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Abstract. We study the behaviour of modules M that fit into a short exact

sequence 0→M → C →M → 0, where C belongs to a class of modules C, the
so-called C-periodic modules. We find a rather general framework to improve

and generalize some well-known results of Benson and Goodearl and Simson.

In the second part we will combine techniques of hereditary cotorsion pairs
and presentation of direct limits, to conclude, among other applications, that

if M is any module and C is cotorsion, then M will be also cotorsion. This will

lead to some meaningful consequences in the category Ch(R) of unbounded
chain complexes and in Gorenstein homological algebra. For example we show

that every acyclic complex of cotorsion modules has cotorsion cycles, and more

generally, every map F → C where C is a complex of cotorsion modules and
F is an acyclic complex of flat cycles, is null-homotopic. In other words, every

complex of cotorsion modules is dg-cotorsion.

Introduction

Throughout this paper R is an associative ring with identity and all modules
will be right R-modules.

The goal of this work is the study of periodic and pure periodic modules with
respect to an arbitrary class of modules C. More precisely, one of the main objectives
we pursue is to know when C-periodic modules (resp. pure C-periodic modules) are
trivial, where an R-module M is called C-periodic (resp. pure C-periodic) if it fits
into an exact sequence (resp. into a pure exact sequence) of the form 0 → M →
C → M → 0, with C ∈ C, and it is called trivial if it belongs to C. The origin
of this problem comes from the celebrated result by Benson and Goodearl [BG00,
Theorem 2.5] in which they show that each flat Proj-periodic module is trivial
(here Proj denotes the class of all projective modules). It is then easy to observe
that Benson and Goodearl statement can be reformulated to saying that each pure
Proj-periodic module is trivial. This is because M is always flat in each pure short
exact sequence of the form 0→M → P →M → 0, with P projective.

This module-theoretic property has a remarkable consequence at the level of
chain complexes of modules: every acyclic complex of projective modules with
flat cycles is contractible. This connection between flat Proj-periodic modules and
acyclic complexes of projective modules was firstly observed by Christensen and
Holm [CH15] and entitled them to find the module-theoretic proof conjectured by
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2 S. BAZZONI, M. CORTÉS IZURDIAGA, AND S. ESTRADA

Neeman in [Nee08, Remark 2.15] to get the aforementioned result on acyclic com-
plexes of projective modules with flat cycles (Neeman already gives a proof of this
fact by using homotopy techniques). In 2002 Simson [Sim02] realized that Benson
and Goodearl’s theorem can be established in the pure setting of a finitely acce-
sible Grothendieck category, by showing that if M fits into a pure exact sequence
0→M → T →M → 0, with T pure projective (i.e. a direct summand of a direct
sum of finitely presented objects), then M itself is pure projective. In other words,
every pure PProj-periodic module is trivial (PProj is the class of all pure projective
modules).

We devote the first part of this paper to show that both Benson and Goodearl
and Simson results are encoded under the following rather more general statement
(see Theorem 2.5, Corollary 2.6(1) and (2)):

Theorem 0.1. Any short exact sequence 0 → M ↪→ G
g→ M → 0 in which g is

locally split and G is a direct sum of countably generated modules is split.

Aside from the preceding particular instances of this Theorem, we also get (Corol-
lary 2.6) that each pure Add(P)-periodic module is trivial (here P denotes a class
of finitely presented modules and Add(P) is the class of direct summands of direct
sums of modules in P).

Now, if we think on a flat module F as such that every short exact sequence
0 → M → N → F → 0 is pure, we immediately realize that the dual notion
of flat module is that of absolutely pure (=FP-injective) module (i.e. a module
E such that each exact sequence of modules 0 → E → L → T → 0 is pure).
Thus it seems natural to wonder whether or not the dual version of Benson and
Goodearl’s theorem holds. Namely, is every Inj-periodic absolutely pure module
injective? (Inj is the class of all injective modules). Or even more generally, is
every pure PInj-periodic module trivial? (here PInj stands for the category of
pure injective modules, i.e. modules L such that each pure short exact sequence
0 → L → A → B → 0 splits). Recently, the answer to this question has been
positively settled by Št’ov́ıček [Št’o14, Corollary 5.5] by using complete cotorsion
pairs in the category of unbounded chain complexes.

Thus, at this point, we know that every pure PProj-periodic module is trivial
and that every pure PInj-periodic module is also trivial. For the global case we
know that flat Proj-periodic modules are trivial and that Inj-periodic absolutely
pure modules are also trivial. But there are rings for which there exist non trivial
C-periodic modules for the classes Proj, Inj and Flat. These non trivial C-periodic
modules can be constructed when C is a proper generating and cogenerating class,
see Corollary 1.5.

However when considering the class Cot of cotorsion modules (i.e. the right
Ext-orthogonal with respect to the flat modules) one confronts the major problem
that this class is almost never generating (except in the trivial case in which the
ring is right perfect, when all modules are cotorsion). This is due to a result of
Guil Asensio and Herzog [GAH05, Corollary 10] for which we include here a short
proof (Theorem 3.10). This suggests that Cot-periodic modules might be trivial,
and indeed one of the main applications of the second part of the paper is to show
that this is the case.

Hence we devote the second part of this paper to address, among others, this
question. We will work directly with hereditary cotorsion pairs in the module
category, rather than in the category of complexes. So we get a slightly more
direct proof of the dual of Benson and Goodearl Theorem. Also our methods
seem to be more far reaching as they allow to prove, as we announced before, that
each Cot-periodic module is trivial and also allow to get significant consequences in
Gorenstein homological algebra. We state below the main applications based on the
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general theorem (Theorem 3.7). The reader can find the proof of these applications
in Proposition 3.8 and Corollaries 3.11 and 4.5.

Theorem 0.2. The following hold true:

(1) Every Inj-periodic absolutely pure module is trivial.
(2) Let (A,B) be a hereditary cotorsion pair in Mod-R. Assume that A is closed

under pure epimorphic images. Then every B-periodic module is cotorsion.
In particular, every Cot-periodic module is trivial (and so every Inj-periodic
module is cotorsion).

(3) Assume that each finitely generated right ideal has finite flat dimension.
Then each Gorenstein injective module is injective. In particular if a ring
has finite weak global dimension, every Gorenstein injective module is in-
jective.

(4) Assume that each finitely generated right ideal has finite injective dimen-
sion. Then each Gorenstein injective module is injective.

(5) Every pure PInj-periodic module is trivial.

The third and fourth statements are applications of Theorem 3.7 to the realm
of Gorenstein homological algebra. The first statement shows the dual version of
Benson and Goodearl Theorem. The second statement has very interesting, and
perhaps surprising, consequences for chain complexes of modules as we will indicate
now. The last part of the paper (Section 4) is therefore devoted to infer these and
other applications of C-periodic modules for chain complexes.

We have already mentioned the relationship observed by Holm and Christensen
between flat Proj-periodic modules and acyclic chain complexes of projective mod-
ules with flat cycles. In a recent paper Estrada, Fu and Iacob [EFI17] show that
Christensen’s and Holm’s argument can be easily extended to provide a nice corre-
spondence between C-periodic modules in a class D of modules, and acyclic com-
plexes of modules in C with cycles in D (see Proposition 1.4 for a precise formulation
of the statement). This bridge between periodic modules and acyclic complexes,
is the key to find applications of our results in the category Ch(R) of unbounded
chain complexes. The first application is a consequence of Theorem 0.2(2). We
recall that a chain complex C is called dg-cotorsion if each Cn is a cotorsion mod-
ule and each map f : F → C from an acyclic complex F of flat modules with flat
cycles, is null-homotopic.

