence EndB ⊆ EndI, by (1).

Let E = EndI. Since B is a finitely generated ideal of R, B is an invertible
ideal of EndB and BE is an invertible ideal of E, by Lemma 1.2 (2). We
have E : I = I : I2 = (I : I) : B = E : B = E : BE, so I(E : I) = I(E : B) ⊇
B(E : BE) = E and thus I(E : I) = E, that is I is a stable ideal of R. �

We finish this section by noticing that there might be non-finitely stable
domains whose integral closure is finitely stable, or equivalently a Prüfer
domain. We show that this may happen even in the case of local noetherian
domains.

Example 1. Let k be a field and let R = k[[x3, x5]]. R is a noetherian local
domain with non-stable maximal ideal m. In fact, m is not invertible over
End(m) = k[[x3, x5, x7]]. The integral closure of R is the valuation domain
k[[x]].

3. Local invertibility and local stability properties

We are interested in globalizing two types of local properties.

Definition 3.1. An integral domain R satisfies the local invertibility prop-
erty if any locally invertible ideal of R is invertible.

An integral domain R satisfies the local stability property if any locally
stable ideal of R is stable.

Note that if a domain R has the local invertibility property (local stabil-
ity property), then every locally invertible (stable) fractional ideal of R is
invertible (stable).

We now state and prove a result comparing the two local properties.

Lemma 3.2. If an integral domain R satisfies the local stability property,
then it also satisfies the local invertibility property.

Proof. Let I be a locally invertible ideal of R, then I is locally stable and
for every maximal ideal m ∈ Max R, Im : Im = Rm, by Lemma 1.2 (3).
By assumption I is a stable ideal of R, hence by Lemma 1.4 (3), (I : I)m =
Im : Im = Rm. Thus, EndI = R and I is an invertible ideal of R. �

In Section 4 we will consider the question to decide whether a finitely
stable domain with the local invertibility property satisfies also the local
stability property.

We recall now the relations between Clifford regularity and the above
local properties. First we consider the integrally closed case.

Proposition 3.3. Let R be an integrally closed domain. The following are
equivalent:
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(1) R is a Prüfer domain satisfying the local invertibility property.
(2) R is a Prüfer domain of finite character.
(3) R is Clifford regular.
(4) R is a Prüfer domain satisfying the local stability property.

Proof. (1) ⇒ (2) follows by the validity of Conjecture 0.1 proved in [9], [12]
and [8].

(2) ⇒ (3) By [1, Theorem 2.14].
(3) ⇒ (4) [4, Lemmas 4.1 and 5.7].
(4) ⇒ (1) By Lemma 3.2. �

Moreover, in [4] we proved the following.

Proposition 3.4. The following hold.
(1) A Clifford regular domain is finitely stable and satisfies the local

stability property and hence the local invertibility property.
(2) A noetherian domain is Clifford regular if and only if it is a stable

domain. Hence, by [14, Theorem 3.3] a noetherian Clifford regular
domain is of finite character.

The following question, generalizing Conjecture 0.1 was posed for the class
of finitely stable domains.

Question 3.5. ([4, Question 6.3]) Let R be a finitely stable domain with the
local stability property. Is R of finite character?

Our aim is to answer to Question 3.5, but first of all we note that every
finitely stable domain of finite character has the local stability property. In
fact, as a consequence of Lemmas 2.3 and 3.2 we obtain immediately:

Proposition 3.6. Let R be a finitely stable domain of finite character. Then
R has satisfies the local stability property and hence also the local invertibility
property.

Note that there many examples of finitely stable domains which are not
of finite character. Any Prüfer domain not of finite character is one of those,
for instance any almost Dedekind domain, which is not Dedekind (see [6,
Theorem 37.2]).

4. The finite character

For a commutative domain R we consider a particular subset of the set
Max R and we outline some properties of this subset.

Definition 4.1. Denote by T (R) the set of maximal ideals m of a domain
R for which there exists a finitely generated ideal with the property that m
is the only maximal ideal containing it.

Lemma 4.2. Let I be a finitely generated ideal of a domain R. The following
hold true.

(1) Assume that ΩR(I) is finite. Then, for every m ∈ ΩR(I) there is
a finitely generated ideal J containing I such that ΩR(J) = {m},
hence ΩR(I) ⊆ T (R).

