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Introduction

Contramodules were first introduced by Eilenberg and Moore in 1965
alongside comodules over coalgebras or corings, but they achieved so little
success that they were forgotten for three decades. From the first begin-
ning of the 21st century, contramodules appeared again in literature thanks
mainly to work by Leonid Positselski. The motivation towards their study
was in particular for their many applications in algebraic geometry. They
were studied for the purposes of the semi-infinite cohomology theory and
the comodule-contramodule correspondence. Recently the notion of con-
tramodules has been applied profitably in commutative algebra and tilting
theory.

The aim of these three lectures is to advertise the theory of contramod-
ules and to capture the interest of researchers and get them involved in
applications of the theory to different contexts.

Generally, contramodules are sets with infinitary additive operations of
the “arity” bounded by some cardinal. Typical examples are contramodules
over complete topological rings. They provide a way of having an abelian
category of non-topological modules with some completeness properties over
a topological ring.

More precisely, let R be a commutative complete local ring with maximal
ideal m. The category of infinitely generated m-adically complete R-modules
is not abelian already for R = k[[ε]]. The category of R-contramodules is the
natural abelian category into which complete R-modules are embedded. In
particular, when R is the ring of p-adic integers, the abelian category of R-
contramodules is the 0, 1-perpendicular category of Z[p−1], i.e. the category
of the abelian groups C such that HomZ(Z[p−1], C) = 0 = Ext1Z(Z[p−1], C).
Similarly for contramodules over R = k[[ε]].

The k[[ε]]-contramodules form a full subcategory of the category of k[[ε]]-
modules and even a full subcategory of the category of k[ε]-modules. This
subcategory contains all the k[[ε]]-modules M , such that M ∼= lim←−nM/εnM ,
i.e. separated and complete modules, but contains also some complete and
non separated modules, i.e. the modules such that the natural map M →
lim←−nM/εnM is surjective but not injective.

Analogous results hold for the adic completion of a commutative Noe-
therian ring with respect to an arbitrary ideal.

So surprisingly, in these cases (and some other cases) the natural forgetful
functors from the categories of contramodules to the related categories of
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modules turn out be fully faithful. That is an infinitary additive operation
is uniquely determined by its finite aspects.

1. FIRST LECTURE

1.1. Infinite summation operations. An elementary approach to the
theory of contramodules can be achieved by introducing the notion of an
s-power infinite summation operation on abelian groups.

Let C be an abelian group and s a symbol. An s-power infinite summation
operation (s-power i.s.o.) on C is a map∏

n≥0
C −→ C

(c0, c1, . . . , cn, . . .) 7−→
∞∑
n=0

sncn,

satisfying three axioms:

(1) (U) Unitality:
∑∞

n=0 s
ncn = c0 if c1 = c2 = . . . , cn = · · · = 0.

(2) (A) Additivity:
∏
n≥0Cn −→ C is a homomorphism of abelian

groups, i.e.

∞∑
n=0

sn(cn + bn) =

∞∑
n=0

sncn +

∞∑
n=0

snbn

∀(c0, c1, . . . , cn, . . . ), (b0, b1, . . . , bn, . . . ) ∈
∏
n≥0

C.

(3) (CA) Contrassociativity:

∞∑
i=0

si
∞∑
j=0

sj(cij) =
∞∑
n=0

sn
∑
i+j=n

cij .

An s-power i.s.o. on an abelian group C defines an abelian group endo-
morphism s : C → C by

sc =
∞∑
n=0

sncn, where c1 = c and ci = 0 for i 6= 1,

snc =

∞∑
n=0

sncn, where cn = c and ci = 0 for i 6= n.

Example 1.1.1. [12, Example 3.1 (1), (2)]

(1) For any abelian group C, the group of formal power series C[[z]] is
naturally endowed with a z-power i.s.o.

(2) The group of p-adic integers Jp is naturally endowed with a p-power
i.s.o.

(3) For any set X the group
∏
x∈X Jp is endowed with a p-power i.s.o.
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(4) The subgroup C = Jp[[X]] ⊂
∏
x∈X Jp consisting of families

(ax)x∈X , ax ∈ Jp
converging to zero in the topology of Jp is preserved by the p-power
i.s.o. on

∏
x∈X Jp.

(5) In all these cases, the infinite sum can be computed as the limit of
finite partial sums in the adic topology of the group in question.

(6) The category of abelian groups with s-power i.s.o. and group ho-
momorphisms preserving the infinite summation operations is an
abelian category with products (indeed, kernels and cokernels inherit
the s-power i.s.o. and for any family of groups Ci with s-power i.s.o.
there is a natural s-power i.s.o. on

∏
iCi.)

Lemma 1.1.2. [12, Lemma 3.2] An abelian group C endowed with an s-
power i.s.o. has no non zero s-divisible subgroups, i.e. if D ≤ C and
sD = D then D = 0.

Proof. Idea of the proof. Given a sequence (c0, c1, . . . , cn, . . . ) of elements of
C satisfying cn = scn+1, for every n ≥ 0, consider the element

∑∞
n=0 s

ncn
and

∞∑
n=0

sncn =
∞∑
n=0

snscn+1 =
∞∑
n=0

sn+1cn+1 =
∞∑
n=1

sncn,

hence c0 = 0. To make the calculation rigorous one should use the Contra-
associativity axiom (CA). �

Theorem 1.1.3. Let C be an abelian group. The following hold.

(1) ([12, Theorem 3.3 (1)] An s-power i.s.o. on an abelian group C is
uniquely determined by the endomorphism s : C → C, that is, given
s : C → C there exists at most one s-power i.s.o. on C restricting
to s.

(2) An endomorphism s : C → C can be extended to an s-power i.s.o.
on C if and only if for any sequence (a0, a1, . . . , an, . . . ) of elements
of C the infinite system of non-homogeneous equations

(∗) bn − sbn+1 = an, n ≥ 0,

admits a unique solution (b0, b1, . . . , bn, . . . ) in C.
(3) An abelian group homomorphism f : C → D between two abelian

groups C,D endowed with s-power i.s.o., preserves the s-power i.s.o.
if and only if it commutes with the s-endomorphisms on C and D.

Proof. (2) Let C be an abelian group with an s-power i.s.o.. By Lemma
1.1.2 C is s-reduced; thus, if a solution of the system (∗) exists, then it is
unique.

For the existence, set

bn :=

∞∑
i=0

sian+i

for all n ≥ 0. The sequence (bn)n≥0 is a solution of the system:

bn − sbn+1 =

∞∑
i=0

sian+i − s
∞∑
i=0

sian+i+1 =
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=
∞∑
i=0

sian+i −
∞∑
i=0

si+1an+i+1 =
∞∑
i=0

sian+i −
∞∑
i=1

sian+i = an.

To make this calculation rigorous one should use axiom (CA) with the se-
quence of elements

aij :=

{
an+j+1 for i = 1, j ≥ 0

0 otherwise

For the converse, suppose now that the system (∗) is uniquely solvable in
C for any sequence (an)n≥0 of elements of C. Given such a sequence, take
the unique solution (bn)n≥0 of the system and set

∞∑
n=0

snan := b0.

This defines an s-power i.s.o. on C. One then has to check that the three
axioms are satisfied.

We have proved not only (2), but also (1), since we see that once the
endomorphism s : C → C is given, the s-power i.s.o. on C, can be recovered
from the solution of the system (∗) which is unique.

To prove (3), note that any abelian group homomorphism f : C → D
commuting with the endomorphisms s, takes solutions of the system (∗) in
C to solutions in D and thus it preserves the s-power i.s.o. on C and D. �

From now on in this lecture R will denote a commutative ring with unit.

Definition 1.1.4. Let R be a commutative ring, s ∈ R a fixed element and
C an R-module. Let s : C → C be multiplication by s. We say that C admits
an s-power i.s.o. if it admits an s-power i.s.o. as an abelian group in a way
that it is compatible with the action of s.

If C admits an s-power i.s.o. then for r ∈ R, r(
∑∞

n=0 s
ncn) =

∑∞
n=0 s

n(rcn).

If R is a commutative ring and s ∈ R consider the localization R[s−1] and
the inductive system

R
s→ R

s→ R→ . . .

where the maps are multiplications by s. Then R[s−1] ∼= lim−→n≥0R, and

R[s−1] admits a presentation

(a) 0→
∞⊕
n=0

Rfn
µ→
∞⊕
n=0

Ren → R[s−1]→ 0, µ(fn) = en − sen+1.

For every R-module C we get the following exact sequence.

(b) 0→ HomR(R[s−1], C)→
∞∏
n=0

C
Hom(µ,C)−→

∞∏
n=0

C → Ext1R(R[s−1], C)→ 0,

Hom(µ,C)((bn)n≥0) = (bn − sbn+1)n≥0.

The following is an immediate consequence of the above discussion.