Theorem 0.3. Every acyclic complex of cotorsion modules has cotorsion cycles.
As a consequence, every complex of cotorsion modules is dg-cotorsion.

The proof of this Theorem can be found in theorems 4.1 and 4.3. As a particular
instance, we get that every acyclic complex of injectives has cotorsion cycles. This
was already proved by Št’ov́ıček [Št’o14, Corollary 5.9].

The second application (Corollary 4.6) also recovers a result of Št’ov́ıček ([Št’o14,
Theorem 5.5]):

Corollary 0.4. Let G be a finitely accessible additive category, and let P̃urAc
be the class of pure acyclic complexes in Ch(G) (i.e. concatenation of pure short
exact sequences in G) and dwPInj be the class of chain complexes with pure injective

components. The pair of classes (P̃urAc, dwPInj) is a complete hereditary cotorsion
pair in Ch(G)dw-pur (this is the category Ch(G) of unbounded chain complexes with
the degreewise pure exact structure induced from G).

1. Preliminaries

Given an ordinal κ, a family of sets {Aα | α < κ} is called continuous if⋃
α<λAα = Aλ for each limit ordinal λ smaller than κ. Given a map f : A → B
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and C a subset of A, we shall denote by f � C the restriction of f to C. The
cardinality of a set A will be denoted by |A|; ω will be the first infinite ordinal
number.

Let X be a class of modules containing all projective modules and n a natural
number. We shall denote by Xn the class of all modules with X -projective dimension
less than or equal to n (a module M is said to have X -projective dimension less
than or equal to n if there exists a projective resolution of M such that its (n−1)st
syzygy belongs to X ). The right finitistic X -projective dimension of R is

FPDX (R) = Min{n < ω : Xn = Xn+1}
in case the set in the right is not empty, or ∞ otherwise. The right finitistic
Y-injective dimension, FIDY(R), for a class Y containing all injective modules is
defined analogously. We will denote by Proj, Inj, Flat, Abs, Cot, PProj and PInj the
classes Mod-R consisting of all projective, injective, flat, absolutely pure, cotorsion,
pure projective and pure injective modules respetively.

1.1. Locally split short exact sequences. An epimorphism (resp. monomor-
phism) f : M → N in Mod-R is locally split if for each x ∈ N (resp. x ∈M) there
exists g : N →M such that fg(x) = x (resp. gf(x) = x).

By [Azu92, Corollary 2], the morphism f is a locally split epimorphism if and
only if for each finite subset F of N , there exists g : N →M such that fg(x) = x for
each x ∈ F . Moreover, by [ZH92, Proposition 11], if f is a locally split epimorphism
and N is countably generated, then f is actually split. We shall use the following
property of locally split epimorphisms:

Lemma 1.1. Consider the following commutative diagram in Mod-R

M N

K L

f

h g

i

in which f and g are locally split epimorphisms. Then so is i.

Proof. Let x ∈ L and g : L→ N be such that gg(x) = x. Moreover, let f : N →M
be such that ff(g(x)) = g(x). Then the morphism i := hfg from L to K satisfy
ii(x) = x. Since x is arbitrary, this means that i is locally split. �

Given a submodule K of a module M , if the inclusion K → M (resp. the
projection M → M

K ) is locally split, we shall say that K (resp. M
K ) is a locally split

submodule (resp. quotient) of M . Given C a class of modules we shall denote by:

• Add(C) the class of all modules that are isomorphic to a direct summand
of a direct sum of modules in C;
• add(C) the class of all modules that are isomorphic to a direct summand of

a finite direct sum of modules in C;
• G(C) the class of all modules M for which there exists a locally split epi-

morphism A→M with A ∈ Add(C);
• and S(C) the class of all modules M for which there exists a locally split

monomorphism M → A with A ∈ Add(C).
The following lemma recalls properties of the classes G(C) and S(C). The prop-

erties (1), (2) and (4) are well known. The property (3) is an extension of a classical
result for free modules due to Villamayor (see [Cha60, Proposition 2.2]):

Lemma 1.2. Let C be a class of modules.

(1) The class G(C) is closed under locally split quotients and locally split sub-
modules. Consequently, S(C) ⊆ G(C).
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(2) Countably generated modules belonging to G(C) or S(C) actually belong to
Add(C).

(3) If C consists of finitely generated modules, then S(C) is closed under pure
submodules.

(4) If C consists of finitely presented modules, then G(C) is closed under pure
submodules.

Proof. (1) The class G(C) is clearly closed under locally split quotients. It is closed
under locally split submodules as a consequence of [AH03, Lemma 2.1].
(2) Since a locally split epimorphism onto a countably generated module is split,
a countably generated module belonging to G(C) actually belongs to Add(C). As
S(C) ⊆ G(C), countably generated modules in S(C) belong to Add(C) too.
(3) Let N ∈ S(C) and K a pure submodule of N . Since N is isomorphic to a locally
split submodule of a module A which is a direct summand of a direct sum of finitely
generated modules, we may assume that there exists a family {Ni | i ∈ I} of finitely
generated modules such that N is a locally split submodule of

⊕
i∈I Ni.

We prove that K is a locally split submodule of N which implies, by [Zim02,
Proposition 1.3], that K ∈ S(C). Let U be a finitely generated submodule of K.
There exists a finite set J ⊆ I and a commutative diagram

0 U
⊕

j∈J Nj C ′ 0

0 K
⊕

i∈I Ni C 0.

p′

q

p

Since K is pure in
⊕

i∈I Ni and C ′ is finitely presented, there exists a morphism
r : C ′ →

⊕
i∈I Ni such that pr = q. By [Wis88, 7.16] there exists g :

⊕
j∈J Nj → K

such that g(u) = u for each u ∈ U . This g extends to a morphism g′ :
⊕

i∈I Ni → K
whose restriction to N , g : N → K, trivially satisfies g(u) = u for each u ∈ U . Then
K is a locally split submodule of N .
(4). This is [AH03, Proposition 2.3]. �

A short exact sequence

0→ K
f→M

g→ N → 0

is said to be locally split if f is a locally split monomorphism and g is a locally split
epimorphism. Contrary to the case of pure exact sequences, there exist locally split
epimorphisms and locally split monomorphisms such that the corresponding short
exact sequence is not locally split (see [ZH92, Example 13]). However, if in a short
exact sequence

0→ K
f→M

g→ N → 0,

g is locally split and M is a direct sum of countably generated modules, then the
sequence is locally split by [ZH92, Proposition 12]. This is the situation of our
Theorem 0.1.

