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Foreword. Ergodic Theory is a branch of the theory of Dynamical Systems, namely the
branch in which the reference to a measure plays an essential role. Ergodic theory was started as a
mathematical theory at the end of twenties/beginning of thirties of last century by G.D. Birkhoff
and J. von Neumann, who provided the good mathematical frame and the first nontrivial results.
The roots of the theory, however, and some leading ideas, go back to the work of L. Boltzmann and
J.W. Gibbs, in the last decades of 19th century, namely to their program to provide a microscopic
dynamical fundation of thermodynamics, through statistical mechanics. Ergodic Theory had a
strong development in the sixties and seventies of last century, after the introduction of the notion
of Entropy by A.N. Kolmogorov and Ya.G. Sinai (end of fifties), the introduction by Sinai of the first
really nontrivial examples of ergodic dynamical systems (Sinai billiards, 1962), and the connection
with the theory of Lyapunov Characteristic Exponents (V. Oseledets 1968, Ya. Pesin 1974).

This short note is more a guide to the literature than a real introduction to Ergodic Theory. It
includes the mathematical frame of the theory (Sect. 1), the very central notions of “ergodicity”,
which gives the name to the theory, and of “mixing” (Sect. 2), an introduction to the Kolmogorov-
Sinai entropy, with the main ideas and a few hints on selected nontrivial results (Sect. 3), and finally,
an introduction to Lyapunov Characteristic Exponents in Ergodic Theory (Sect. 4). Appendix A
reports a few comments on the physical roots of Ergodic Theory in Boltzmann and Gibbs, while
Appendices B–D are devoted to technical parts.

Books on Ergodic Theory are abundant. Very classical readings include:

I.P. Cornfeld, S.V. Fomin and Ya.G. Sinai, Ergodic Theory , Springer 1982.

V.I. Arnol’d and A. Avez, Ergodic problems of classical mechanics, W.A. Benjamin 1968.

P.R. Halmos, Ergodic Theory , Chelsea 1956.

A suggestes very general book on dynamical systems is:

A. Katok and B. Hasselblatt, Introduction to the modern theory of dynamical systems, Cam-
bridge University Press 1995.
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1 Introduction

1.1 Dynamical systems

Loosely speaking, a dynamical system is composed by two entities: a space M — a set with some
structure, traditionally called phase space; a point of M is assumed to define completely the state
of a system — and a dynamics on M . The typical entry level is that M is a (separable, complete)
metric space, usually assumed to be compact; M has then a topology, and Borel sets form a σ–
algebra. The so–called smooth theory of dynamical systems, in which the ergodic properties of a
system are related to the expansion/contraction rate of tangent dynamics, requires more, namely
that M is a smooth manifold of some class Cr. Concerning the dynamics, reference is made to
an independent variable t, usually called time, which belongs either to R (continuous dynamical
systems) or to Z (discrete dynamical systems); for any t, a homeomorphism (non smooth case) or
a diffeomorphism of class Cr (smooth case) Φt : M → M is given, in such a way that

Φ = {Φt , t ∈ R or Z}

is a one parameter group:

Φ0 = Id , (Φt)−1 = Φ−t , Φs ◦ Φt = Φs+t .

This is indeed the typical situation one meets in physical systems, for example in Lagrangian or
Hamiltonian mechanics, where one is given a vector field X on some manifold M , and Φt(x) is the
solution at time t, with initial datum x ∈ M , of the differential equation

ẋ = X(x) .

In the discrete case, the group property implies that Φ is formed by the iterates of a map Φ1 or its
inverse Φ−1; Φ1 is usually shortly denoted Φ. A generalization is given by non invertible dynamical
systems, where t is nonnegative, t ∈ R+ or N, and correspondingly Φ is a semigroup.

Definition 1 Let M be a compact metric space and

Φ = {Φt , t ∈ R or Z or R+ or N}

be a one–parameter group (t ∈ R or Z) or semigrup (t ∈ R+ or N) of homeomorphisms (t ∈
R or Z) or continuous maps (t ∈ R+ or N) M → M . The pair (M,Φ) is called dynamical system:
continuous if t ∈ R or R+, discrete if t ∈ Z or N, invertible if t ∈ R or Z.

If in addition M is a manifold of class Cr and each Φt is a diffeomorphism or a differentiable
map M → M of class Cr, the pair (M,Φ) is called smooth dynamical system of class Cr.

Occasionally, with some attention, piecewise regular maps are also considered, for example in
the study of iterations of maps on the unit interval, or in connection with the so–called billiards.

In Ergodic Theory, a further structure on M , namely an invariant measure defined on the Borel
sets of M , plays a crucial role.

Definition 2 Let (M,Φ) be a dynamical system, and let µ be a measure defined on the σ–algebra of
the Borel sets of M , normalized in such a way that µ(M) = 1; µ is said to be an invariant measure
for (M,Φ), if for any t and any measurable A ⊂ M

µ(Φ−t(A)) = µ(A) , (1)
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where
Φ−t(A) = {x ∈ M : Φt(x) ∈ M} .