Theorem 1.1.5. An R-module admits an s-power i.s.o. if and only if

HomR(R[s−1], C) = 0 = Ext1R(R[s−1], C).

.
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Proof. From the exact sequence (b) we infer that the system

(∗) bn − sbn+1 = an, n ≥ 0,

admits a solution (b0, b1, . . . , bn, . . . ) in
∏∞
n=0C if and only if

Ext1R(R[s−1], C) = 0.

It admits a unique solution if moreover HomR(R[s−1], C) = 0. The conclu-
sion follows by Theorem 1.1.3. �

Definition 1.1.6. Let R be a commutative ring and s ∈ R a fixed element.
An R-module C is an s-contramodule or s-contramodule R-module, if

HomR(R[s−1], C) = 0 = Ext1R(R[s−1], C).

Denote by R–Mods−ctr the subcategory of s-contramodules.

Thus s-contramodules are the objects of the 0, 1-perpendicular category
of R[s−1]. Since the projective dimension of R[s−1] is at most one, the cat-
egory of s-contramodules is closed under kernels, cokernels, extensions and
products in R–Mod, that is, it is exactly embedded in R–Mod. Moreover, if

0→ F1
f→ F0 → R[s−1]→ 0

is a projective resolution of R[s−1], then M is an s-contramodule if and only
if HomR(f,M) is a bijection.

Every R-module annihilated by s is clearly an s-contramodule.

1.2. Relations between s-contramodules and s-adic completion.
An R-module M over a commutative ring is s-torsion if for every x ∈ M

there is n ∈ N such that snx = 0. Thus M is s-torsion if and only if
R[s−1] ⊗R M = 0 (TorR1 (R[s−1],M) = 0 always). This shows a duality
between s-torsion modules and s-contramodules.

Let D(R) denote the derived category of the ring R and ⊗L
R denote the

total left derived functor of the tensor product functor. Then:

Lemma 1.2.1. [12, Lemma 6.2]
Let M•, N•, C• be complexes of R-modules.

(1) If either Hn(M•) or Hn(N•) are s-torsion, for all n ∈ Z, then the
Hn(M•⊗L

RN
•) are s-torsion for all n ∈ Z.

(2) If either Hn(M•) are s-torsion or Hn(C•) are s-contramodules for
all n ∈ Z, then HomD(R)(M

•, C•[n]) are s-contramodule, for all n ∈
Z.

An R-module C is said to be s-complete if the natural map to its s-adic
completion

λs,C : C → lim←−
n≥1

C/snC,

is surjective. The R-module C is said to be s-separated if the map λs,C is
injective.

The module lim←−n≥1C/s
nC is denoted by Λs(C).

Lemma 1.2.2. Let C be an R-module. Then
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(1) [12, proof of Theorem 2.3] C is s-complete if and only if for any se-
quence (an)n≥0 of elements of C, the infinite system of linear equa-
tions:

(∗∗) sn(bn − sbn+1) = snan, n ≥ 0

admits a solution (bn)n≥0 in C;
(2) C is s-separated if, and only if, for any pair of solutions (b′n)n≥0,

(b′′n)n≥0 of the system (∗∗) in C, one has b′0 = b′′0.
(3) if C is an s-contramodule, then C is s-complete.

Proof. (1) Recall that:

lim←−C/s
nC =

{
(c̄n)n≥1 ∈

∏
n≥1

C

snC
| cn+1 ≡ cn mod snC, ∀n ≥ 1

}
.

Asking λs,C to be surjective means that, for any sequence of elements (c̄n)n≥1
in lim←−C/s

nC, there exists c ∈ C such that c ≡ cn mod snC for all n ≥ 1.
Now, set a0 := c1 and for n ≥ 1 choose elements an ∈ C such that

cn+1 = cn + snan. Then for any n ≥ 0 one has:

cn+1 = snan + sn−1an−1 + · · ·+ sa1 + a0.

So surjectivity becomes equivalent to ask that for any sequence (an)n≥0 of
elements of C, there exists c ∈ C such that c − (snan + sn−1an−1 + · · · +
sa1 + a0) ∈ sn+1C.

Finally set b0 := c. Then the statement above is equivalent to ask that
for any sequence (an)n≥0 of elements of C there exists a solution (bn)n≥0 to
the system of linear equations

b0 − sn+1bn+1 = snan + · · ·+ sa1 + a0, n ≥ 0

which in turn is equivalent to the system:

sn(bn − sbn+1) = snan, n ≥ 0.

(2) If λs,C is injective, then b′0 = b′′0, since by the argument in (1)
λs,C(b′0) = λs,C(b′′0). Conversely if λs,C(b′0) = λs,C(b′′0) for some b′0, b

′′
0 ∈ C,

then for any n ≥ 1, b′0− b′′0 ∈ snC, i.e. b′0− b′′0 = snbn. So (b′0− b′′0, b1, b2, . . . )
is a solution of the homogeneous version of the system (∗∗), hence by as-
sumption it must be b′0 − b′′0 = 0.

(3) Ext1R(R[s−1], C) = 0 implies that there is a solution of the system (∗),
hence C is s-complete. �

Lemma 1.2.3. [12, Theorem 2.4]

(1) An s-separated, s-complete R-module C is an s-contramodule.
(2) An s-torsion free s-contramodule R-module C is s-separated and s-

complete

Proof. (1) The category R–Mods−ctr is closed under kernels and infinite
direct products, hence under infinite projective limits. Moreover, for an R-
module C, the quotient C/snC is always an s-contramodule for any n ≥ 1.
So an s-separated and s-complete R-module C is an s-contramodule, since
C ∼= lim←−n≥1C/s

nC.
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(2) If C is s-torsion free then the systems (∗) and (∗∗) are equivalent. If C
is moreover an s-contramodule, then the system (∗) has a unique solution,
by Theorem 1.1.5, hence Lemma 1.2.2 (2) is satisfied. �

There are examples of s-contramodules which are not s-separated.

Example 1.2.4. [12, Example 2.7 (1)] For any prime p ∈ Z let Jp be
the abelian group of p-adic integers and let C be the subgroup of

∏
n≥0 Jp

consisting of all sequences converging to zero in the p-adic topology. Let D ⊆
C be the subgroup of all sequences (pnvn)n≥0, where vn ∈ Jp and let E ⊆ D
be the subgroup of all sequences (pnvn)n≥0, where (vn)n≥0 converges to zero
in the p-adic topology. All the three groups are p-contramodules, as they are
p-separated and p-complete. Thus, the quotient C/E is a p-contramodule,
too. However, it is not p-separated because

⋂
n≥1 p

n(C/E) = D/E.

The above example allows to construct an abelian group with an s-power
i.s.o which cannot be interpreted as any kind of limit of finite partial sums.

Example 1.2.5. [12, Example 3.1 (3)]
In the above notations, set B = C/E, and let bn = cn + E, cn =

(um)m≥0 with u0 = 0, u1 = 0, ..., un = 1, un+1 = 0, . . . . Then pncn ∈ E,
but

∑∞
n=0 p

ncn /∈ E, because the sequence 1, p, p2, . . . , pn . . . does not have
the form pnvn with vn → 0 in Jp for n→∞.

Contrarily to the class of s-contramodules, the class of s-separated and
s-complete R-modules is not abelian and it is not closed under cokernels
(even under the cokernels of injective morphisms) in R–Mod, nor under
extensions. Similarly, the class of s-complete R-modules does not have nice
closure properties, since it is not closed under extensions, even though it is
closed under quotients.

1.3. The left adjoint functor ∆s.
In this subsection we will show that the category R–Mods−ctr is a reflective

subcategory of R–Mod (i.e. the embedding functor has a left adjoint).

Notation 1.3.1. Let R be a commutative ring, s an element of R and lR
the natural ring homomorphism R→ R[s−1].

Denote by K•(s) the two-term complex R
lR→ R[s−1], concentrated in co-

homological degrees -1 and 0.
Denote by T •(s) the two term complex

∞⊕
n=0

R
ψs
R→
∞⊕
n=1

R,

where ψsR : (x0, x1, x2, . . . ) 7−→ (x1 − sx0, x2 − sx1, . . . ), concentrated in
cohomological degrees 0 and 1.

Lemma 1.3.2. [12, Remark 6.5] The complex T •(s)[1] is a projective reso-
lution of the complex K•(s).

Proof. A quasi isomorphism between T •(s)[1] and K•(s) is given by the
following diagram



8 SILVANA BAZZONI

⊕∞
n=0R

p

��

ψs
R //
⊕∞

n=1R

f
��

R
lR // R[s−1]

where p is the projection on the first factor and f is defined by f(y1, y2, . . . ) :=
−
∑

n≥1 yn/s
n. Then f ◦ ψsR = lR ◦ p and (p, f) is a quasi isomorphism. �

We can now define the left adjoint functor to the embedding functor

R–Mods−ctr
ι→ R–Mod.

Let Db(R) denote the bounded derived category of R and K(R) the homo-
topy category of R.