1.2. Complete cotorsion pairs. A pair of classes (A,B) in an abelian category
G is called a cotorsion pair if A⊥ = B and ⊥B = A, where, for a given class of
objects C, the right orthogonal class C⊥ is defined as the class of objects M such
that Ext1

G(C,M) = 0 for each object C ∈ C. Similarly, the left orthogonal class
⊥C is defined. The cotorsion pair is called hereditary if ExtiG(A,B) = 0 for all
A ∈ A and B ∈ B, and i ≥ 1. Finally we say that the cotorsion pair is complete
when it has enough injectives and enough projectives. This means that for each
M ∈ G there exist exact sequences 0→ M → A→ B → 0 (enough injectives) and
0→ B′ → A′ →M → 0 (enough projectives), where A,A′ ∈ A and B,B′ ∈ B.
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1.3. Chain complexes of modules. Let G be an abelian category, we denote by
Ch(G) the category of unbounded chain complexes of objects in G, i.e. complexes
G of the form

· · · → Gn+1

dGn+1−−−→ Gn
dGn−−→ Gn−1 → · · · .

We will denote by ZnG the n cycle of G, i.e. ZnG = Ker(dGn ). Given a chain
complex G the nth-suspension of G, ΣnG, is the complex defined as (ΣnG)k = Gk−n
and dΣnG

k = (−1)ndGk−n. And for a given object A ∈ G, the n-disk complex is the
complex with the object A in the components n and n− 1, dn as the identity map,
and 0 elsewhere. Given a covariant functor F : G → H between abelian categories,
we shall denote by F (G) the complex

· · · → F (Gn+1)
F (dGn+1)
−−−−−→ F (Gn)

F (dGn )−−−−→ F (Gn−1)→ · · ·
If F is contravariant, we define F (G) in a similar way.

In case G = Mod-R, we will denote Ch(G) simply by Ch(R). An acyclic complex
G in Ch(R) consisting of projective modules (resp. injective modules) is said to
be totally acyclic if HomR(G,P ) (resp. HomR(I,G)) is acyclic for each projective
module P (resp. injective module I). For every class C of modules, we shall consider
the following classes of complexes of modules:

• dw C is the class of all complexes X ∈ Ch(R) such that Xn ∈ C for all
n ∈ Z. Ch(C) will denote the full subcategory of Ch(R) with objects in
dw C.

• ex C is the class of all acyclic complexes in dw C.
• C̃ is the class class of all complexes X ∈ ex C with the cycles ZnX in C for

all n ∈ Z.
• If (A,B) is a cotorsion pair in Mod-R, then dgA is the class of all com-

plexes X ∈ dwA such that any morphism f : X → Y with Y ∈ B̃ is
null homotopic. Since Ext1

R(An, Bn) = 0 for every n ∈ Z, a well known

formula shows that dgA = ⊥B̃. Similarly, dgB is the class of all com-
plexes Y ∈ dwB such that any morphism f : X → Y with X ∈ Ã is null
homotopic. Hence dgB = Ã⊥.

If C is a class of complexes of modules, we shall denote by Z(C) the class of all
modules isomorphic to a cycle of some complex belonging to C.

1.4. C-periodic modules. We are interested in periodic modules with respect to
a class of modules.

Definition 1.3. Let C be a class of modules and M a module. We say that M is
C-periodic (resp. pure C-periodic) if there exists an exact sequence (resp. a pure
exact sequence)

0→M → C →M → 0

with C ∈ C.

These modules are related with Gorenstein modules. Recall that a module M
is Gorenstein projective (resp. Gorenstein injective) if there exists a totally acyclic
complex of projective modules (resp. injective modules) such that M ∼= Z0G. And
M is said to be strongly Gorenstein projective (resp. strongly Gorenstein injective)
if it is Gorenstein projective and Proj-periodic (resp. Gorenstein injective and Inj-
periodic), see [DB07, Proposition 2.9]. By [DB07, Theorem 2.7], each Gorenstein
projective (resp. Gorenstein injective) module is a direct summand of a strongly
Gorenstein projective (resp. strongly Gorenstein injective) module.

Analogously, a module M is said to be Gorenstein flat if there exists an acyclic
complex G consisting of flat modules such that G⊗R I is exact for each injective left
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R-module I and M ∼= Z0G. And M is strongly Gorenstein flat if it is Flat-periodic
and Gorenstein flat. By [DB07, Theorem 3.5], each Gorenstein flat module is a
direct summand of a strongly Gorenstein flat module.

The relationship between Gorenstein modules and strongly Gorenstein modules
observed by Bennis and Mahdou can be extended to cycles of certain chain com-
plexes and periodic modules, as we show in the following proposition. This approach
was used by Christensen and Holm [CH15] and by Fu and Herzog [FH16] in the
special case of flat Proj-periodic modules. We present now the general formulation
that appears in [EFI17].

Proposition 1.4. ([EFI17, Proposition 1 and Proposition 2]) Let C be a class of
modules closed under direct sums or under direct products and let D be a class
closed under direct summands. The following are equivalent:

(1) Every cycle of an acyclic complex with components in C belongs to D, that
is Z(ex(C)) ⊆ D.

(2) Every C-periodic module belongs to D.

Let C be a class of modules. One of our main concerns is when C-periodic modules
are trivial, in the sense that they belong to the initial class C. The preceeding result
gives us a procedure to construct non trivial C-periodic modules: we only have to
find a complex in ex C whose cycles do not lie in C. This complex exists if C is a
generating and cogenerating class in Mod–R.

Corollary 1.5. Let C be a generating and cogenerating class of modules closed
under direct sums or direct products. Let D be a class of modules closed under
direct summands which is not equal to the whole category Mod-R. Then there exist
periodic modules not belonging to D.

Proof. Let M be a module not belonging to D. Since C is generating and cogenerat-
ing, there exists a complex C ∈ ex C such that M ∼= Z0C. Then, if C is closed under
direct sums (resp. direct products),

⊕
n∈Z ZnC (resp.

∏
n∈Z ZnC) is a C-periodic

module not belonging to D. �

2. Locally split monomorphisms and generalized periodic modules

This section is devoted to prove Theorem 0.1. We begin with a technical lemma.
In general, if f1 and f2 are split monomorphisms in the commutative diagram

K ′ M ′

K M

i

f1 f2

k

then the splittings of f1 and f2 need not make the diagram commutative. The
following lemma constructs a splitting which makes the diagram commutative in
some particular cases.

Lemma 2.1. Consider the following diagram in Mod-R with exact rows

0 K ′ M ′ L′ 0

0 K M L 0

i

f1

j

f2 f3

k l

such that f1, f3 and k are splitting monomorphisms. Then for any splitting f1 of
f1, there exists a splitting f2 of f2 such that if1 = f2k.
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Proof. Let f3 be a splitting of f3 and k a splitting of k. Then i := f1kf2 is a
splitting of i and, consequently, there exists j a splitting of j.
Now let l′ be a splitting of l and note that L = Im f3⊕N for some N . Denoting by l
the direct sum of the morphisms f2j(f3 � Im f3) : Im f3 →M and l′ � N : N →M ,
we obtain a splitting of l satisfying lf3 = f2j.
Finally, notice that M = Im k⊕ Im l. Define f2 as the direct sum of the morphisms
if1k : Im k → M ′ and jf3l : Im l → M ′. It is easy to see that f2 is a splitting of
f2 satisfying if1 = f2k. �

In general, the union of a chain of direct summands of a module is not a di-
rect summand. The following lemma shows a situation in which the union of a
continuous chain of direct summands is a direct summand.