In the non–invertible case, (1) is different from µ(Φt(A)) = µ(A).

Proposition 1 (Krylov–Bogoliubov theorem). Any continuous map on a compact metric space
admits at least one invariant measure.

For the proof, not much interesting for us, see for example [1], sect. 1.8; the idea is to start with
any measure, and constsuct from it an invariant one by a suitable averaging in time.

Definition 3 Let (M,Φ) be a dynamical system and µ an invariant measure for it; the triplet
(M,µ,Φ) is called dynamical system endowed with a measure; (M,µ,Φ) is said to be smooth, or
also classical, if (M,Φ) is smooth and moreover in each chart of M it is dµ = ρ dV , where dV is
the Lebesgue measure and ρ is a smooth density.

It is common to call (M,µ,Φ) symply a dynamical system, omitting the heavy specification
“endowed with a measure”. Dynamical systems (M,ϕ) not endowed with a measure are often
called topological dynamical systems.

• As we shall see, making reference to a measure is crucial to introduce sensible definitions and
formulate interesting propositions. In particular, it will be possible to consider properties
which are satisfied almost everywhere, i.e. with the possible exception of a zero–measure
subset of M . “Almost everywhere” will be abbreviated in “a.e.”.

Some advanced results in Ergodic Theory require smoothness. The cornerstones of the theory,
however, like the Birkhoff ergodic theorem or the notions of ergodicity and mixing, do not, and in
fact are meaningful even without making reference to a metrics on M , only assuming that M is a
measure space i.e. an abstract set of points endowed with a σ–algebra of measurable sets and a
measure µ on it.1

Definition 4 The triplet (M,µ,Φ), where M is a measure space endowed with normalized measure
µ, Φ : M → M is as above, and (1) holds, is called abstract dynamical system.

Some elementary examples will be useful to take familiarity with the notion of dynamical system
in Ergodic Theory.

1.2 Examples

Example 1 (Free motion on T2). Let M = T2 = R2/Z2, µ = Lebesgue measure;2 for any x ∈ T2

and t ∈ R let
Φt(x) = x+ vt (mod 1) ,

where v is some given velocity, i.e. vector of R2. This is the system associated to the differential
equation ẋ = v on T2; see figure 1a. If the ratio α = v1/v2 is rational, α = p/q ∈ Q, then all
motions are periodic with period T = p/v1 = q/v2. If α is irrational, all trajectories are open; as
we shall see in a moment (proposition 2) they are dense on the torus.
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Figure 1: The free motion on T2 and its section.

Example 2 (Discrete translation on S1). Let M = S1, µ = Lebesgue measure, and let Φ be the
map defined by

Φ(x) = x+ α (mod 1) . (2)

The connection with the previous example is immediate: if N is a section of T2 given by x2 = const,
then, see figure 1b, the free motion on T2 with velocity v induces a discrete translation of the form
(2) on N , with α = v1/v2, and the Lebesgue measure on N is preserved.

Proposition 2 If α is irrational, then all trajectories are dense on S1; correspondingly, trajectories
of example 1 are dense on T2.

Proof. We show that for any ε > 0 and any x ∈ S1, the trajectory Φt(x), t ∈ Z, enters all
intervals of length ε (“almost everywhere” here is not necessary). Let T > ε−1; among the T points
x,Φ(x), . . . ,ΦT−1(x), which for irrational α are all different, two at least, say Φt′(x) and Φt′′(x),
t′ > t′′, have distance smaller than ε. But the translation Φ is rigid, i.e. preserves the distance;
going back t′′ iterations, it follows dist (Φt(x), x) < ε, with t = t′ − t′′. This means the sequence
x,Φt(x), . . . ,Φkt(x), . . . proceeds by steps smaller than ε, and thus enters any interval of length ε.

Example 3 (Free motion on Tn). Example 1 naturally generalizes to higher dimension. Let M =
Tn = Rn/Zn, µ = Lebesgue measure and

Φt(x) = x+ vt (mod 1) , v ∈ Rn .

1A more accurate notation for the abstract case, frequently found in books, is (M,S, µ,Φ), where S is the
σ–algebra on which µ is defined.

2Properly speaking, it is the Haar measure on the torus. We shall not make such a distinction.
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Figure 2: Illustrating the definition of the Liouville measure.

The vector v is said to be resonant with the integer vector k ∈ Zn, k 6= 0, if

k · v = 0 , (3)

where the dot denotes the usual scalar product in Rn; v is said to be nonresonant if (3) is satisfied
only by k = 0. The set L(v) of integer vectors k that satisfy (3) with a given v, is a subgroup of
Zn, called resonant lattice or resonant modulus of v; its dimension is called the multiplicity of the
resonance.

Proposition 3 (Jacobi, 1835). If v is nonresonant, each trajectory is dense in Tn.

We shall prove the proposition later, as an exercise on the notion of ergodicity.

Proposition 4 If the dimension of the resonant lattice of v is r, 1 ≤ r ≤ n−1, then each trajectory
is confined to an invariant manifold N of dimension n−r which is diffeomorphic to the torus Tn−r.