Theorem 1.3.3. [12, Theorem 6.4] Let R be a commutative ring and s ∈ R
be an element. For any R-module C, the following R-modules are naturally
isomorphic:

(1) The cokernel of the R-module morphism

φsC := HomR(ψsR, C) :
∏
n≥1

C →
∏
n≥0

C

defined by φsC((c1, c2, c3, . . . )) := (−sc1, c1 − sc2, c2 − sc3, . . . );
(2) the cokernel of the endomorphism of the R-module C[[z]] of formal

power series in one variable z with coefficients in C

(z − s) : C[[z]]→ C[[z]]

which is the difference of the endomorphism of multiplication by z
and the endomorphism of multiplication by s (induced by the multi-
plication by s in C);

(3) the R-module HomDb(R)(K
•(s), C[1]) = H0(HomR(T •(s), C))

(denoted by Ext1R(K•(s), C)).

Proof. (1) ⇔ (2). The natural R-module isomorphisms
∏
n≥1C

∼= C[[z]] ∼=∏
n≥0C identifies the R-module morphism φsC with the endomorphism (z−

s).
(1)⇔ (3). We have

HomDb(R)(K
•(s), C[1]) = HomK(R)(T

•(s), C)

since the complex T •(s)[1] is a projective resolution of K•(s). Now, a cochain
map T •(s) → C is an R-linear map p : T 0 → C, and is homotopic to zero
if, and only if it factors through ψsR

0 //

��

⊕∞
n=0R

p

��

ψs
R //
⊕∞

n=1R

g
xx ��

0 // C // 0

.

In other words

HomK(R)(T
•(s), C) ∼= Coker HomR(ψsR, C) = CokerφsC .

�
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We will denote by ∆s(C) the R-module described in Theorem 1.3.3.
Now we have a functor: ∆s : R–Mod→ R–Mod. Indeed this is a functor,

since it is built using direct products and cokernels of morphisms (both
functorial).

Proposition 1.3.4. For any R-module C, ∆s(C) is an s-contramodule R-
module.

Proof. Using the characterization of ∆s(C) as HomD(R)(K
•(s), C[1]) from

Theorem 1.3.3 (3), we have that ∆s(C) is an s-contramodule by Lemma 1.2.1 (2),
since H−1(K•(s)) (=Ker lR) and H0(K•(s)) (= Coker lR) are s-torsion R-
modules. �

The following theorem is of key importance and it will be used to prove
that ∆s is left adjoint to the embedding functor.

Proposition 1.3.5. For any R-module C, there exists a 5-term exact se-
quence of R-modules:

(c) 0→ HomR(Coker lR, C)→ HomR(R[s−1], C)→ C
δsC→ ∆s(C)→ Ext1R(R[s−1], C)→ 0.

where lR is the localization map R→ R[s−1].

Proof. Apply the triangulated functor HomDb(R)(−, C) to the distinguished
triangle

R→ R[s−1]→ K•(s)→ R[1]

in Db(R–Mod) to get the long exact sequence of R-modules:

0→ HomDb(R)(K
•(s), C)→ HomDb(R)(R[s−1], C)→ C →

→ HomDb(R)(K
•(s)[−1], C) ∼= ∆s(C)→ Ext1R(R[s−1], C)→ 0.

By Lemma 1.3.2, HomDb(R)(K
•(s), C) = HomK(R)(T

•(s)[1], C). A map of

complexes T •(s)[1]→ C is null-homotopic if and only if f = 0.⊕
n≥0R

��

ψs
R ////

��

⊕
n≥1R

//

f

��

0

0 // C // 0

Thus:

HomK(R)(T
•(s)[1], C) ∼= HomR(CokerψsR, C) ∼= HomR(Coker lR, C).

�

Corollary 1.3.6. Let C be an R-module. Then C is an s-contramodule if,

and only if the adjunction morphism C
δsC→ ∆s(C) is an isomorphism.

Proof. Immediate from Proposition 1.3.4 and the exact sequence in Propo-
sition1.3.5. �

Proposition 1.3.7. [12, Theorem 6.4] ∆s : R–Mod → R–Mods−ctr is left
adjoint to the embedding functor R–Mods−ctr → R–Mod.
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Proof. We need to check that for any R-module C and any s-contramodule
R-module D, there is a natural isomorphism:

HomR–Mods−ctr(∆s(C), D) ∼= HomR(C,D)

functorial both in C and D. We show the isomorphism.
Let f : C → D be an R-module morphism and consider the R-module

morphism δsC : C → ∆s(C) given by sequence (c). δsC is an s-divisible

R-module while Coker δsC
∼= Ext1R(R[s−1], C) is an R[s−1]-module.

The restriction of f to Ker δsC is zero, whence there is a map f̄ : C/Ker δsC →
D. Considering an R[s−1]-module presentation of Coker δsC one sees that

Ext1R(Coker δsC , D) = 0, since ExtiR(R[s−1], D) = 0, i = 0, 1. Applying the
functor HomR(−, D) to the exact sequence

0→ C/Ker δsC → ∆s(C)→ Coker δsC → 0

we obtain an isomorphism HomR(∆s(C), D) ∼= HomR(C/Ker δsC , D). By
the diagram

Ker δsC
// C

��

δsC // ∆s(C) //

g

��

Coker δsC

C/Ker δsC
f // D

there is a unique map g ∈ HomR(∆s(C), D) such that gδsC = f. �

Remark 1.3.8. ∆s is left adjoint to an exact functor, hence it sends pro-
jective modules to projective objects of R–Mods−ctr. Thus ∆s(R) = P
is a projective object of R–Mods−ctr and it is moreover a generator since
HomR–Mods−ctr(∆s(R), C) ∼= HomR(R,C) ∼= C, for any object C ∈ R–Mods−ctr.

Furthermore, a coproduct P (X) of copies of P in R–Mods−ctr is computed
as ∆s(R

(X)), since ∆s preserves coproducts.

We look for relations between the functor ∆s and the completion functor
Λs.

Let C be an R-module. Consider the inverse systems

(1) · · · −→ C/s3C −→ C/s2C −→ C/sC

and

(2) · · · −→ s3C −→ s2C −→ sC,

where for any element r ∈ R we denote by rC ⊂ C the submodule of all the
elements of C annihilated by r. The transition map sn+1C −→ snC acts by
the multiplication with s.

The next theorem shows the relation between the functor ∆s and the
completion functor Λ.

Theorem 1.3.9. [12, Lemma 6.7] Let R be a commutative ring and s ∈ R
be an element. For any R-module C there is a natural short exact sequence
of R-modules:

0→ lim←−
1
n≥1 snC → ∆s(C)→ lim←−n≥1C/s

nC = Λs(C)→ 0.
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Proof. The complex K•(s)[−1] is the inductive limit of the system of com-

plexes K•n(s) = (R
sn→ R). For n ≥ 1, denote by T •n(s) the subcomplex of

T •(s)
n−1⊕
i=0

R
ψs→

n⊕
i=1

R

The complex T •n(s) is quasi-isomorphic to (R
sn→ R) (in degrees 0, 1).

The complexes HomR(T •n(s), C) form a projective system of complexes
with surjective structure maps. By standard arguments we obtain the short
exact sequence of R-modules

0→ lim←−
1
n≥1 H1(HomR(T •n(s), C))→ H0(lim←−

n≥1
HomR(T •n(s), C))→ lim←−

n≥1
H0(HomR(T •n(s), C))→ 0

where:

• H1(HomR(T •n(s), C)) = H1(HomR(K•n(s), C) = Ker(C
rn→ C) =

snC;
• H0(lim←−n≥1 HomR(T •n(s), C)) = H0(HomR(lim−→n≥1 T

•
n(s), C)) =

H0(HomR(T •(s), C)) = ∆s(C);

• H0(HomR(T •n(s), C)) = H0(HomR(R
sn→ R,C)) = Coker(C

sn→ C) =
C/snC.

�

A module C is said to be of bounded s-torsion if there exists m ≥ 1 such
that snc = 0 implies smc = 0 for every n ≥ 1 and every c ∈ C.

Remark 1.3.10. Recall that an inverse system {Mn; fnk, k ≥ n} of R-
modules satisfies the trivial Mittag-Leffler condition if and only if for every

n ≥ 1 there is k ≥ n such that Mk
fnk→ Mn is the zero map.

Corollary 1.3.11. Let R be a ring and s ∈ R be an element. Let C be an
R-module of bounded s-torsion. Then

lim←−
1
n≥1 snC = 0, ∆s(C) ∼= Λs(C).

Proof. If C has bounded s-torsion, the inverse system (2) satisfies the trivial
Mittag-Leffler condition, hence lim←−

1
n snC = 0. �

2. SECOND LECTURE

Given a ring R, one can define (left) R-modules in the following fancy way.
For any set X, let R[X] denote the set of all finite formal linear combinations
of the elements of X with coefficients in R. We have the obvious embedding
X → R[X], and the opening of parentheses map R[R[X]] → R[X] which
makes the functor X → R[X] a monad on the category of sets (see the def-
inition below). The R-modules are the algebras/modules over this monad.