Lemma 2.2. Let G be a module and M a submodule of G. Suppose that there
exist an ordinal κ, a continuous chain {Mα | α < κ} of submodules of M , with
M =

⋃
α<κMα, and a continuous chain {Gα | α < κ} of submodules of G, such

that:

(a)
⋃
α<κGα is a direct summand of G;

(b) Gα is a direct summand of Gα+1 for each α < κ;
(c) Mα = Mα+1 ∩Gα for each α < κ;

(d) M0 is a direct summand of G0 and Mα+1+Gα
Gα

is a direct summand of Gα+1

Gα
for each α < κ.

Then M is a direct summand of G.

Proof. Denote by fα : Mα → Gα the inclusion for each α < κ. We are going to
construct, for each α < κ, a morphism fα : Gα → Mα such that fαfα = 1Mα

and
iγαfγ = fαjγα for each γ < α, where iγα : Mγ → Mα and jγα : Gγ → Gα are

the inclusions. Then the direct limit map of the fα’s is a splitting of the inclusion
M ↪→

⋃
α<κGα, which implies that M is a direct summand of G by (a).

We shall make the construction recursively on α. If α = 0, take a splitting f0 : G0 →
M0 of f0. If α is limit, let fα be the direct limit of the system {fγ | γ < α}. Finally,
suppose that α is succesor, say α = µ+1. Using the snake lemma we can construct
the following commutative diagram,

0 Mµ Gµ
Gµ
Mµ

0

0 Mµ+1 Gµ+1
Gµ+1

Mµ+1
0

0
Mµ+1

Mµ

Gµ+1

Gµ

Gµ+1

Mµ+1+Gµ
0

fµ

iµµ+1

gµ

jµµ+1 kµ

fµ+1

pµ

gµ+1

qµ rµ

hµ lµ

in which kµ is monic, since Mµ+1 ∩ Gµ = Mµ by (c) and, consequently, hµ is
monic too. But hµ(x + Mµ) = x + Gµ for each x ∈ Mµ+1, which means that

Imhµ =
Mµ+1+Gµ

Gµ
. By (d), hµ splits. Since jµµ+1 splits by (b) and fµ splits

by induction hyphotesis, we can apply Lemma 2.1 to the splitting fµ of fµ to

construct a spliting fµ+1 of fµ+1 such that fµ+1jµµ+1 = iµµ+1fµ. This concludes
the construction. �

The proof of Theorem 0.1 relies on the following lemmas.

Lemma 2.3. Let λ be an infinite cardinal and g : G → M be a locally split epi-
morphism. Then for each ≤ λ-generated submodule C of M , there exists a ≤ λ-
generated submodule D of G such that C ⊆ g(D) and g � D : D → g(D) satisfies the
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following property: for each x ∈ g(D), there exists f : M → G such that gf(x) = x
and fg(D) ≤ D.

If, in addition, G = ⊕i∈IGi for a family {Gi : i ∈ I} of countably generated
modules, then there exists a subset J of I of cardinality less than or equal to λ such
that D = ⊕j∈JDj.

Proof. We are going to construct a chain {Dn : n < ω} of ≤ λ-generated submod-
ules of G with C ≤ g(D0), and a chain {Hn : n < ω} of subsets of HomR(M,G)
such that |Hn| ≤ λ, verifying the following properties for every n < ω:

(a) given x ∈ g(Dn) there exists f ∈ Hn with gf(x) = x,
(b) and fg(Dn) ≤ Dn+1 for each f ∈ Hn.

We shall make the construction recursively on n. For n = 0 let D0 be a λ-generated
submodule of G such that C ≤ g(D0) and take a generating set {x0

α : α < λ} of
g(D0). Since g is locally split, for each finite subset Γ of λ there exists, by [Azu92,
Corollary 2], a morphism f0

Γ : M → G such that gf0
Γ(x0

γ) = x0
γ for each γ ∈ Γ. Then

the set H0 := {f0
Γ : Γ ⊆ λ is finite} has cardinality less than or equal to λ and for

each x ∈ g(C), there exists f ∈ H0 with gf(x) = x.
Assume that we have constructed Dn and Hn for some n < ω. Let Dn+1 =∑
f∈Hn f(g(Dn)), which is a ≤ λ-generated submodule (since |Hn| ≤ λ and Dn is

≤ λ-generated), and satisfies fg(Dn) ≤ Dn+1 for each f ∈ Hn. Let {xn+1
α : α < λ}

be a generating system of g(Dn+1). Again by [Azu92, Corollary 2] since g is locally
split, there exists, for each Γ ⊆ λ finite, a morphism fn+1

Γ : M → G such that

gfn+1
Γ (xn+1

γ ) = xn+1
γ for each γ ∈ Γ. Set Hn+1 = {fn+1

Γ : Γ ⊆ λ is finite} ∪ Hn.
Then Hn+1 has cardinality less than or equal to λ and satisfies that for each x ∈
g(Dn+1) there exists f ∈ Hn+1 with gf(x) = x. This concludes the construction.
Now take D =

⋃
n<ωDn, which is ≤ λ-generated. Given x ∈ g(D), there exists

n < ω such that x ∈ g(Dn). By (a) there exists f ∈ Hn such that fg(x) = x.
Moreover, this f satisfies that fg(D) ≤ D since, given k < ω with k ≥ n, fg(Dk) ≤
Dk+1 ≤ D by (b), because f ∈ Hk. And, if k < n, then Dk ≤ Dn which implies
that f(Dk) ≤ Dn+1 by (b) again. This finishes the proof of the first part of the
lemma.
In order to prove the last statement simply note that, if G is a direct sum of
countably generated modules, G = ⊕i∈IGi, then, in the previous construction, Dn

can be taken of the form ⊕i∈InGi for some subset In of I satisfying In ⊆ In+1 for
each n < ω. �

Lemma 2.4. Let

0 M G M 0
g

be a short exact sequence in Mod-R such that g is locally split and G is a direct
sum of a family {Gi | i ∈ I} of countably generated modules. Then, for each
countably generated submodule K of M , there exists a countable subset J of I such
that K ≤ ⊕j∈JGj, g(⊕j∈JGj) = M ∩ (⊕j∈JGj) and the sequence

0 M ∩ (⊕j∈JGj) ⊕j∈JGj g(⊕j∈JGj) 0
g

is split exact.

Proof. We are going to construct two chains of countable subsets of I, {In | n < ω}
and {Jn | n < ω}, such that K ≤ ⊕i∈I0Gi, and a chain of subsets of HomR(M,G),
{Hn : n < ω}, satisfying, for each n < ω:

(a) In ≤ Jn ≤ In+1;
(b) M ∩ (⊕i∈InGi) ≤ g(⊕i∈JnGi) ≤ ⊕i∈In+1

Gi,
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(c) and for each x ∈ g(⊕i∈InGi) there exists f ∈ Hn such that gf(x) = x and
f(g(⊕i∈InGi)) ≤ ⊕i∈InGi.