Proof. We provide only a hint. One should preliminarily show that for any lattice L of dimension
r, there exists a matrix J with integer entries and det J = 1 (so that J−1 also has integer entries,
and J : Zn → Zn is invertible), such that for any k ∈ L it is Jk = (k′1, . . . , k

′
r, 0, . . . , 0). This implies

that if L is the resonant lattice of v, then the change of variable x = JT y on Tn (JT denoting the
transposed of J) turns the equation of motion ẋ = v into ẏ = u, with

u = JT v = (0, . . . , 0, ur+1, . . . , un) .

So, the trajectory issuing from y is confined to a torus Tn−r and the original trajectory is confined
to N = JTTn−r.

• Since L is assumed to be the resonant lattice of v, no further resonances do exist among
ur+1, . . . , un. According to Jacobi theorem, Tn−r is densely filled by trajectories; in other
words, Tn is naturally decomposed (foliated) in invariant tori of dimension n−r, one for each
value of y1, . . . , yr (which are left constant by the dynamics), and this is the finest possible
decomposition compatible with the dynamics.

Example 4 (Hamiltonian systems). As is known (Liouville theorem), the Hamiltonian flow Φt,
t ∈ R, preserves the Euclidian volume in canonical coordinates, dV = dp1 · · · dpndqq · · · dqn. So, if
M is the layer between two compact constant energy surfaces ΣE and ΣE′ (think, to fix the ideas,
they are (n − 1)-dimensional spheres) and µ is the volume in M normalized to one, (M,µ,Φ) is
a smooth dynamical system. However, this is not a deep view, since energy is conserved and so
the flow will never mix different constant energy surfaces. It is not difficult, however, to see that
the conservation of the volume in the phase space induces an invariant measure on each single

5



Figure 3: The Arnol’d cat: the action of A, the folding on T2.

constant energy surface ΣE . Such a measure, called Liouville measure and usually denoted µL,
can be defined as follows (fig. 2): let A be any disc on ΣE ; consider the thick disc with base A,
comprised between ΣE and ΣE+ε, with any choice of the (transversal) lateral walls; let V (A, ε) be
its volume. Then define

µL(A) = C lim
ε→0

1

ε
V (A, ε) (4)

(the choice of the lateral walls, if transversal, is clearly irrelevant). The measure µL(A) is obviously
invariant (both ε and V (A, ε) are, even before the limit in (4), and transversal lateral walls remain
transversal). Once the measure is given on all discs on ΣE , it naturally extends to all measurable
sets of ΣE . It is worthwhile to observe that µL is continuous with respect to the Euclidean area
dΣ on ΣE , namely it is

dµL = C
dΣ

‖∇H‖ ,

where ‖ . ‖ denotes Euclidian norm; this is an immediate consequence of the fact that the hight
h(x) of the thick disc at x ∈ A is ε/‖∇H(x)‖+ O(ε2).

Example 5 (Algebric automorphism of T2, better known as Arnol’d cat). Let M = T2, µ =
Lebesgue measure, and

Φ

(
x
y

)
= A

(
x
y

)
mod 1 , A =

(
1 1
1 2

)
;

see figure 3. Matrix A can be replaced by any 2× 2 matrix with integer entries, detA = 1 (so that
A−1 also has integer entries), TrA > 2. The fact that both A and A−1 have integer entries, implies
that Φ is a diffeomorphism T2 → T2; detA = 1 implies that µ is preserved. So, (T2, µ,Φ) is a
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discrete invertible smooth dynamical system. The fact that TrA > 2 implies that the eigenvalues
are real and different from 1 and the eigenvectors have irrational slope. In the example, the
eigenvalues are λ1 = λ and λ2 = λ−1, with

λ =
1

2
(3 +

√
5) > 1 ;

the eigenvectors are
u1 = (1, λ− 1) , u2 = (1, λ−1 − 1) .

The map Φ contracts in the direction of u2 and expands (more precisely: Φ−1 contracts) in the
direction of u1, at exponential rate.

The eigenspaces E1, E2, reported on the torus by mod 1, thanks to the irrational slope fill
it densely (Proposition 2). Now, let B be a no matter how small ball; for simplicity imagine it
centered in the origin, which is a fixed point, although this is not relevant. From the very definition
of the map Φ, it follows that

Φt

(
x
y

)
= At

(
x
y

)
mod 1

(the reduction to the torus can be made at the end), and so

Φt(B) = AtB mod 1 .

But AtB, for large positive t, is a thin strip along E1 of length λtd and width λ−1d, d being the
diameter of B; the reduction to the torus via the operation mod 1, scatters Φt(B) everywhere in
T2. This is of course vague and heuristic, but is a good wiew. Later on we shall formalize this
vague idea into a precise notion, called mixing. This is a toy–model, but is the prototype of a class
of systems, called Anosov’s systems, where contraction–dilatation of sets at exponential rate plays
a determinant role. Figure 4 shows the evolution of 20,000 points randomly chosen inside a small
box adjacent to the origin, up to 8 iterations.