Recall that a monad on the category of sets is a covariant functor

T : Sets→ Sets
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endowed with natural transformations ε : Id −→ T and multiplication φ : T◦
T −→ T satisfying the equations of associativity

T ◦ T ◦ T ⇒ T ◦ T→ T, φ(φ ◦ T) = φ(T ◦ φ)

unitality

T ⇒ T ◦ T→ T, φ(T ◦ ε) = φ(ε ◦ T) = IdSets .

2.1. Topological rings ([9, Section 1]).
Let R be a complete, separated topological ring with a base B of neigh-

bourhoods of zero formed by open right ideals I.

• Given a set X, denote by R[[X]] the set of all infinite formal linear
combinations

∑
x∈X rxx of elements of X with the coefficients in R

such that the X-indexed family of elements rx converges to zero in
the topology of R. This means that the set R[[X]] ⊂ RX consists of
all the infinite formal linear combinations

∑
x∈X rxx such that, for

every open right ideal I ⊂ R, rx ∈ I for all but a finite number of
indices x ∈ X.
• In other words, R[[X]] = lim←−I∈B(R/I)[X]. R[[X]] does not depend

on the choice of the basis B.
• The map assigning to a set X the set R[[X]] extends naturally to

a covariant functor TR from the category of sets to the category
of sets. Given a map of sets f : X −→ Y , one defines the in-
duced map R[[f ]] : R[[X]] −→ R[[Y ]] by the rule

∑
x∈X rxx 7−→∑

y∈Y
(∑

f(x)=y rx
)
y, where the sum of elements rx in the parenthe-

ses is understood to be the limit of finite partial sums in the topology
of R. Such a limit is unique and exists because the topological ring R is
separated and complete, while the family of elements (rx)x∈X , and conse-
quently its subfamily indexed by all x ∈ X with f(x) = y for a fixed y ∈ Y ,
converges to zero in R.

• The functor TR is endowed with natural transformations

ε : Id −→ TR, φ : TR ◦ TR −→ TR

satisfying the monad equations.
The monad unit εX : X −→ R[[X]] is the “point measure” map, assigning
to an element x0 ∈ X the (finite) formal linear combination

∑
x∈X rxx ∈

R[[X]], where rx0
= 1 and rx = 0 for all x 6= x0.

The monad multiplication φX : R[[R[[X]]]] −→ R[[X]] is the “opening of
parentheses” defined by

∑
y∈R[[X]]

ryy 7→
∑
x∈X

 ∑
y∈R[[X]]

ryryx

x, where y =
∑
x∈X

ryxx.

The sum
∑

y∈R[[X]] ryryx converges in R, since the family ry converges to

zero and R is complete.
(For every open right ideal I, one has ryryx ∈ I whenever ry ∈ I; and there
is only a finite set of indices y with ry /∈ I, because

∑
y∈R[[X]] ryy ∈ R[[Y ]],

where Y = R[[X]])
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2.2. R-contramodules ([9, Section 1].
Recall that a module over a monad T : Sets → Sets is a set C endowed

with a map of sets πC : T(C) −→ C, called the action map satisfying the
equations of associativity

T(T(C)) ⇒ T(C)→ C, πC ◦ φC = πC ◦ T(πC),

and unitality

C → T(C)→ C, πC ◦ εC = idC .

A left R-contramodule is a module over the monad TR : X 7−→ R[[X]] on
the category of sets. This means that a left R-contramodule C is a set en-
dowed with a left contraaction map πC : R[[C]] −→ C satisfying the following
conditions

πC ◦ εC = idC : C
εC−→ R[[C]]

πC−→ C

πC ◦ φC = πC ◦R[[πC]] : R[[R[[C]]]]
R[[πC]]

22

φC
,,
R[[C]]

πC // C

In other words, a left R-contramodule C can be defined as a set endowed
with the following infinite summation operations.

For any family of elements rα converging to zero in R and any family of
elements cα ∈ C there is a well-defined element

∑
α rαcα ∈ C satisfying

(a) contraassociativity∑
α

rα
∑
β

rαβcαβ =
∑
α,β

(rαrαβ)cαβ if rα → 0 and rαβ → 0 in R, ∀α.

(b) the contraunitality :∑
α∈A

rαcα = cα0 , if A = {α0} and rα0 = 1,

(c) distributivity

∑
α,β

rαβcα =
∑
α

∑
β

rαβ

 cα if rαβ → 0 ∈ R.

(d) The finite and infinite operations are compatible.

A morphism of R-contramodules C and D is a map f such that the following
diagram is commutative

R[[C]]
R[[f ]] //

πC
��

R[[D]]

πD
��

C
f

// D

We denote the category of left R-contramodules by R–contra.
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2.3. The category R–contra
([9, Section1], [16, Section 1, 5], [17, Section 6.4], [14, Section 1]).

(1) For any left R-contramodule C, let R[C] be the set of all finite formal
linear combinations. The composition

R[C] −→ R[[C]]
πC−→ C

defines a natural structure of a left R-module on C.
• In particular, it means that all left R-contramodules, which were

originally defined as only sets endowed with a contraaction map, are
actually abelian groups, even R-modules.

(2) Using the above identities (a)–(d) , one can define the R-contramodule
structure on the kernel and cokernel of an R-contramodule morphism
taken in the category of R-modules. Hence R–contra is an abelian
category and the forgetful functor R–contra −→ R–Mod is an exact
functor.

(3) For any setX the set R[[X]] has a natural structure of an R-contramodule:
The monad multiplication φX : R[[R[[X]]]] −→ R[[X]] plays the rôle
of the contraaction map.

(4) Let TR be the functor sending a set X to R[[X]]. Then TR is left
adjoint to the forgetful functor from R–contra to the category of
sets.

Sets
TR --

R–contra
Forget

ll

Hence, contramodules of the form R[[X]] are the free R-contramodules.
They are projective objects in the abelian category R–contra, there
are enough of them, and hence every projective R-contramodule is
a direct summand of a free R-contramodule.

(5) For any collection of sets Xα, the free contramodule R[[
∐
αXα]]

generated by the disjoint union of Xα is the direct sum of the free
contramodules R[[Xα]] in the category R–contra. This allows to com-
pute, the direct sum of R-contramodules, by presenting them as cok-
ernels of morphisms of free contramodules and using the fact that
infinite direct sums commute with cokernels. So infinite direct sums
exist in R–contra.

(6) The category R–contra is cocomplete, with a projective genera-
tor R = TR(∗), hence it is also complete. The forgetful functor
R–contra −→ R–Mod preserves infinite products (but not coprod-
ucts).

(7) The category R–contra has the additional property that for every
family of projective objects Pα ∈ R–contra, the natural morphism∐
α Pα →

∏
α Pα is a monomorphism. This is because the property

can be checked for free R-contramodules.
(8) The monad TR is additive meaning that the category of TR-modules

is an additive category (see [14, Lemma 1.1]).
(9) (See below for the terminology) Let λ+ be the successor cardinal of

the cardinality of a base of neighbourhoods of zero in R. The monad
TR is λ+-accessible, meaning that it preserves λ+-filtered colimits.
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So the abelian category R–contra is locally λ+-presentable with a
natural λ+-presentable projective generator, which is the free left
R-contramodule with one generator R = R[[∗]].

Recall:
• Let κ be a regular cardinal. A poset is κ-directed if every subset of cardinality

smaller than κ has an upper bound. A colimit of a diagram indexed by a κ-directed
poset is called κ-directed colimit.
• An object C of a category C is called κ-presentable if HomC(C,−) preserves
κ-directed colimits.

• A category is called locally κ-presentable if it is cocomplete and has a set A of

κ-presentable objects such that every object is a κ-directed colimit of objects from

A.

Proposition 2.3.1. [16, Section 1], [17, Section 6.4] Every cocomplete
abelian category B with a projective generator P is equivalent to the cat-
egory of modules over the monad

TP : Sets→ Sets; X 7→ HomB(P, P (X)).

Proof. (shortly) First we describe the monad multiplication

TP ◦ TP (X) = HomB(P, P (T(X)))→ HomB(P, P (X)) = TP (X).

Note that HomB(P (Y ), P (X)) is computed as HomB(P, P (X))Y = TP (X)Y .

Let f : Y → TP (X) be viewed as a map h : P (Y ) → P (X). Then

HomB(P, h) : HomB(P, P (Y ))→ HomB(P, P (X)).