We shall make the construction recursively on n. For n = 0 let L0 be a countable
subset of I such that K ≤ ⊕i∈L0

Gi. Now apply Lemma 2.3 to get a countable
subset I0 of I containing L0 such that g(⊕i∈L0

Gi) ≤ g(⊕i∈I0Gi), and a subset H0

of HomR(M,G) satisfying that for each x ∈ g(⊕i∈I0Gi) there exists f ∈ H0 with
gf(x) = x and f(g(⊕i∈I0Gi)) ≤ ⊕i∈I0Gi. In particular, g � ⊕i∈I0Gi is locally
split and, as g(⊕i∈I0Gi) is countably generated, g � ⊕i∈I0Gi is actually split. This
means that M ∩ (⊕i∈I0Gi) is a direct summand of ⊕i∈I0Gi and, consequently, it is
countably generated. Therefore, there exists a countable subset J0 of I containing
I0 such that M ∩ (⊕i∈I0Gi) ≤ g(⊕i∈J0Gi). This concludes case n = 0.
Now assume that we have constructed In and Jn for some n < ω, and let us
construct In+1, Jn+1 and Hn+1. Since g(⊕i∈JnGi) is countably generated there
exists a countable subset Ln containing Jn such that g(⊕i∈JnGi) ≤ ⊕i∈LnGi. Then
we can apply again Lemma 2.3 to find a countable subset In+1 of I containing
Ln such that g(⊕i∈LnGi) ≤ g(⊕i∈In+1

Gi), and a subset Hn+1 of HomR(M,G)
satisfying that for each x ∈ g(⊕i∈In+1

Gi) there exists f ∈ Hn+1 with gf(x) = x
and f(g(⊕i∈In+1Gi)) ≤ ⊕i∈In+1Gi. In particular, g � ⊕i∈In+1Gi is locally split and,
as g(⊕i∈In+1Gi) is countably generated, g � ⊕i∈In+1Gi is actually split. This means
that M ∩ (⊕i∈In+1

Gi) is a direct summand of ⊕i∈In+1
Gi and so it is countably

generated. Consequently, there exists a countable subset Jn+1 of I containing In+1

such that M ∩ (⊕i∈In+1
Gi) ≤ g(⊕i∈Jn+1

Gi). This concludes the construction.
Finally, let J =

⋃
n<ω Jn =

⋃
n<ω In. Then, by (b), g(⊕j∈JGj) = M ∩ ⊕j∈JGj so

that the sequence

0 M ∩ (⊕j∈JGj) ⊕j∈JGj g(⊕j∈JGj) 0
g

is exact. Moreover, as a consequence of (c), g � ⊕j∈JGj is locally split and, since
g(⊕j∈JGj) is countably generated, it is actually split. This concludes the proof. �

We are now in position to prove Theorem 0.1.

Theorem 2.5. Any short exact sequence

0 M G M 0
g

in which g is locally split and G is a direct sum of countably generated modules is
split.

Proof. Write G = ⊕i∈ICi as a direct sum of countably generated modules and
fix {xα | α < κ} a generating system of M for some cardinal κ. Our aim is to
use Lemma 2.2 with the submodule M of G. In order to construct the chain of
submodules {Mα | α < κ} and {Gα | α < κ} satisfying the hypothesis of this
lemma, we are going to apply recursively Lemma 2.4. Actually, we are going to
construct a continuous chain of subsets of I, {Iα | α < κ}, such that Gα = ⊕i∈IαCi.
Let us make the construction of the chain {Mα | α < κ} of submodules of M , and
of the chain {Iα | α < κ} of subsets of I satisfying Lemma 2.2 and, for each α < κ,

(a) xα ∈Mα;
(b) Mα = M ∩Gα = g(Gα),
(c) and Mα is a direct summand of Gα.

We shall proceed recursively on α.
For α = 0, take I0 the countable subset obtained in Lemma 2.4 for the countably
generated submodule Rx0 of M , and set M0 = M ∩ (⊕i∈I0Ci) and G0 = ⊕i∈I0Ci.
Notice that, as a consequence of Lemma 2.4, M0 is a direct summand of G0.
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Let α be a nonzero ordinal such that we have made the construction for each
ordinal smaller than α. If α is limit, simply take Mα =

⋃
γ<αMγ , Iα =

⋃
γ<α Iγ

and Gα = ⊕i∈IαCi.
Finally, assume that α is succesor, say α = µ + 1. We can construct, using the
snake lemma, the following commutative diagram with exact rows, in which fµ is
the inclusion, gµ is the restriction of g, and pµ and qµ are projections:

0 Mµ Gµ Mµ 0

0 M G M 0

0 M
Mµ

G
Gµ

M
Mµ

0

fµ

iµ

gµ

jµ iµ

pµ

g

qµ pµ

f̂µ ĝµ

Note that fµ and jµ are split, so that iµ is split too. Moreover, by Lemma 1.1, ĝµ
is locally split.

Now, since f̂µ(x+Mµ) = x+Gµ for each x ∈M , Im f̂µ =
M+Gµ
Gµ

and, consequently,

we have a short exact sequence

0
M+Gµ
Gµ

G
Gµ

M+Gµ
Gµ

0
f̂µĝµ

in which f̂µĝµ is a locally split epimorphism and G
Gµ

is the direct sum of the family of

countably generated modules
{
Ci+Gµ
Gµ

| i ∈ I − Iµ
}

. Then we can apply Lemma 2.4

to the countably generated submodule R(xµ+1 +Gµ) of
M+Gµ
Gµ

, to get a countable

subset Jµ of I − Iµ such that xµ+1 +Gµ ∈
⊕

i∈Jµ
Ci+Gµ
Gµ

,

M +Gµ
Gµ

⋂⊕
i∈Jµ

Ci +Gµ
Gµ

 = f̂µĝµ

⊕
i∈Jµ

Ci +Gµ
Gµ


and the morphism f̂µĝµ �

(⊕
i∈Jµ

Ci+Gµ
Gµ

)
from

⊕
i∈Jµ

Ci+Gµ
Gµ

to f̂µĝµ

(⊕
i∈Jµ

Ci+Gµ
Gµ

)
is split exact. Set Iµ+1 = Iµ ∪ Jµ, Gµ+1 = ⊕i∈Iµ+1Ci and Mµ+1 = g(Gµ+1). It is
easy to see that g(Gµ+1) = M ∩Gµ+1 and that xµ+1 ∈ ⊕i∈Iµ+1Ci.

Now we see that
Mµ+1+Gµ

Gµ
is a direct summand of

Gµ+1

Gµ
and Mµ+1 is a direct

summand of Gµ+1 to finish the proof. Applying again the snake lemma, we get a
commutative diagram with exact rows

0 Mµ Gµ Mµ 0

0 Mµ+1 Gµ+1 Mµ+1 0

0
Mµ+1

Mµ

Gµ+1

Gµ

Mµ+1

Mµ
0

fµ gµ

fµ+1 gµ+1

f̃µ g̃µ
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Since there exists a commutative diagram⊕
i∈Jµ

Ci+Gµ
Gµ

f̂µĝµ

(⊕
i∈Jµ

Ci+Gµ
Gµ

)

Gµ+1

Gµ

Mµ+1

Mµ

f̂µĝµ

∼= ∼=

g̃µ

we conclude that g̃µ is split. Then, by Lemma 2.1, fµ+1 is split too and Mµ+1 is a

direct summand of Gµ+1. Moreover, Im f̃µ is a direct summand of
Gµ+1

Gµ
. But this

image is precisely
Mµ+1+Gµ

Gµ
. This concludes the construction. �

We apply the previous result to get that some pure periodic modules are trivial.