Exercise 1 Show that in the Arnol’d cat the set of periodic points is dense in T2. [Hint: all points
with rational coordinates are periodic]

Example 6 (Rubber-band map). This is a very simple discrete non–invertible system, with M =
S1, µ = Lebesgue, Φ(x) = 2x mod 1 (the common folding of a rubber band). Distances are
stretched, without any contracting direction; measure is preserved because Φ−1(A) is the disjoint
union of two subsets, whose measure is one half of the measure of A. See figure 5.

Example 7 (Bernoulli shifts). This is a dynamical system (thus, a deterministic system) which
nevertheless is a model for a process as random as the throwing of a dice. Let I be a finite alphabet
with n symbols, that we denote here 0, . . . , n− 1. The phase space, that we shall denote Σ, is IZ,
i.e. the points of Σ are the sequences

σ = (. . . σ−2, σ−1, σ0, σ1, σ2, . . .) , σk ∈ I

(think each of them be an a priori possible exit of an infinite sequence of throwings of a dice with
n faces). A distance on Σ can be defined by following the idea that σ, σ′ are close, if they coincide
for a large interval around k = 0; for example

dist (σ, σ′) =
∑

k∈Z

2−|k| δ(σk, σ
′
k) , δ(l, l′) =

{
0 if l = l′

1 if l 6= l′
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Figure 4: The evolution of 20, 000 points initially confined in a small square
near the origin, in the Arnol’d cat, for t = 0, 1, 2, 4, 6, 8.
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Φ

Figure 5: The rubber-band map.

The σ–algebra of measurable sets is the one generated by the “elementary cylinders”

C
l
k := {x ∈ Σ : xk = l} , k ∈ Z , l ∈ I ;

the measure is assigned on it as follows: first, each symbol in I is assigned a weight pl > 0, with∑
l∈I pl = 1 (the a priori probability of the faces of the dice). Then one assigns

µ(Cl
k) = pl (5)

(the time k of the individual throwing is irrelevant) and extends the measure to all “cylinders”

C
l1,...,lm
k1,...,km

=
m⋂

j=1

C
lj
kj

of “base” k1, . . . , km and “specification” l1, . . . , lm, by posing

µ(Cl1,...,lm
k1,...,km

) = pl1 · · · plm

(different throwings are independent). It can be seen that such a perscription is sufficient to define
µ on all measurable sets. Concerning the dynamics, we define Φ : Σ → Σ by saying that σ′ = Φ(σ)
is σ itself, left shifted by one position:

σ′
k = σk+1 , k ∈ Z .

Quite clearly, Φ is a homeomorphism and preserves µ. The nonsmooth discrete dynamical sys-
tem (Σ, µ,Φ) constructed in this way is called Bernoulli shift, and is usually denoted Bp0,...,pn−1 .
Bernoulli shifts play a quite relevant role in Ergodic Theory.

Exercise 2 Show that in any Bernoulli shift the periodic points are dense in Σ.
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Figure 6: The Baker’s map.

Example 8 (Baker’s map). This is piecewise smooth system. Let M be the square [0, 1) × [0, 1),
µ = Lebesgue measure, and

Φ(x, y) =

{
(2x, 12y) for x < 1

2
(2x− 1, 12y +

1
2) for x ≥ 1

2 ;

see figure 6. Φ contracts vertically and expands horizontally; figure 7 shows what happens to
20,000 points originally filling a disc in the center of the square. Φ−1 is the same as Φ, with x and
y exchanged.

1.3 Isomorphism

Any interesting notion in Ergodic Theory must be invariant by isomorphism.

Definition 5 The dynamical systems (M,µ,Φ) and (N, ν,Ψ) are said to be isomorphic, if there
exist a map h : M → N , defined and invertible almost everywhere, such that (i) for any measurable
A ⊂ M , h(A) ⊂ N is measurable and ν(h(A)) = µ(A), and conversely; (ii) the two dynamics
commute:

h ◦ Φt = Ψt ◦ h . (6)

An example is the following:

Proposition 5 The Baker’s map and the Bernoully shift B 1
2
, 1
2
are isomorphic.

Proof. Let M be the phase space (the square) of the Baker’s map; let z = (x, y) ∈ M , and write
x and y in binary digits:

x = 0.a0a1a2 . . . , y = 0.b0b1b2 . . . ;

the isomorphism is σ = h(x, y) ∈ Σ with

σ = (. . . σ−3, σ−2, σ−1, σ0, σ1, σ2, . . .) = (. . . b2, b1, b0, a0, a1, a2 . . .) .