Letting Y = TP (X) and f the identity we get the monad multiplication.
The equivalence is given by assigning to everyN ∈ B the set HomB(P,N)with
its natural structure as a TP -module.
Indeed, every t ∈ TP (X) = HomB(P, P (X)) induces an X-ary operation on
HomB(P,N):

HomB(P,N)X = HomB(P (X), N)→ HomB(P,N),

(f : P (X) → N) 7→ f ◦ t.
�

• The functors of infinite direct sum are not exact in R–contra in
general; they are not exact already for the ring R = k[[z, t]] of formal
power series in two variables over a field k.
• When R–contra has global homological dimension at most 1, the

infinite direct sums in R–contra are exact.

2.4. The category of I-contramodules for a finitely generated ideal
I of a commutative ring R ([12, Section 7]).

Definition 2.4.1. [12, Section 7] Let R be a commutative ring and I ≤ R
be the ideal generated by a finite set of elements s1, . . . , sm ∈ R. An R-
module C is said to be an I-contramodule if HomR(R[s−1j ], C) = 0 =

Ext1R(R[s−1j ], C) for all 1 ≤ j ≤ m.
This property does not depend on the chosen set of generators, but only

on the ideal I.
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Properties of the category of I-contramodules
Denote by R–ModI−ctr the full subcategory of R–Mod consisting of I-
contramodule R-modules.

(i) I-contramodules are the objects of the 0, 1-perpendicular category
of ⊕mj=1R[s−1j ]. Since the projective dimension of R[s−1j ] is at most
one for every j, the category of I-contramodules is closed under ker-
nels, cokernels, extensions and products in R–Mod, i.e. it is exactly
embedded in R–Mod.

(ii) EveryR-module annihilated by In for some n ≥ 1 is an I-contramodule.
(iii) Let E = ⊕mj=1R[s−1j ], and let f : U−1 → U0 be a two terms free

resolution of E. Then R–ModI−ctr coincides with the full subcate-
gory f⊥, consisting of the R-modules C such that HomR(f, C) is an
isomorphism.

Theorem 2.4.2. [12, Theorem 7.2], [14, Example 2.2 (1)] Let R be a com-
mutative ring and I ≤ R be the ideal generated by a finite set of elements
s1, . . . , sm ∈ R. The following hold:

(1) The exact embedding functor R–ModI−ctr → R–Mod has a left ad-
joint functor ∆I : R–ModI−ctr → R–Mod given by ∆sm . . .∆s2∆s1

(∆si from First Lecture).
(2) ∆I(R) = P is a projective generator of R–ModI−ctr and the coprod-

uct of X copies of P in R–ModI−ctr is given by ∆I(R[X]).
(3) The abelian category R–ModI−ctr is equivalent to the category of

modules over the additive monad TI assigning to every set X the
underlying set of the R-module ∆I(R[X]).

Proof. (1) is a generalization of the 1-element case: ∆s is left adjoint to the
exact embedding R–Mods−ctr → R–Mod.

(2) Follows from the fact that ∆I is left adjoint to an exact functor (see
also Remark 1.3.8).

(3) Let B = R–ModI−ctr. By (1) and (2) B is a cocomplete category with
a projective generator P = ∆I(R). By Proposition 2.3.1, B is equivalent to
the category of modules over the monad TP .
Now TP (X) = HomB(P, P (X)) ∼= HomR(R,∆I(R[X])) ∼= ∆I(R[X]), thus
TP ∼= TI . �

The functor ∆I and the I-adic completion functor.
Fix a finitely generated ideal I of a commutative ring R.

Notation 2.4.3.

(1) For every R-module C denote by ΛI(C) = lim←−nC/I
nC the I-adic

completion of C. By [12, Lemma 5.7 and Theorem 5.8] ΛI(C) is
an I-contramodule and it is separated and complete in the I-adic
topology which coincides with the projective limit topology.

(2) Denote by R = lim←−nR/I
n the I-adic completion of the ring R en-

dowed with the I-adic topology.

We generalize the complex T •(s), quasi isomorphic to R → R[s−1] and

its subcomplex T •n(s), quasi isomorphic to R
sn→ R from the first lecture, by

setting
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(3)
(a) T •(s1, . . . , sm) = T •(s1)⊗R · · · ⊗R T •(sm)

in cohomological degrees 0, . . . ,m, quasi isomorphic to

(R→ R[s−11 ])⊗R · · · ⊗ (R→ R[s−1m ]), and

(b) T •n(s1, . . . , sm) = T •n(s1)⊗R · · · ⊗R T •n(sm),

(4) then, T •(s1, . . . , sm) = lim−→n≥1 T
•
n(s1, . . . , sm), and

∆I(C) = H0(HomR(T •(s1, . . . , sm), C).

Proposition 2.4.4. [12, Lemma7.5] In Notations 2.4.3 there is a natural
short exact sequence of R-modules:

0→ lim←−
1
n≥1 H1(HomR(T •n(s1, . . . , sm), C)→ ∆I(C)→ ΛI(C)→ 0.

In particular, for every R-module C, there is a natural surjection

∆I(C)→ ΛI(C).

Proof. The complexes HomR(T •n(s1, . . . , sm), C) form a countable projective
system with surjective maps in each degree. Hence there is a short exact
sequence

0→ lim←−
1
n≥1 H1(HomR(T •n(s1, . . . , sm), C))→ H0(lim←−

n≥1
HomR(T •n(s1, . . . , sm), C))→

→ lim←−
n≥1

H0(HomR(T •n(s1, . . . , sm), C))→ 0.

Now we have:

• H0(HomR(T •n(s1, . . . , sm), C)) ∼= C/(sn1 , . . . , s
n
m)C, hence

lim←−n≥1H0(HomR(T •n(s1, . . . , sm), C)) ∼= ΛI(C),

• H0(lim←−n≥1 HomR(T •n(s1, . . . , sm), C)) ∼= H0(HomR(T •(s1, . . . , sm), C)) ∼=
∆I(C).

�

Proposition 2.4.5. [14, Example 2.2 (2)] In Notations 2.4.3, the forgetful
functor R–contra → R–Mod is fully faithful and its image is contained in
the full subcategory of I-contramodule R-modules.

Proof. For the claim about the image it suffices to check that the free R-
contramodules are I-contramodule R-modules, as every R-contramodule is
the cokernel of a morphism of free R-contramodules and R–ModI−ctr is
closed under cokernels. For any set X, the free R-contramodule R[[X]] coin-
cides with lim←−n≥1R/I

n[X] which is an I-contramodule by Notation 2.4.3 (1).

Fully faithfulness: the abelian category R–contra is the category of mod-
ules over the monad TR : X → R[[X]] and

R[[X]] = lim←−
n≥1

(R/InR)[X] = ΛI(R[X]),

while the abelian category R–ModI−ctr is the category of modules over the
monad X → ∆I(R[X]), by Theorem 2.4.2 (3).

The functor R–contra → R–ModI−ctr is induced by the morphism of
monads ∆I(R[X]) → ΛI(R[X]), and surjectivity of this map for every set
X implies that the forgetful functor is fully faithful.
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The idea is that the forgetful functor can be seen as a “restriction functor”
by means of the surjection ∆I(R[X])→ ΛI(R[X]). �

Consequence: The abelian category R–contra is a full subcategory of the
abelian category R–ModI−ctr.

2.5. When is R–contra equivalent to R–ModI−ctr?

Proposition 2.5.1. [14, Proposition 2.1] The forgetful functor R–contra→
R–ModI−ctr is an equivalence of abelian categories if and only if the natural
morphism

∆I(R[X])→ ΛI(R[X])

is an isomorphism for every set X.

By Proposition 2.4.4, the kernel of the natural morphism in the above
statement is

lim←−
1
n≥1 H1(HomR(T •n(s1, . . . , sm), R[X]),

and a sufficient condition for the kernel to be zero is that I is weakly
proregular.

We follow the notations in [20]. For any sequence s = (s1, s2, . . . , sm)
of elements of R denote by K•(s) the Koszul complex K•(s1, s2, . . . , sm) in
degrees −m, . . . , 0. Moreover, for every n ≥ 1, write sn = (sn1 , s

n
2 , . . . , s

n
m)

and denote by K•(sn) the Koszul complex K•(sn1 , s
n
2 , . . . , s

n
m). Then for

every k ≥ n, there are morphisms K•(sk)→ K•(sn).

Definition 2.5.2. [19], [20] An ideal I = (s1, . . . , sm) is weakly proregu-
lar if the inverse systems of the Koszul cohomology modules {H i(K•(sn))}n≥1
are pro-zero for every i = −m, . . . ,−1 meaning that they satisfy the trivial
Mittag-Leffler condition (see Remark 1.3.10).

• If R is noetherian every finitely generated ideal is weakly proregular.
• If I = (s) then I is weakly proregular if and only if the s-torsion of
R is bounded, i.e. there is n ≥ 1 such that the s-torsion submodule
of R is annihilated by sn.

By the remarks above, we conclude that

Proposition 2.5.3. The forgetful functor R–contra → R–ModI−ctr is an
equivalence of abelian categories for any weakly proregular finitely generated
ideal I in a commutative ring R.