Corollary 2.6. Let P be a class of finitely presented modules. Then each pure
Add(P)-periodic module belongs to Add(P). In particular we get the following:

(1) [Sim02, Theorem 1.3] Each pure PProj-periodic module is pure projective.
(2) [BG00, Theorem 2.5] Each pure Proj-periodic module is projective (equiva-

lently, each flat Proj-periodic module is projective).

Proof. Let M be a pure Add(P)-periodic module. Then there exists a pure exact
sequence

0 M P M 0
g

with P ∈ Add(P). By Lemma 1.2 (4), M ∈ G(P), so that there exists a locally
split epimorphism f : Q → M with Q ∈ Add(P). Since Q is pure projective by
[Wis88, 33.6], there exists h : Q → P such that gh = f . Applying Lemma 1.1 to
the commutative diagram

Q Q

P M

h f

g

we conclude that g is locally split. By Theorem 2.5 g is actually split and M ∈
Add(P).
Now, to get (1) we simply note that PProj is equal to Add(P) for the class P
of all finitely presented modules. Finally to get (2), if M is a pure Proj-periodic
module then it is pure projective by (1). Since it is flat too, we conclude that M is
projective. �

It is easy to see that the class of projective modules is not closed under periodic
modules. Actually, there exist Proj-periodic modules that are not pure projective.

Example 1. Let R be a QF ring which is not right pure semisimple. Then we
can apply Corollary 1.5 with C the class Proj and D the class PProj to construct
a Proj-periodic module M which is not pure projective. In particular, M is not
trivial. Since Flat = Proj in this case, this also gives us an example of a Flat-
periodic module which is not trivial.

Another consequence of Corollary 2.6 is that a flat and strongly Gorenstein
projective module is projective.

Corollary 2.7. Any flat and strongly Gorenstein projective module is projective.

A natural question arises:
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Question 2.8. Is every flat Gorenstein projective module projective?

Using Corollary 2.6 we can give a partial answer to this question.

Proposition 2.9. Suppose that FPDFlat(R) <∞. If a cycle in an acyclic complex
of projective modules is flat, then all cycles are projective modules. In particular,
every flat Gorenstein projective module is projective.

Proof. Let P be an acyclic complex of projectives and suppose that M = Z0(P ) is
flat. By [Wis88, 36.6], Zn(P ) is flat for each n > 0. Now let d = FPDFlat(R) and
n < 0. Since Zn−d−1(P ) has finite flat dimension, it has flat dimension less than
or equal to d. As Zn(P ) is a syzygy of M , it has to be flat. The conclusion is that
Zn(P ) is flat for each n ∈ Z. Now each Zn(P ) is a direct summand of

⊕
n∈Z Zn(P ),

which is a flat Proj-periodic module. By Corollary 2.6(2), the module
⊕

n∈Z Zn(P )
is projective, and so is Zn(P ), n ∈ Z. �

3. Periodic modules with respect to hereditary cotorsion pairs

In this section we study the dual notion of flat Proj-periodic modules: Inj-
periodic absolutely pure modules. In order to do this, we consider periodic modules
with respect to the right class of a hereditary cotorsion pair. Let us start with the
following two lemmas, which are useful for computing the Ext functors with periodic
modules.

Lemma 3.1. Let (A,B) be a hereditary cotorsion pair in Mod-R and let M be a
B-periodic module. Then, for every module L ∈ A and non zero natrual nuber n,
ExtnR(L,M) ∼= Ext1

R(L,M).

Proof. Let L ∈ A. Since M is B-periodic, there exists an exact sequence 0→M →
B → M → 0 with B ∈ B. The usual long exact sequence of cohomology attained
to this short exact sequence, gives us an exact sequence

· · · → ExtnR(L,B)→ ExtnR(L,M)→ Extn+1
R (L,M)→ Extn+1

R (L,B)→ · · · .

Since (A,B) is hereditary we have that ExtiR(L,B) = 0, for every i ≥ 1. Therefore,
it follows that ExtnR(L,M) ∼= Extn+1

R (L,M), for every n ≥ 1. So we get our
claim. �

Symmetrically we have:

Lemma 3.2. Let (A,B) be a hereditary cotorsion pair in Mod-R and let M be an
A-periodic module. Then, for every module T ∈ B and non zero natural number n,
ExtnR(M,T ) ∼= Ext1

R(M,T ).

We shall use the following relative version of the 2-out-of-3 property for a class
of modules.

Definition 3.3. Let C, D be two classes of modules. We say that D has the 2-
out-of-3 property with respect to C if the following holds: for every exact sequence
0 → C1 → C2 → C3 → 0 in C, if two of the Ci’s are in D then the the third term
is in D too.

Now we prove that the left orthogonal of a periodic module with respect to the
right class of a hereditary cotorsion pair has the relative 2-out-of-3 property.

Lemma 3.4. Let (A,B) be a hereditary cotorsion pair in Mod-R and let M be a
B-periodic module. Then ⊥M has the 2-out-of-3 property with respect to A.
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Proof. Let 0 → X → Y → Z → 0 be an exact sequence in A. We have the long
exact sequence of cohomology

0→ HomR(Z,M)→ HomR(Y,M)→ HomR(X,M)→
→ Ext1

R(Z,M)→ Ext1
R(Y,M)→ Ext1

R(X,M)→
→ Ext2

R(Z,M)→ Ext2
R(Y,M)→ Ext2

R(X,M)→ · · · .

Now, if X,Z ∈⊥M the exact sequence

Ext1
R(Z,M)→ Ext1

R(Y,M)→ Ext1
R(X,M)

gives us that Y ∈⊥M . If X,Y ∈⊥M the sequence

Ext1
R(X,M)→ Ext2

R(Z,M)→ Ext2
R(Y,M)

together with Lemma 3.1, gives that Z ∈⊥M . Finally, if Y, Z ∈⊥M , the sequence

Ext1
R(Y,M)→ Ext1

R(X,M)→ Ext2
R(Z,M)

together with Lemma 3.1, gives that X ∈⊥M . �

We have also the symmetric statement.

Lemma 3.5. Let (A,B) be a hereditary cotorsion pair in Mod-R and let M be an
A-periodic module. Then M⊥ has the 2-out-of-3 property with respect to B.

We will prove now that under the hypothesis of Lemma 3.4 and assuming that
A is also closed under pure epimorphic images, the class ⊥M ∩ A is closed under
direct limits. We start by showing that ⊥M ∩A is closed under well ordered direct
unions of pure submodules.

Lemma 3.6. Let (A,B) be a hereditary cotorsion pair in Mod-R and let M be a
B-periodic module. Assume that A is closed under pure epimorphic images. Let K
be the direct union of a chain {Kα | α < λ} of pure submodules with Kα ∈⊥M ∩A,
for each α < λ. Then K ∈⊥M ∩ A.

Proof. Consider the continuous chain {Lα | α < λ} of submodules of K given by:

• Lα := Kα if α is succesor.
• Lα :=

⋃
γ<α Lγ if α is a limit ordinal.