It is not difficult to check that the measures behave appropriately (look at the generators) and
(6) holds. Note that h is not one to one on strings that end, in either direction, by a sequence of
symbols “1”.
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Figure 7: The evolution of 20 000 points initially filling a disc in the center of the square, by applying
the Baker’s map: t = 0, 1, 4, 6, 8, 10.
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• An equivalent definition of the isomorphism is that σ = h(z) is the story of z, observed
through the natural partition of M

M = M0 ∪M1 , M0 = {z = (x, y) ∈ M : x < 1
2} ;

this means σk = l iff Φk(z) ∈ Ml. Indeed, the above introduced map h is such that z ∈ Ml iff
σ = h(z) ∈ Cl

0; it follows

Φk(z) ∈ Ml ⇐⇒ h(Φk(z)) ∈ C
l
0 ⇐⇒ Ψk(h(z)) ∈ C

l
0 ⇐⇒ h(z) ∈ C

l
k ⇐⇒ σk = l .

Quite in general, for any dynamical system (M,µ,Φ), if a partition M = M0 ∪ · · · ∪ Ml−1

is introduced, then a map h : M → Σ = (0, . . . , l − 1)Z gets defined, such that h(z) is the
story of z through the partition, and the shift Ψ in Σ obviously satisfies (6). But in general
it is far from trivial to understand which is the image h(M) ∈ Σ (which stories are effectively
realized), if h is invertible in h(M), and which is the measure ν in Σ corresponding to µ in
M . The dynamics in a space of (sequences of) symbols, conjugate to the dynamics one is
interested to study, is called symbolic dynamics. If one is able to find a good partition of M ,
such that h is invertible on its image and ν is easy (for example: a Markov measure, with
well defined transition probabilities), then (M,µ,Φ) is completely understood. Not easy.

1.4 General results

Ergodic Theory deals, basically, with the statistical behavior of typical trajectories; this was indeed
the very motivation of Boltzmann and Gibbs, who started it at the end of 19th century (Appendix
A). The most elementary notion, in this perspective, is averaging. Given any function f : M → R,
one wishes to know something about its time average f̄ : M → R, defined in the natural way as
the limit (if it exists)

f̄(x) = lim
T→∞

1

T

∫ T

0
f(Φt(x))dt or f̄(x) = lim

T→∞

1

T

T−1∑

t=0

f(Φt(x))

respectively in the continuous and in the discrete case. For invertible systems, the backword time
average is also defined in the obvious way, namely

f̄(−)(x) = lim
T→∞

1

T

∫ T

0
f(Φ−t(x))dt or f̄(−)(x) = lim

T→∞

1

T

T−1∑

t=0

f(Φ−t(x)) .

For example, for any measurable set A ⊂ M , one might be interested in the fraction of time spent
by a given trajectory in A, actually

τA(x) = lim
T→∞

1

T

∫ T

0
χA(Φ

t(x))dt or τA(x) = lim
T→∞

1

T

T−1∑

t=0

χA(Φ
t(x)) , (7)

where χA denotes the characteristic function of A: χA(x) = 1 for x ∈ A, otherwise χA(x) = 0. The
quantity τA(x) is naturally interpreted as the probability to find the system in A, for the motion
with initial datum x, over a long time interval.

Another average, in a sense trivial for it does not involve the dynamics, is the phase average
〈f〉 of f , namely the number defined by

〈f〉 =
∫

M
f dµ .
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The phase average exists, by definition, for summable functions, i.e. f ∈ L1(M,µ). What about
the time average? As is not trivial, the time average does exist for any dynamical system, for all
summable functions and almost all points x ∈ M . This is guaranteed by a fundamental theorem due
to Birkhoff, usually called Birkhoff (or Birkhoff-Kinchin) ergodic theorem. The theorem does not
make reference to distance, so it holds for abstract systems as well; to be definite, in the statement
we refer to a discrete system, but the transposition to a continuous system is immediate.

Proposition 6 Let (M,µ,Φ) be any discrete dynamical system, and f be any function in L1(M,µ).
For almost any x ∈ M the limit

f̄(x) = lim
T→∞

1

T

T−1∑

t=0

f(Φt(x))

exists and moreover
f̄(Φt(x)) = f̄(x) , 〈f̄〉 = 〈f〉 . (8)

If the system is invertible, f̄(−)(x) also exists almost everywhere, and almost everywhere coincides
with f̄(x).

The proof, not difficult but rather long and not much instructive, is deferred to the Appendix.

• One should stress the “almost everywhere” appearing in the statement. For example, for the
Bernoulli shift B 1

2
, 1
2
and for the characteristic function of the cylinder C1

0, one easily finds

initial data for which the foreward average does not exist: for example,

σ = ( . . . , σ−2, σ−1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, (16× 0), (32× 1), . . . ) ,

with any σk for k < 0. Quite clearly, the average truncated at a finite T oscillates, for no
matter how large t, between 1/3 and 2/3. It is worwhile mentioning that by letting the above
special string start in any position k > 0, rather than in k = 0, with arbitrary entries σj for
j ≤ k− 1, one obtains a dense set in Σ. So, in this example (and in general) f̄ is not defined
in any open set. This shows how crucial is making reference to a measure, and decide to
disregard what happens to any set of points of zero measure. By similar tricks, one easily
constructs a dense set of points x for which f̄(x) and f̄(−)(x) are both defined, but do not
coincide.