(2) If ΩR(I) contains two distinct maximal ideals, then I is contained
in two finitely generated comaximal ideals of R.
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(3) If ΩR(I) ∩ T (R) = ∅, then for every finitely generated proper ideal
J ≥ I ΩR(J) is infinite.

Proof. (1) Let ΩR(I) = {m1, m2, . . . ,mn} and for each i = 1, 2, . . . , n let
xi ∈ mi \ ∪j 6=imj . Then, ΩR(I + xiR) = {mi}, hence I + xiR satisfies
condition (1).

(2) Let m1, m2 ∈ ΩR(I), m1 6= m2. Choose x1 ∈m1, x2 ∈m2 such that
1 = x1 + x2. Then, J1 = I + x1R and J2 = I + x2R are comaximal finitely
generated ideals containing I.

(3) Assume that there exists a finitely generated proper ideal J ≥ I such
that ΩR(J) is finite. Then, by part (1) ΩR(J) ⊆ T (R), hence ΩR(I)∩T (R) 6=
∅, a contradiction. �

In [4] we gave a partial answer to Question 3.5 by proving that if R is
a finitely stable domain satisfying the local stability property, then every
nonzero ideal of R is contained in at most a finite number of maximal ideals
of T (R).

We look now for conditions equivalent to the finite character property.

Proposition 4.3. Let R be a finitely stable domain with the local stability
property. The following are equivalent:

(1) For every nonzero finitely generated proper ideal I of R, ΩR(I) ⊆
T (R).

(2) For every nonzero finitely generated proper ideal I of R, ΩR(I) ∩
T (R) 6= ∅.

(3) R has finite character.

Proof. (1) ⇒ (2) Obvious.
(2) ⇒ (3) Clearly, it is enough to show that every nonzero element of R

is of finite character. Let 0 6= x ∈ R and assume by way of contradiction
that ΩR(xR) is infinite. By [4, Proposition 5.9]. ΩR(xR) ∩ T (R) is finite,
say ΩR(xR) ∩ T (R) = {m1, m2, . . . ,mn}. Let m ∈ ΩR(xR), m 6= mi,
for every i = 1, 2, . . . , n and choose y ∈ m \ ∪1≤i≤nmi. Let J = xR + yR.
Then, ΩR(J) ⊆ ΩR(xR) and mi /∈ ΩR(J), for every i = 1, 2, . . . , n, hence
ΩR(J) ∩ T (R) = ∅, a contradiction.

(3) ⇒ (1). Obvious from Lemma 4.2 (1). �

The following result is a crucial step towards the finite character property.

Proposition 4.4. Let R be a commutative domain with the local stability
property. Then, every stable proper ideal of R is contained in at most a
finite number of pairwise comaximal stable ideals of R.

Proof. Let I be a proper stable ideal of R and assume, by way of contra-
diction, that there is an infinite set {Jn | n ∈ N} of pairwise comaximal
stable ideals of R each one containing I. For every n ∈ N, let En be the
endomorphism ring of Jn, so that Jn(En : Jn) = En.

(*) If m is a maximal ideal of R not containing Jn, then EnRm = Rm

and (Jn : J2
n)Rm = (En : Jn)Rm, by Lemma 1.4 (3).

Let B =
∑

n∈N(En : Jn). We first note that B is a fractional ideal of
R. In fact, for every n ∈ N we have J2

n(En : Jn) = Jn and I2 ⊆ J2
n, hence

I2B ⊆ R. We claim that B is locally stable. Let m be a maximal ideal
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of R. If Jn * m for every n ∈ N, then by (*), BRm = Rm. Assume that
there is an n ∈ N such that Jn ⊆ m, then Jk * m for each k 6= n, since
Jn and Jk are comaximal. Thus BRm = (En : Jn)Rm. By Lemma 1.4 (3),
we get that BRm = (EnRm : JnRm) is a stable fractional ideal of Rm with
endomorphism ring EnRm.

By the assumption on R, B is stable. Checking locally we show that the
endomorphism ring of B is E =

∑
n∈N En. First note that for every maximal

ideal m of R, (B : B)Rm = BRm : BRm, by Lemma 1.4 (3). Let now m
be a maximal ideal of R not containing Jn for every n ∈ N, then as noted
above, ERm = Rm and BRm = Rm, so ERm = (B : B)Rm. If there is an
n ∈ N such that Jn ⊆ m, then ERm = EnRm and BRm : BRm coincides
with EnRm, since it is the endomorphism ring of the invertible EnRm-ideal
(En : Jn)Rm.