Since A is closed under direct sums and pure epimorphic images, A is closed under
direct limits by [Wis88, 33.9]. Therefore, Lα ∈ A, for each α < λ. It is also clear
that K is the direct union of the continuous chain {Lα | α < λ}. Since the class of
pure submodules of a given module is closed under direct unions [Wis88, 33.8], we
follow that Lα is a pure submodule of K, for each α < λ. Let us call Lλ = K. We
prove now by induction that Lα ∈⊥M , for every α ≤ λ. If α is succesor, Kα = Lα
which belongs to⊥M by hypothesis. Assume that α is a limit ordinal. For each
γ < α we have the exact sequence

0→ Lγ → Lγ+1 →
Lγ+1

Lγ
→ 0 (1)

in which Lγ is a pure submodule of K so that, by [Wis88, 33.3], it is a pure
submodule of Lγ+1. Since A is closed under pure epimorphic images, we infer that
Lγ+1

Lγ
∈ A. By our induction hypothesis Lγ and Lγ+1 belong to ⊥M . Thus, the

exact sequence (1) has all its terms in A and therefore by Lemma 3.4, the quotient

module
Lγ+1

Lγ
belongs to ⊥M . Finally by Eklof Lemma ([GT12, Lemma 6.2]), we

conclude that Lα lies in ⊥M . �
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Theorem 3.7. Let (A,B) be a hereditary cotorsion pair in Mod-R and let M be
a B-periodic module. Assume that A is closed under pure epimorphic images. If
{Xi; fji | i ≤ j ∈ I} is a direct system of modules in ⊥M ∩ A, then lim−→

i∈I
Xi is in

⊥M.

Proof. By [AR94, Corollary 1.7] we can assume that I is an ordinal λ so that the
direct system is a λ-sequence of the form {Xα; fβα | α ≤ β < λ}.
If λ = ω, then the well known presentation of a countable direct limit (e.g. [GT12,
Lemma 2.12]) gives a short exact sequence

0→
⊕
α<ω

Xα →
⊕
α<ω

Xα → lim−→
α<ω

Xα → 0.

This is an exact sequence with all its terms in A and where the first two terms
belong to ⊥M . Hence by Lemma 3.4, we get that lim−→

α<ω

Xα ∈⊥M .

Now for an arbitrary limit ordinal λ, let

0→ K →
⊕
α<λ

Xα → lim−→
α<λ

Xα → 0 (2)

be the canonical exact sequence associated to the direct limit. Since (A,B) is
hereditary, we get that K ∈ A. Then, the exact sequence (2) has all its terms in
A, and clearly

⊕
α<λXα ∈⊥M . So in view of Lemma 3.4, to get our claim we only

need to show that K ∈⊥M . We use Lemma 3.6 to prove this.
As in the proof of [GPGA00, Lemma 2.1] we have that K is the direct union of a
chain {Kα | α < λ}, where each Kα is a direct summand of

⊕
α<λXα. We need to

check that the system {Kα | α < λ} fulfills the requirements of Lemma 3.6, i.e.

• Kα ∈⊥M ∩ A, for each α < λ.
• Kα is pure in K, for each α < λ.

Since both classes A and ⊥M are closed under direct summands, we get that
Kα ∈⊥M ∩ A, for each α < λ. For the second condition, note that Kα actually is
a direct summand of K. �

We illustrate some consequences of the previous result.

Proposition 3.8. The following hold true:

(1) An Inj-periodic absolutely pure module is injective.
(2) Let (A,B) be a hereditary cotorsion pair in Mod-R. Assume that A is closed

under pure epimorphic images. Then every B-periodic module is cotorsion.
In particular, every Cot-periodic module is trivial, i.e. cotorsion (and so
every Inj-periodic module is cotorsion).

(3) Assume that each finitely generated right ideal has finite flat dimension.
Then each Inj-periodic module is trivial.

Proof. (1) Let M be an Inj-periodic absolutely pure module. Then Ext1
R(F,M) = 0

for every finitely presented module. By Theorem 3.7, Ext1
R(X,M) = 0 for every

module X, hence M is injective.
(2) Let M be a B-periodic module. Since Proj ⊆ A, Theorem 3.7 implies that
Flat ⊆⊥M , hence M is cotorsion.
(3) Let M be an Inj-periodic module. We only have to show that Ext1

R

(
R
I ,M

)
= 0

for each right ideal I of R. Let I be a right ideal and write I =
⋃
γ∈Γ Iγ as a direct

union of finitely generated right ideals. By (2) M is cotorsion so, for each γ ∈ Γ,
there exists a non zero natural number nγ such that Ext

nγ
R (Iγ ,M) = 0. By Lemma

3.1 Iγ ∈ ⊥M , and by Theorem 3.7 we get that actually I belongs to ⊥M . But then,

again by Lemma 3.1, we get that Ext2
R

(
R
I ,M

) ∼= Ext1
R

(
R
I ,M

)
= 0. �
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The same argument used in Example 1 can be used to see that there exist Inj-
periodic modules which are not pure injective.

Example 2. Let R be a QF ring which is not right pure semisimple. We can apply
Corollary 1.5 with C the class Inj and D the class PInj to construct an Inj-periodic
module which is not pure injective. In particular, M is a non-trivial Inj-periodic
module.

Remark 3.9. Note that Cot does not satisfy the hyphotesis of Corollary 1.5, so that
we cannot use that result to construct a non-trivial Cot-periodic module. This is
because if Cot is generating, then RR is Σ-cotorsion (that is, R(I) is a cotorsion
right module for each set I) and, by [GAH05, Corollary 10], R is right perfect. This
means that Cot = Mod-R. Here we give a short proof that right Σ-cotorsion rings
are right perfect.

Theorem 3.10. If RR is Σ-cotorsion, then R is right perfect.

Proof. Let a1R ≥ a1a2R ≥ · · · be a descending chain of principal right ideals for
some sequence a1, a2, · · · of elements of R and denote by G and F the modules
constructed in [Bas60, Lemma 1.1]. Then F and G are free and G is a submodule
of F . Moreover, it is proved in [Bas60, Lemma 1.1] that F

G is flat. Now, using that
G is cotorsion, as RR is Σ-cotorsion, we get that the short exact sequence

0 −→ G −→ F −→ F

G
−→ 0

splits. By [Bas60, Lemma 1.3], the sequence a1R ≥ a1a2R ≥ · · · terminates. This
implies that R is right perfect. �

Now, regarding Proposition 3.8(3), we show an example of a ring with infinite
weak global dimension but such that each finitely generated right ideal has finite
flat dimension.

Example 3. Let k be a field and let k[x1, . . . , xn] be the polynomial ring in n
variables over k. The ring R = lim−→

n<ω

k[x1, . . . , xn] has infinite weak global dimension

but each finitely generated ideal of R has finite projective dimension (see Glaz,
[Gla89, p. 202]).

We can apply Proposition 3.8 to Gorenstein injective modules.

Corollary 3.11. (1) Any absolutely pure strongly Gorenstein injective module
is injective.

(2) Assume that each finitely generated right ideal has finite flat dimension.
Then each Gorenstein injective module is injective. In particular, if a ring
has finite weak global dimension, then each Gorenstein injective module is
injective.

(3) Assume that each finitely generated right ideal has finite injective dimen-
sion. Then each Gorenstein injective module is injective.

Proof. (1) and (2) follow directly from Proposition 3.8.
(3) Let M be a strongly Gorenstein injective module. Since M is in particular

Gorenstein injective, ⊥M contains the modules of finite injective dimension. Then
the conclusion follows arguing as in the proof of Proposition 3.8 (3). �

We ask the following:

Question 3.12. Is every absolutely pure Gorenstein injective module injective?