We conclude the Section with a second general result, due to Poincaré, showing a nontrivial
subtle aspect of dynamics called “recurrence”.

Definition 6 Let (M,µ,Φ) be any dynamical system, and consider a measurable subset A of M ; a
point x ∈ A is said to be recurrent in A, if for any T > 0 there exists t ≥ T such that Φt(x) ∈ A.

The set of non-recurrent points of A (points of A which after a certain time leave A forever) is then

NA = {x ∈ A : ∃T > 0 : Φt(x) /∈ A ∀t ≥ T} . (9)

For a pendulum, all points are recurrent in any open neighborhood (much more than recurrent:
periodic), but those on the separatrices.

The following theorem holds:
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Proposition 7 (Poincaré recurrence theorem) For any measurable A ⊂ M , NA is measurable and
has zero measure.

Correspondingly, almost all points of A are recurrent in A.

• An immediate consequence, when M is a metric space, is that for any ε > 0 and almost any
x ∈ M , it is dist (Φt(x), x) < ε for some arbitrarily large t (consider a finite covering of M
with balls of diameter less than ε, and apply the recurrence theorem to each of them).

Proof. We can restrict ourselves to the case of discrete systems: the continuous case indeed
reports to the discrete one by condidering the time-one map (the set NA defined in (9), if one
restricts t to integers, possibly grows but does not schrink). For any T ∈ N, denote

NA,T = {x ∈ A : Φt(x) /∈ A ∀t ≥ T}

(“T -non recurrent” points of A); it is obviously

NA =
⋃

T∈N

NA,T ,

so it is enough to show that for any measurable A and any T ∈ N the set NA,T is measurable
and has zero measure. The measurability of NA,T follows from its very definition, which can be
rewritten

NA,T = A
⋂ [ ⋂

t≥T

Φ−t(M \A)
]
.

Consider now the sets
NA,T , Φ−T (NA,T ) , Φ−2T (NA,T ) , . . .

They are all disjoint: indeed, should it be

x ∈ Φ−kT (NA,T )
⋂

Φ−lT (NA,T ) 6= ∅ ,

with for example k < l, then

ΦkT (x) ∈ NA,T

⋂
Φ−(l−k)T (NA,T ) ,

against the definition of NA,T . Due to the conservation of measure, all such sets have the same
measure. The overall measure of the space being finite, it is necessarily µ(NA,T ) = 0.

2 Ergodicity and mixing

2.1 Ergodicity

Ergodicity is the first nontrivial property one meets in ergodic theory, which discriminates among
systems and starts a classification. It can be intruduced in different equivalent ways, which stress
different aspects of this deep notion.

E1. For any measurable A ⊂ M , the time spent in A by a generic trajectory coincides with the
measure of A:

τA(x) = µ(A) a.e. in M , (10)

τA(x) being defined as in (7).
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E2. For any f ∈ L1(M,µ), it is
f̄(x) = 〈f〉 a.e. in M . (11)

E3. No constants of motion exist, but the trivial ones: namely if f ∈ L1(M,µ) and

f(Φt(x)) = f(x) ∀t , a.e. in M ,

then f is constant a.e. in M .

E4. The system is metrically indecomposable, namely for any measurable A ⊂ M

Φ−t(A) = A =⇒ µ(A) = 0 or 1

(any decomposition M = A ∪ (M \A), if measurable and invariant, is metrically trivial).

Properties E1–E4 are immediately seen to be invariant by isomorphism.

• E1 suitably formalizes the Boltzmann ergodic hypothesis, see Appendix A. E2 is proposed
as definition of ergodicity in many textbooks of statistical mechanics. E3 formalizes the
Gibbs idea, see again Appendix A, that the equilibrium distribution ρ∗ is unique (if f is a
nontrivial constant of motion, then ρ∗ = cf , c providing normalization, is a Gibbs equilibrium
distribution). Finally, E4 is the definition used by Birkhoff: very “elementary”, and very
useful in proofs.

Proposition 8 Properties E1, . . . , E4 are equivalent.

Proof. Many cross implications are easily proved. An easy path is the following:

(a) E2 ⇒ E1
(b) E1 ⇒ E4
(c) E4 ⇒ E2
(d) E4 ⇔ E3 .

(a) is trivial, as (10) is a particular case of (11). To prove (b), assume by absurd that E4 is
violated, i.e. there exists A nontrivial and invariant; then τA(x) = 1 6= µ(A) for x ∈ A, against E1.
Concerning (c), assume by absurd that E2 is violated; this means that for some function f it is,
for example, f̄(x) > 〈f〉 in a set of positive measure. Denote

A = {x ∈ M : f̄(x) > 〈f〉} .

By Birkhof ergodic theorem A is invariant (use the former of (8)) and nontrivial (use the latter:
f̄(x) cannot be a.e. larger than 〈f〉), against E4. Finally (d) follows, in one direction, for, if E4
is violated by a set A, then χA is a nontrivial constant of motion and E3 is then violated; in the
other direction for, if f is a nontrivial constant of motion, then for some c ∈ R the invariant set

A = {x ∈ M : f(x) ≤ c}

is nontrivial, against E4.
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Definition 7 The dynamical system (M,µ,Φ) is said to be ergodic, if any of E1–E4, and thus all,
are satisfied.