2.6. The case of a multiplicative subset S of R with p.dim RS ≤ 1
([13], [14, Section 2]).
Let R be a commutative ring and S a multiplicative subset of R such that

the projective dimension (p.dim) of the localization RS is at most one.
An R-module M is S-torsion if for every x ∈M there is s ∈ S such that

xs = 0 (i.e. M ⊗R RS = 0) and it is S-divisible if Ms = M for every s ∈ S.

Definition 2.6.1. An R-module C is said to be an S-contramodule if

HomR(RS , C) = 0 = Ext1R(RS , C).

Denote by R–ModS−ctr the full subcategory of R–Mod consisting of S-contramodule
R-modules.
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• Let K•S be the complex R
lS→ RS in cohomological degrees −1, 0.

• For every R-module C, let ∆S(C) = HomDb(R)(K
•
S , C[1]).

• A generalization of Lemma 1.2.1 shows that ∆S(C) is an S-contramodule,
since the modules Hn(K•) are S-torsion for every n ∈ Z.

Proposition 2.6.2. [14, Example 2.4]

(1) The category R–ModS−ctr is an abelian category exactly embedded
in R–Mod.

(2) The functor ∆S is left adjoint to the embedding functor R–ModS−ctr →
R–Mod, hence ∆S(R) is a projective generator of R–ModS−ctr.

(3) The abelian category R–ModS−ctr is equivalent to the category of
modules over the additive monad T assigning ∆S(R[X]) to every set
X.

Proof. (1) follows from the assumption p.dim RS ≤ 1.
(2) From the triangle R→ RS → K•S → R[1] we get the exact sequence

0→ HomR(Coker lS , C) ∼= HomDb(R)(K
•
S , C)→ HomR(RS , C)→ C

δSC→

δSC→ HomDb(R)(K
•
S , C[1]) = ∆S(C)→ Ext1R(RS , C)→ 0,

where Ker δSC is an S-divisible R-module while Coker δSC
∼= Ext1R(RS , C) is

an RS-module.
Then the proof continues arguing similarly to the case of the localization

R[s−1] at a single element s ∈ R (see Proposition 1.3.7).
(3) We argue as in Theorem 2.4.2. Let B = R–ModS−ctr. By (2) B is

a cocomplete category with a projective generator P = ∆S(R), hence by
Proposition 2.3.1 B is equivalent to category of modules over the monad
TP : X → HomB(P, P (X)).

Now HomB(P, P (X)) ∼= HomR(R,∆S(R[X])) ∼= ∆S(R[X]). �

Denote by R the ring lim←−s∈S R/sR, the S-completion of the ring R.

(i) R endowed with the projective limit topology is a complete,
separated topological commutative ring.

(ii) For every R-module C, let ΛS(C) = lim←−s∈S C/sC and let

λS(C) : C → lim←−s∈S C/sC the canonical map. The following hold:

(1) ΛS(C) is an S-contramodule (use that C/sC is an S-contramodule
for every s ∈ S and the closure properties of R–ModS−ctr).

(2) For every R module C there is a unique R-module morphism
βS(C) : ∆S(C)→ ΛS(C) forming a commutative diagram

C
δSC //

λSC ""

∆S(C)

βS(C)
��

ΛS(C)

(analogously to the 1-element case s ∈ R, see the proof of Propo-
sition 1.3.7 and [13, Lemma 2.1 (b)]).
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Proposition 2.6.3. [13, Theorem 2.5] The natural morphism

βS(C) : ∆S(C)→ ΛS(C)

is an isomorphism provided that the S-torsion of C is bounded, i.e. the
S-torsion submodule of C is annihilated by some element s ∈ S.

Theorem 2.6.4. [14, Example 2.4]

(1) The image of the forgetful functor R–contra→ R–Mod is contained
in the full subcategory R–ModS−ctr.

(2) The forgetful functor R–contra → R–ModS−ctr is an equivalence of
categories if and only if the natural morphism ∆S(R[X]) ∼= ΛS(R[X])
is an isomorphism for every set X.

Proof. (1) It suffices to check that the free R-contramodules are S-contramodule
R-modules, since every R-contramodule is the cokernel of a morphism of free
R-contramodules and R–ModS−ctr is closed under cokernels.

For any set X, the free R-contramodule R[[X]] = lim←−s∈S R/sR[X] is an

S-contramodule R-module (by (ii) (1).)
(2) Follows from [14, Proposition 2.1]. �

Combining Proposition 2.6.3 with Theorem 2.6.4 (2) we obtain:

Theorem 2.6.5. If the S-torsion of R is bounded, the forgetful functor
R–contra→ R–Mod is an equivalence of categories.

3. THIRD LECTURE

3.1. n-tilting objects.

Notation 3.1.1. Let A be an abelian category with coproducts, and B be
an abelian category with products. For any object T ∈ A we denote by
Add(T ) = AddA(T ) ⊂ A the class of all direct summands of the coproducts

T (X) of copies of T in A. For any object W ∈ B we denote by Prod(W ) =
ProdB(W ) ⊂ B the class of all direct summands of the products WX of
copies of W in B.

In the sequel A will be a complete, cocomplete abelian category with an
injective cogenerator.

Definition 3.1.2. [17, Pages 5-6] Let n ≥ 0. An object T ∈ A is an
n-tilting object if

(i) the projective dimension of T is at most n, that is ExtiA(T,A) = 0
for all A ∈ A and i > n;

(ii) ExtiA(T, T (X)) = 0 for all i > 0, for any set X;
(iii) every X• ∈ D(A) such that HomD(A)(T,X[i]) = 0 for all i ∈ Z is

acyclic.

Assume that T satisfies (i) and (ii), let

E = {E ∈ A | ExtiA(T,E) = 0, for all i > 0},
then, Ainj, the class of injective objects of A, is contained in E and by the
condition (ii), AddA(T ) ⊂ E .
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For each integer m ≥ 0 and every n-tilting object T , let

Lm = {L ∈ A | ∃ an exact sequence 0→ L→ T 0 → T 1 → · · · → Tm → 0},

with the objects T i ∈ Add(T ), for every i = 0, . . . ,m. The following hold
([17, Lemma 2.2])

• Add(T ) = L0 ⊂ L1 ⊂ L2 ⊂ . . . and Ln = Ln+1 = Ln+2 = · · · .
• Set L = Ln,

then ExtiA(L,E) = 0 for every i > 0, for every L ∈ L, E ∈ E .
• L ∩ E = Add(T ) ⊂ A.

Theorem 3.1.3. Assume that an object T ∈ A satisfies (i) and (ii) of
Definition 3.1.2. Then T satisfies also (iii) if and only if every object of E
is a quotient of an object from Add(T ) in A if and only if every object of A
is a quotient of an object from L. (see [17, Theorem 2.4]).

Assume that T is an n-tilting object in A. Then

(1) [17, Theorem 2.4] The pair of classes (L, E) in A is a hereditary
complete cotorsion pair called the n-tilting cotorsion pair associ-
ated with T.
In particular, E is a coresolving class in A, meaning that it is closed
under summands, extensions and cokernels of monomorphisms in A.

(2) [17, Lemma 4.1] E consists of the objects E such that there is an
exact sequence:

T (In) → . . . T (I1) → E → 0,

for some sets I1, . . . , In.
(3) [17, Lemma 4.1] E is closed under coproducts.

Remark 3.1.4. If A is the category A–Mod for an associative ring A, an
n-tilting object T is exactly an n-tilting module, i.e. it satisfies (i) and (ii)
and the ring A has a finite coresolution in AddT :

0→ A→ T 0 → . . . Tn → 0.

Theorem 3.1.5. [17, Theorem 1.3 and Corollary 1.4] Let T ∈ A be an
n-tilting object. Then the pair of full subcategories

TD≤0 = {X• ∈ D(A) | HomD(A)(T,X
•[i]) = 0, for all i > 0},

TD≥0 = {X• ∈ D(A) | HomD(A)(T,X
•[i]) = 0, for all i < 0},

is a t-structure on the unbounded derived category D(A), called the tilting
t-structure.

Moreover, the pair (TDb,≤0, TDb,≥0), restriction of the tilting t-structure
to the bounded derived category Db(A) of A, is a t-structure in Db(A).

Proposition 3.1.6. [17, Proposition 1.5] Assume that T satisfies (i) and
(ii) of Definition 3.1.2 and that (TDb,≤0, TDb,≥0) is a t-structure on Db(A).
Then T satisfies also condition (iii).

Proposition 3.1.7. [17, Proposition 1.6] Let

B = TD≤0 ∩ TD≥0 = {X• ∈ D(A) | HomA(T,X•[i]) = 0,∀i 6= 0}

be the heart of the tilting t-structure.
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(1) The n-tilting object T ∈ A ⊆ D(A) belongs to B and is a projective
generator of B. B has coproducts and the projective objects of B are
the summands of coproducts of copies of T.