As in the case of flat Gorenstein projective modules, we can give a partial an-
swer to this question in the following result. The proof is similar to the proof of
Proposition 2.9, but using Corollary 3.8(1).
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Proposition 3.13. Suppose that R is left coherent and FIDAbs(R) <∞. If a cycle
in an acyclic complex of injective modules is absolutely pure, then all cycles are
injective modules. In particular, every absolutely pure Gorenstein injective module
is injective.

4. Acyclic complexes and C-periodic modules

This section is devoted to exploit the power of periodic modules in shortening
and simplifying recent proofs of some meaningful results in homotopy categories.

We apply the previous results to classes of complexes of R-modules. The fol-
lowing result has the rank of Theorem, because of its relevant statements and its
subsequent consequences. But the proof is an easy and immediate application of
propositions 1.4 and 3.8.

Theorem 4.1. (1) Every acyclic complex of injective modules with absolutely

pure cycles is contractible, i.e. dw Inj ∩ Ãbs = Ĩnj.
(2) Every acyclic complex of cotorsion modules has cotorsion cycles, that is,

ex Cot = C̃ot. In particular, every acyclic complex of flat cotorsion modules

with flat cycles is contractible, i.e. F̃lat ∩ dw Cot = ˜Flat ∩ Cot.
(3) Every pure acyclic complex of pure projective modules is contractible. As a

consequence, if there exists a pure exact sequence

0→M
f→ Pn → Pn−1 → · · · → P1 → P0

g→M → 0

in Mod-R, where the modules P0, . . . , Pn are pure projective, then M is
pure projective.

Proof. The statements (1) and (2) are direct consequences of propositions 1.4 and
3.8. The assertion (3) follows from Corollary 2.6(1) and (the pure version of)
Proposition 1.4. Finally, the second part in statement (3) follows because from
that pure exact sequence, we get the following pure acyclic complex with pure
projective components

· · · → P0
fg→ Pn → · · · → P0

fg→ Pn → · · ·
�

Remark 4.2. The assertions (1) and (3) were already proved by Št’ov́ıček [Št’o14,
Corollary 5.5] (see also Emmanouil [Emm16, Corollary 3.7] for (3)). The conse-
quence in statement (3) was firstly shown by Simson in [Sim02, Theorem 1.3]. We
just want to emphasize how these statements easily follow from the corresponding
properties of periodic modules. What seems to be unknown is the remarkable state-
ment (2). Notice that, as a consequence of (2), we get that every acyclic complex of
injectives has cotorsion cycles. This was also shown by Št’ov́ıček [Št’o14, Corollary
5.9].

Theorem 4.3. Let C be a complex of cotorsion modules. Then every chain map

f : F → C, where F ∈ F̃lat is null-homotopic. That is, the classes dg Cot and
dw Cot coincide.

Proof. Let us consider the complete hereditary cotorsion pair (F̃lat,dg Cot) in
Ch(R) ([Gil04, Corollary 4.10]). Then, there is an exact sequence

0→ C → D → G→ 0,

with D ∈ dg Cot, G ∈ F̃lat and the sequence splits on each degree. Since Dn is

cotorsion, we follow that Gn is cotorsion for each n ∈ Z. Therefore G ∈ F̃lat ∩
dw Cot. Now, by Theorem 4.1(2) we get that G is contractible. Therefore C and
D are homotopically equivalent, and so C ∈ dg Cot. �
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4.1. Application to finitely accessible additive categories. Throughout this
section G will denote a finitely accessible additive category. That is, G has all direct
limits, the class of finitely presented objects is skeletally small and every object
in G is a direct limit of finitely presented objects. A well-known Representation
Theorem (see [MP89, Corollary 2.1.9], [CB94, Theorem 1.4] and [AR94, Theorem
2.26] and the remark that follow) states the following

Theorem 4.4. Every finitely accessible additive category G is equivalent to the full
subcategory Flat(A) of the category Mod-A of unitary right A-modules consisting of
flat right A-modules where A is the functor ring of G (that is, a ring with enough
idempotents). This equivalence gives a 1-1 correspondence between pure exact se-
quences in G and exact sequences in Flat(A).

In other words, G with its pure exact structure E is equivalent to Flat(A) with
its canonical exact structure inherited from Mod-A. In particular, the equivalence
takes injective objects in (G; E) (i.e. pure injectives) to injective objects in Flat(A)
(cotorsion flat modules). Thus, from Proposition 3.8(2), we immediately get the
following.

Corollary 4.5. Every pure PInj-periodic object of G is trivial (i.e. pure injective).

Proof. Let M be a pure PInj-periodic module and 0 → M → E → M → 0 a pure
exact sequence with E pure injective. By using the Representation Theorem, we
get an exact sequence in Mod-A, 0 → M → E → M → 0, with M flat and E flat
cotorsion. But then, by Theorem 4.1(2) (whose argument is still valid for a category
of unital modules over a ring with enough idempotents) the sequence splits, so M
is flat cotorsion and therefore M is pure injective. �

The equivalence between (G; E) and Flat(A) takes pure acyclic complexes in
Ch(G) (i.e. concatenation of conflations in (G; E)) to acyclic complexes in Ch(A)
with flat cycles. We will denote by Ch(G)dw-pur the exact category of unbounded
chain complexes Ch(G) with the degreewise pure exact structure.

The following result (Št’ov́ıček [Št’o14, Theorem 5.4]) can be also easily proved
by using the Representation Theorem for finitely accessible additive categories and
Theorem 4.3 (which still holds for unital modules over a ring with enough idempo-
tents).

Corollary 4.6. Let P̃urAc be the class of pure acyclic chain complexes in Ch(G).

The pair of clasess (P̃urAc,dw PInj) is a complete hereditary cotorsion pair in
Ch(G)dw-pur.

Proof. We have the complete hereditary cotorsion pair (F̃lat,dg Cot) in Ch(A).

Then we have the induced complete hereditary cotorsion pair (F̃lat,dg Cot∩dw Flat)
in Ch(Flat) (see for instance [Gil16, Corollary 7.5]). Now, by Theorem 4.3, dg Cot =

dw Cot. Therefore the previous cotorsion pair is (F̃lat,dw Cot ∩ dw Flat). Now
we use the Representation Theorem to get the complete hereditary cotorsion pair

(P̃urAc,dw PInj) in Ch(G)dw-pur. �

Remark 4.7. For any complex E of pure injective objects in G and any complex
A, we have that Ext1

Ch(G)dw-pur
(A,E) = 0 if and only if every map from A → ΣE

is null-homotopic. Then it follows from Corollary 4.6 that a complex A is pure
acyclic if and only if any map A → I is null-homotopic, where I is a complex of
pure injective objects in G.
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[AH03] Lidia Angeleri-Hügel. Covers and envelopes via endoproperties of modules. Proc. Lon-

don Math. Soc. (3), 86(3):649–665, 2003.
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(Sergio Estrada) Departamento de Matemáticas, Universidad de Murcia, Campus de

Espinardo, 30100 Murcia (Spain)

E-mail address: sestrada@um.es


	Introduction
	1. Preliminaries
	2. Locally split monomorphisms and generalized periodic modules
	3. Periodic modules with respect to hereditary cotorsion pairs
	4. Acyclic complexes and C-periodic modules 
	References