• In E2 and E3, reference is made to all functions f ∈ L1(M,µ). Quite clearly, it is sufficient
that properties are satisfied by all f ∈ L2(M,µ), to ensure they are satisfied by all functions
in L1(M,µ); the restriction to a much smaller set of functions, like the set of characteristic
functions of measurable sets, is in fact sufficient.

Proposition 9 Any Hamiltonian system with one degree of freedom, restricted to a compact con-
nected line of constant energy which does not contain singular points, is ergodic.

Proof. Quite trivially, the trajectory runs on the line of constant energy, passing through all
points. According to E4, the system is ergodic.

• Consider a set of n ≥ 2 independent harmonic oscillators, with hamiltonian

H(p, q) =
n∑

i=1

1
2(p

2
i + ω2

i q
2
i ) ;

the system is obviously not ergodic (the n energies are separately conserved). Understand-
ing how to perturb the system, in such a way that it becomes ergodic, is among the most
important still largely open problems of statistical mechanics (see the “Fermi-Pasta-Ulam
problem”).

Proposition 10 The discrete translation on S1 (example 2) is ergodic iff α is irrational.

Proof. If α is rational, trajectories are periodic and the system is obviously non ergodic (or also:
if α = p/q, then f(x) = cos 2πqx is a non trivial constant of motion). Assume now α is irrational;
consider any f ∈ L2(S

1, µ) and let

f(x) =
∑

k∈Z

f̂k e
2πikx .

Quite clearly,

f(Φ(x)) =
∑

k∈Z

(f̂k e
2πikα) e2πikx ,

and so f(Φ(x)) = f(x) a.e. if, for any k ∈ Z, f̂k(e
2πikα − 1) = 0. This implies f̂k = 0 ∀k 6= 0, i.e. f

is a.e. constant on S1.

Exercise 3 Prove that if f is continuous, or is the characteristic function of an interval, then
equalities (10) and (11) hold everywhere and not only a.e. (this it true in fact for all Riemann
integrable functions, see [2]).

Proposition 11 The free motion on Tn (examples 1, 3) is ergodic iff v is nonresonant. In particular
(Jacobi’s theorem) if v is nonresonant, trajectories are dense on Tn.

Proof. The proof exploits the same idea used in Proposition 10; details are left as an exercise.
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k 2k

0 1

1 2

2 4

3 8

4 16

5 32

6 64

7 128

8 256

9 512

10 1024

11 2048

12 4096

13 8192

14 16384

k 2k

15 32768

16 65536

17 131072

18 262144

19 524288

20 1048576

21 2097152

22 4194304

23 8388608

24 16777216

25 33554432

26 67108864

27 134217728

28 268435456

29 536870912

k 2k

30 1073741824

31 2147483648

32 4294967296

33 8589934592

34 17179869184

35 34359738368

36 68719476736

37 137438953472

38 274877906944

39 549755813888

40 1099511627776

41 2199023255552

42 4398046511104

43 8796093022208

44 17592186044416

The Table: The first 45 powers of 2.

Exercise 4 Find the condition on α ∈ Rn such that (Tn, µ,Φ), where µ is the Lebesgue measure
and Φ : Tn → Tn is the discrete translation Φ(x) = x+ α (mod 1), is ergodic. [k · α /∈ Z, ∀k 6= 0.]

Exercise 5 Table 1 reports the first 45 powers of 2; none of the numbers begins with the digit 7
or 9. Study the asymptotic frequencies pl, 1 ≤ l ≤ 9, of the powers of 2 which begin with the digit
l: do they exist? How are they ordered? Why do the digits 4 and 8 appear so regularly, every ten
powers?

2.2 Mixing

The next relevant notion in ergodic theory is mixing. The underlying idea is that if one looks at
sets of points, rather than at individual points, the dynamics is essentially irreversible; equivalently,
any macroscopic initial information on the initial datum, is lost for large time. Formally, we can
introduce two equivalent notions:

M1. For any pair of measurable sets A,B ⊂ M , it is

lim
t→∞

µ(Φ−t(A) ∩B) = µ(A)µ(B) . (12)

M2. For any pair of functions f, g ∈ L2(M,µ), it is

lim
t→∞

〈(f ◦ Φt) g〉 = 〈f〉〈g〉 , (13)

that is

lim
t→∞

∫

M
(f ◦ Φt) g dµ =

∫

M
f dµ

∫

M
g dµ . (14)
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Properties M1, M2 are immediately seen to be invariant by isomorphirm.

• According to M1, the set Φ−t(A), though preserving its measure, gets asymptotically diluted
uniformly in M , more or less as when we put a drop of ink in a glass of water and stirr.
According to M2, correlations between any two functions (or physical observables) are lost
with time. In general, the function C : R → R defined by

C(t) = 〈(f ◦ Φt) g〉 − 〈f〉〈g〉 ,

is called the correlation function of f and g (autocorrelation function of f , if g = f). If
C(t) 6= 0, then the knowledge of g at time zero conditions the expectation of f at time t.