(2) The subcategory E ⊆ A can be described as A ∩ B, the intersection
of the hearts of the standard t-structure and the n-tilting t-structure
on D(A).

3.2. n-cotilting objects.

Definition 3.2.1. [17, Pag 18] Let B be a complete, cocomplete abelian
category with a projective generator P ∈ B. Let n ≥ 0. An object W ∈ B is
an n-cotilting object if W op is n-tilting in the abelian category Bop, that is:

(i∗) the injective dimension of W is at most n, that is ExtiB(B,W ) = 0
for all B ∈ B and i > n;

(ii∗) ExtiB(WX ,W ) = 0 for all i > 0, for any set X;
(iii∗) every Y • ∈ D(B) such that HomD(B)(Y,W [i]) = 0 for all i ∈ Z is

acyclic.

All the statements about an n-tilting object in A dualize for an n-cotilting
object in B. In particular:

Assume that W is an n-cotilting object in B, and let

F = {F ∈ B | ExtiB(F,W ) = 0, for all i > 0, }
• Bproj, the class of projective objects of B, is contained in F and by

condition (ii∗), ProdB(W ) ⊂ F .
• F consists of the objects F ∈ B such that there is a exact sequence

0→ F →W I1 → · · · →W In ,

for some sets I1, . . . , In.
• There is a class R such that the pair (F ,R) in B is a hereditary

complete cotorsion pair, called the n-cotilting cotorsion pair as-
sociated to W.
In particular, F is a resolving class in B, meaning that it is closed
under summands, extensions and kernels of epimorphisms in B.
• The class F is closed under under products.

Theorem 3.2.2. [17, Theorem 3.3 and Corollary 3.4] Let B be a complete,
cocomplete abelian category with a projective generator P ∈ B and an n-
cotilting object W . Then the pair of full subcategories

WD≤0 = {Y • ∈ D(B) | HomD(B)(Y
•,W [i]) = 0, for all i < 0},

WD≥0 = {Y • ∈ D(B) | HomD(B)(Y
•,W [i]) = 0, for all i > 0},

is a t-structure on the unbounded derived category D(B), called the cotilting
t-structure.

Moreover, the pair (WDb,≤0, WDb,≥0), restriction of the cotilting t-structure
to the bounded derived category Db(B) of B is a t-structure in Db(B).

Proposition 3.2.3. [17, Proposition 3.8] Let W be an n-cotilting object in
B and A = WD≤0∩WD≥0 be the heart of the cotilting t-structure on D(B).

(1) W ∈ B ⊆ D(B) belongs to A and is an injective cogenerator of A.
A has products and the injective objects of A are the summands of
products of copies of W.
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(2) The subcategory F ⊆ B can be described as B∩A, the intersection of
the hearts of the standard t-structure and the n-cotilting t-structure
on D(B).

3.3. The Tilting-Cotilting Correspondence.

Theorem 3.3.1. [17, Theorem 3.10 and Theorem 3.11] Let A be a complete,
cocomplete abelian category with an injective cogenerator W and an n-tilting
object T and let B = TD≤0 ∩ TD≥0 be the heart of the tilting t-structure.

(1) The object W ∈ B ⊆ D(A) is an n-cotilting object in the abelian
category B.

Let B be a complete, cocomplete abelian category with a projective generator
T and an n-cotilting object W and let A = WD≤0 ∩ WD≥0 be the heart of
the cotilting t-structure.

(2) The object T ∈ A ⊆ D(B) is an n-tilting object in the abelian cate-
gory A.

The previous results can be summarized as follows.

Theorem 3.3.2. [17, Theorem 3.10 and 3.11], [3, Theorem 12.1] There is
a bijective correspondence between complete, cocomplete abelian categories
A with an injective cogenerator J and an n-tilting object T ∈ A, and com-
plete, cocomplete abelian categories B with a projective generator P and an
n-cotilting object W ∈ B.

(1) The correspondence is given by a pair of adjoint functors (Φ,Ψ)

Φ: B −→ A; Ψ: A → B,
obtained respectively from the truncation functors with respect to the
cotilting t-structure on D(B) and the tilting t-structure on D(A).

(2) The restrictions of Φ and Ψ between F ⊂ B and E ⊂ A are mutually
inverse equivalences, as exact categories.

(3) Under the equivalence E ∼= F , the injective cogenerator J ∈ E ⊂ A
corresponds to the n-cotilting object W ∈ F ⊂ B, and the n-tilting
object T ∈ E ⊂ A corresponds to the projective generator P ∈ F ⊂ B.

(4) [17, Theorem 4.5] The exact embedding E ↪→ A induces a triangle
equivalence D(E) ∼= D(A) and the exact embedding F ↪→ B induces
a triangle equivalence D(F) ∼= D(B). Hence there is a triangle equiv-
alence D(A) ∼= D(B).

3.4. Applications to full subcategories of a module category.

Proposition 3.4.1. [17, Theorem 7.1] Let R be an associative ring and M
a left R-module. The category Add(M) is equivalent to the category of pro-
jective left R-contramodules where R is the complete, separated topological
ring HomR(M,M)op with a basis of neighbourhoods of zero formed by right
ideals.

Proof. Consider the ring HomR(M,M) with the finite topology, that is the
topology in which the base of neighbourhoods of zero is formed by the an-
nihilator ideals Ann(F ) of the finitely generated R-submodules F ⊆M.

Ann(F ) ∼= HomR(M/F,M) and HomR(M,M)/Ann(F ) is the set of all
morphisms F →M that can be extended to morphisms M →M.
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A morphism f : M → M is given by a compatible system of R-module
morphisms F →M , for all the finitely generated submodules F ⊆M , hence
we have an isomorphism

HomR(M,M) ∼= lim←−
F⊆M

HomR(M,M)

Ann(F )
.

Let R = HomR(M,M)op. R is a complete, separated topological ring with
a base of the topology formed by open right ideals.

We have the two monads

TM : Sets→ Sets, X 7→ HomR(M,M (X))

TR : Sets→ Sets, X 7→ R[[X]],

where HomR(M,M (X)) ⊂ HomR(M,M)X and R[[X]] ⊂ RX .

We claim that TM ∼= TR, that is HomR(M,M (X)) = R[[X]]. In fact, an
X-indexed family of morphisms gx : M → M corresponds to a morphism
M → M (X) if and only if for every finitely generated submodule F of M ,
gx(F ) = 0 for all but finitely many indices x ∈ X, that is, if and only if it
converges to zero in the topology of HomR(M,M), if and only if {gx}x∈X ∈
R[[X]].

The functor

HomR(M,−) : R–Mod→ R–contra

sends M (X) to the free R-contramodule R[[X]] and induces an equivalence
between AddM and the full subcategory of projective R-contramodules. �

Remark 3.4.2. More explicitly: For any associative ring R and R-modules
M,N , the group HomR(M,N) has a natural structure of a left R-contramodule
over the topological ring R = HomR(M,M)op described as follows.

For every set X, let rx be a family of elements of R converging to zero
and corresponding to a family gx ∈ HomR(M,M). For every family fx ∈
HomR(M,N) and m ∈M define

∑
x∈X rxfx ∈ HomR(M,N) by:(∑

x∈X
rxfx

)
(m) =

∑
x∈X

fx(gx(m)),

the sum on the right-hand side is finite since the family gx converges to zero.

Theorem 3.4.3. [17, Corollary 7.2 and Corollary 7.4] Let R be an asso-
ciative ring and A ⊆ R–Mod be a full subcategory closed under coprod-
ucts. Suppose that A is abelian with products and an injective cogenerator.
Then, for any n-tilting object T ∈ A, the abelian category B, that is the
heart of the n-tilting t-structure on D(A) associated with T is equivalent to
the abelian category of left contramodules R–contra over the topological ring
R = HomA(T, T )op :

B ∼= R–contra.

In particular, there is a derived equivalence:

RΨ: D(A) � D(R–contra) : LΦ.
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Proof. The abelian categories B and R–contra have enough projectives. The
category of projective objects in B is equivalent to Add(T ) ⊆ A ⊆ R–Mod
by Proposition 3.1.7. An abelian category with enough projectives is de-
termined by its full subcategory of projective objects and by (the proof of)
Proposition 3.4.1 Add(T ) is equivalent to the category of projective objects
in R–contra. Hence the derived equivalence follows by Theorem 3.3.2 (4). �

3.5. Example [3, Sections 17 and 19]. Let f : R −→ S be an injective ring
epimorphism such that TorR1 (S, S) = 0, the flat dimension (f.dim) of S as a
right R-module is at most 1 and the projective dimension (p.dim) of S as a
left R-module is at most 1. There is a short exact sequence

0→ R→ S → S/R = K → 0

where K and S are R-R-bimodules. It is known (see [1]) that the left
R-module S ⊕K is a 1-tilting left R-module.