Thus B is a finitely generated fractional ideal of E, so

B = BE = (E1 : J1)E + (E2 : J2)E + · · ·+ (Ek : Jk)E,

for some k ∈ N. Hence, by Lemma 1.4 (2) we have

E : B = J1E ∩ J2E · · · ∩ JkE

and for every n ∈ N

(En : Jn)E ⊆ (E1 : J1)E + (E2 : J2)E + · · ·+ (Ek : Jk)E.

Thus, for every n ∈ N

E : B = J1E ∩ J2E · · · ∩ JkE ⊆ JnE.

Let n > k and let m be a maximal ideal of R containing Jn. For every
1 ≤ i ≤ k, Ji is not contained in m, hence JiERm = ERm = EnRm, so
that EnRm ⊆ JnEnRm, a contradiction, since JnRm is a proper stable ideal
of Rm and thus also a proper ideal of EnRm. �

Theorem 4.5. Let R be a finitely stable domain. Then R has the local
stability property if and only it is of finite character.

Proof. The sufficiency follows by Proposition 3.6.
For the necessary condition note that by Proposition 4.3, it is enough to

show that every nonzero finitely generated proper ideal I is contained in a
maximal ideal m ∈ T (R). Assume by way of contradiction that ΩR(I) ∩
T (R) = ∅. Then, by Lemma 4.2, ΩR(J) is infinite for every finitely generated
proper ideal J containing I. Thus every finitely generated ideal containing
I is contained in two comaximal finitely generated ideals, by Lemma 4.2 (2).

Arguing as in the proof of [12, Theorem 5], it is possible to define by
induction a countable set of pairwise comaximal finitely generated ideals of
R containing I in the following way. For each 1 < n ∈ N, let In, Jn be
two comaximal finitely generated ideals containing In−1. Then, it is easy to
show, by induction, that for every 1 ≤ k < n , Jk, Jn are comaximal. In fact,
I1 ⊆ J2 and I1 + J1 = R imply J2 + J1 = R. Assume the statement true for
every m < n and let k < n. We have Ik ⊆ In−1 ⊆ Jn and Ik + Jk = R, thus
Jk + Jn = R.

This contradicts Proposition 4.4, hence R has finite character. �
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We have seen in Lemma 3.2 that the local stability property implies the
local invertibility property and that the two conditions are equivalent for
Prüfer domains (Proposition 3.3). We are not able to prove that for finitely
stable domains they are equivalent. So we ask the following question:

Question 4.6. If R is a finitely stable domain, does the local invertibility
property imply the local stability property?

In view of Theorem 4.5 the above question is equivalent to asking whether
a finitely stable domain with the local invertibility property has

finite character.
We list now some consequences of Theorem 4.5. They provide answers to

some questions posed in [4].

Theorem 4.7. Let R be a Clifford regular domain. Then R is of finite
character.

Proof. By Proposition 3.4 a Clifford regular domain is finitely stable and
satisfies the local stability property. Hence the conclusion follows by Theo-
rem 4.5. �

The next corollary answers [4, Question 6.4].

Corollary 4.8. Let R be a Clifford regular domain. The integral closure
R of R is Clifford regular. In particular, R is a Prüfer domain of finite
character.

Proof. A Clifford regular domain is finitely stable, by Proposition 3.4, hence
R is a Prüfer domain, by Fact A. By Proposition 3.3 it is enough to show
that R is of finite character. Let x = a/b be a nonzero element of R, with
a, b ∈ R. Then, ΩR(xR) ⊆ ΩR(aR). For every maximal ideal m of ΩR(xR),
m∩R = m is a maximal ideal of R containing a. By Theorem 4.7, ΩR(aR)
is finite and by Fact B there are only finitely many maximal ideals of R
lying above m, thus we conclude that R is of finite character. �
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[1] S. Bazzoni, Class semigroups of Prüfer domains, J. Algebra, 184 (1996), 613–631.
[2] S. Bazzoni, Idempotents of the class semigroups of Prüfer domains of finite character,
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