Consider the full subcategoryA ofR–Mod consisting of the leftR-modules
M such that

S ⊗RM = 0 = TorR1 (S,M).

Under our homological assumptions we have:

• A is closed under kernels, cokernels, extensions, and coproducts in
R–Mod, hence it is exactly embedded in R–Mod.
• [3, Proposition 17.1] The functor ΓS = TorR1 (K,−) is right adjoint

to the embedding functor A → R–Mod.
• X ∈ A if an only if X ∼= TorR1 (K,X).
• [3, Proposition 17.4] A is a Grothendieck category; if I is an injective

cogenerator of R–Mod, then ΓS(I) is an injective cogenerator of A.

Remark 3.5.1. [3, Remark 16.9] Note that A is not a torsion class in
R–Mod. It is contained in the torsion class T consisting of the left R-modules
M such that S⊗RM = 0 and the two classes A and T coincide if and only if
S is flat as a right R-module. In this case the torsion class is also hereditary.

Proposition 3.5.2. [3, Theorem 19.1] The object K is a 1-tilting object of
the category A.

Proof. K ∈ A and the left R-module S⊕K is a 1-tilting module in R–Mod,
hence K satisfies conditions (i) and (ii) in A. The tilting class in R–Mod
corresponding to the 1-tilting module S ⊕ K is the class of S-divisible R-
modules, that is the class generated by S. Let E = Ker(Ext1A(K,−)). An
object X ∈ A is in E if and only if X is S-divisible. There is a left ap-
proximation 0 → Y → S(α) ⊕ K(α) → X → 0 of X in R–Mod with Y an
S-divisible left R-module.

Applying the functor TorR1 (K,−) to the above sequence we get

TorR1 (K,S(α) ⊕K(α)) ∼= K(α) → TorR1 (K,X) ∼= X → K ⊗R Y = 0

where the last term vanishes since Y is S-divisible and K ⊗ S = 0.
Hence K satisfies condition (iii) by the characterization in Theorem 3.1.3.

�
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Consider the full subcategory R–ModS–contra of R–Mod consisting of the
left R-modules C such that

HomR(S,C) = 0 = Ext1R(S,C).

• By the assumption p.dimRS ≤ 1, the full subcategory R–ModS–contra
is closed under kernels, cokernels extensions and products in R–Mod,
hence it is exactly embedded in R–Mod.
• For everyR-module C the module Ext1R(K,C) is an S-contramodule.

This can be proved analogously to Lemma 1.2.1 (2) using that

S ⊗R K = 0 = TorR1 (S,K).

(See also [3, Lemma 16.7 (c)].)

Proposition 3.5.3. [3, Proposition 17.2] The functor

∆S = Ext1R(K,−) : R–Mod −→ R–ModS–contra

is left adjoint to the embedding functor R–ModS–contra −→ R–Mod. In par-
ticular, ∆S(R) = Ext1R(K,R) is a projective generator of R–ModS–contra.

Proof. The natural isomorphism HomR–ModS–contra
(∆S(C), D) ∼= HomR(C,D),

for every R-module C and S-contramodule D is proved similarly to the case
of one element localization R[s−1](see Proposition 1.3.7). Indeed, there is
an exact sequence

HomR(S,C)→ C
δS→ Ext1R(K,C)→ Ext1R(S,C)→ 0

where Ker δS(C) is S-divisible and Ext1R(S,C) is an S-module. �

Theorem 3.5.4. [3, Theorems 19.1, 19.2] Let A and K be as above. Let R
be the topological ring HomR(K,K)op with the finite topology. The following
hold:

(1) The forgetful functor R–contra −→ R–Mod is fully faithful, and its
essential image coincides with the full subcategory R–ModS–contra of
S-contramodules. In particular, R–contra ∼= R–ModS–contra.

(2) The categories A and R–ModS–contra are connected by the 1-tilting
correspondence:

HomR(K,−) : A� R–ModS–contra : K ⊗R −.

Proof. (1) The forgetful functor R–contra −→ R–Mod sends R[[X]] to ∆S(R(X))
(see the next paragraph) and it preserves cokernels. The full subcate-
gory R–ModS–contra ⊂ R–Mod is closed under cokernels, and every left
R-contramodule is the cokernel of a morphism of free left R-contramodules,
hence the image of the forgetful functor is contained in R–ModS–contra.

To show that R–contra is equivalent to R–ModS–contra it is enough to
show the equivalence between their subcategories of projective objects. By
[14, Proposition 2.1] this holds provided that there is a natural isomorphism

∆S(R(X)) ∼= R[[X]] for every set X. Now, from the exact sequence

0→ R(X) → S(X) → K(X) → 0,

we have natural isomorphisms R[[X]] ∼= HomR(K,K(X)) ∼= Ext1R(K,R(X)) =

∆S(R(X)).
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(2) By Theorem 3.3.2 (1) there is a correspondence

Ψ: A� B : Φ

where B is the heart of the tilting t-structure on D(A) induced by K. By
Theorem 3.4.3, B ∼= R–contra, hence by part (1) we get the correspondence
between A and R–ModS–contra. By [17, Corollary 7.4] the functor Ψ can be
computed as HomR(K,−) and Φ is given by K ⊗R −, since the forgetful
functor R–contra −→ R–Mod is fully faithful (see [17, Lemma 7.9].) �

3.6. Good tilting modules.

(1) If RT is a finitely generated n-tilting module with endomorphism
ring S, then it is well known that there is a derived equivalence:

T ⊗L
S − : D(S) � D(R) : RHomR(T,−).

(2) An infinitely generated n-tilting module RT is said to be good if
the ring R has an AddT -coresolution 0→ R→ T 0 → · · · → Tn → 0
where T i are summands of finite direct sums of copies of T.
(For every n-tilting module T there is a set Y such that T (Y ) is a good

n-tilting module giving rise to the same tilting class).

(3) [4] Let RT be a good n-tilting module with endomorphism ring S.
There is an adjunction

T ⊗L
S − : D(S) � D(R) : RHomR(T,−),

where RHomR(T,−) is fully faithful and induces a derived equiva-
lence:

D(R) ∼=
D(S)

Ker(T ⊗L
S −)

where D(S)/Ker(T ⊗L
S −) is a Verdier quotient of D(S).

(4) In Proposition 3.6.4 we will see that the above derived equivalence
can be stated in terms of contramodules.

Definition 3.6.1. An object M in a category with coproducts is said to be
κ-small if every morphism M → M (X) factors through M (Z) → M (X) for
a subset Z of X of cardinality strictly smaller than κ.

Theorem 3.6.2. [17, Theorem 6.6] Let B be a cocomplete abelian category
with a κ-small projective generator P . Let Y be a set of cardinality λ such
that λ+ ≥ κ. Let Q = P (Y ) and S = HomB(Q,Q)op. Then the functor

HomB(Q,−) : B → S–Mod

is fully faithful and admits a left adjoint functor.

Proposition 3.6.3. [17, Theorem 7.10] Let R be an associative ring, M a
left R-module, and Y be a set of cardinality greater or equal to the min-
imal cardinality of a set of generators of M. Consider L = M (Y ). Let
R = HomR(M,M)op and S = HomR(L,L)op.

Then AddM ∼= Rproj, AddL ∼= Sproj, hence R–contra ∼= S–contra (since
AddM = AddL).

Moreover, the forgetful functor

S–contra→ S–Mod

is fully faithful.
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Proof. The functor HomR(M,−) : R–Mod → R–contra sends L = M (Y ) to
R[[Y ]] (see the proof of Proposition 3.4.1). The annihilators of the finitely
generated submodules of M give a basis for the topology of R, hence, by
the choice of Y , R is a κ-small projective generator of R–contra.

Theorem 3.6.2 shows that

HomR–contra(R[[Y ]],−) : R–contra→ S–Mod

is fully faithful. �

Application [17, Corollary 7.11] Let T be an n-tilting left R-module and
R = HomR(T, T )op. Let B be the heart of the tilting t-structure induced by
T on D(R) and Y a set as in Proposition 3.6.3, then

B ∼= R–contra ∼= S–contra

and the adjunction

Φ: B −→ R–Mod; Ψ: R–Mod→ B,
from the Tilting-Cotilting correspondence is given by the restriction of the
adjunction

T (Y ) ⊗S − : S–Mod � R–Mod : HomR(T (Y ),−).

As a consequence of the previous discussion we obtain:

Proposition 3.6.4. [17, Proposition 7.13] If T ∈ R–Mod is a good n-tilting
module and S = HomR(T, T )op, then the forgetful functor

S–contra→ S–Mod

induces a fully faithful functor D(S–contra)→ D(S). The functor

RHomR(T,−) : D(R)→ D(S)

is fully faithful and the adjunction

T ⊗L
S − : D(S) � D(R) : RHomR(T,−)

restricts to the equivalence

T ⊗L
S − : D(S–contra) � D(R) : RHomR(T,−).
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