• M2 formalizes Gibbs’ idea of convergence to equilibrium (take ρ0 = cg, c providing normal-
ization, and introduce the change of variables x = Φ−t(x′) at the left hand side of (14)).

Proposition 12 Properties M1 and M2 are equivalent.

Proof. M1 is a particular case of M2, when f = χA and g = χB: indeed, it is χA ◦ Φt = χΦ−t(A),
〈(χA ◦Φt)χB〉 = µ(Φ−t(A)∩B), and so M2 turns into M1. To show that M1 implies M2, consider
preliminarily the case in which f and g are simple functions, i.e. finite sums of characteristic
functions of suitable measurable sets:

f =
∑

i fiχAi
, g =

∑
j gjχBj

;

for such functions, using χAi
◦ Φt = χΦ−t(Ai), it follows

〈(f ◦ Φt)g〉 =
∑

ij figj〈χΦ−t(Ai)χBj
〉 = ∑

ij figjµ(Φ
−t(Ai) ∩Bj)

→ ∑
ij figjµ(Ai)µ(Bj) =

∑
ij figj〈χAi

〉〈χBj
〉 = 〈f〉〈g〉 .

For generic functions f, g ∈ L2(M,µ), one exploits the fact that for arbitrary ε they can be written
f = f0 + f1, g = g0 + g1, with f0, g0 simple and ‖f1‖, ‖g1‖ < ε. One then easily gets

|〈(f ◦ Φt)g〉 − 〈(f0 ◦ Φt)g0〉| < C ε , |〈f〉〈g〉 − 〈f0〉〈g0〉| < C ε

with some C > 0, and the conclusion follows.

Definition 8 The dynamical system (M,µ,Φ) is said to be mixing, if any of M1, M2, and thus
both, are satisfied.

Proposition 13 Mixing is stronger than ergodicity.

Proof. Assume (M,µ,Φ) is mixing, and let A be measurable and invariant. Using M1 with
B = A, it follows

µ(A) = µ(Φ−t(A) ∩A) → µ(A)2 .

So µ(A) = 0 or 1, and according to E4, the system is ergodic. An example of an ergodic non mixing
system is the free motion on Tn (Φ−t is a rigid motion, mixing cannot occur).

Proposition 14 The Arnold’s cat (example 5) is mixing.
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Proof. The functions uk(x) = e2πik·x, k ∈ Z2, are an orthogonal basis for L2(M,µ), namely

〈ukul〉 = 0 for k 6= −l .

From the definition of Φ, it follows

uk ◦ Φ = uÃk , uk ◦ Φt = uÃtk ,

where Ã denotes the transposed of A (we are not assuming here A is symmetric). Now, for k 6= 0,
the trajectory of k under the action of Ãt, i.e. {Ãtk, t ∈ N}, is open, and with any norm | . | in Z2

it is3

|Ãtk| → ∞ for t → ∞ , ∀k ∈ Z2 , k 6= 0 ;

this follows because the contracting direction of Ã has irrational slope, and cannot contain any
integer k 6= 0.

Mixing easily follows, making reference to M2. Consider preliminarily the case in which f, g are
Fourier polynomials, say

f(x) =
∑

k∈Z2,|k|≤K

f̂ke
2πik·x , g(x) =

∑

k∈Z2,|k|≤K

ĝke
2πik·x ,

for some K > 0. For such functions it is

〈(f ◦ Φt) g〉 =
∑

k,l∈Z2

|k|,|l|≤K

f̂k ĝl 〈uÃtk
ul〉 ,

but for large enough t and k 6= 0, it is certainly |Ãtk| > K ≥ |l|; the only nonvanishing term in the
sum is then k = l = 0. This means

〈(f ◦ Φt) g〉 = f0 g0 = 〈f〉〈g〉 .

The results extends to generic f, g ∈ L2(M,µ), by approximating them, in L2 norm, with Fourier
polynomials.

• The idea of the proof is the existence of an orthogonal basis U = {uk, k ∈ Z} in L2(M,µ),
such that (i) U is invariant under the dynamics induced by Φ (i.e., composition uk ◦ Φ), (ii)
all functions but u0 have an open non–recurrent behavior in U . The same idea will be used
in the next proposition.

Proposition 15 Bernoulli shifts are mixing.

Proof. We shall profit of notion M1 of mixing. Consider any cylinder C
l−K ,...,lK
−K,...,K , with base between

−K and K and any specification; it is clearly

Φ−t(C
l−K ,...,lK
−K,...,K ) = C

l−K ,...,lK
−K+t,...,K+t ,

3In fact, the norm |Ãtk| grows exponentially for large t; profiting of this, one can understand more, namely that
correlations in this example decay exponentially in t.
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i.e. cylinders go into cylinders, the base going to infinity for t → ∞. (Cylinders here play the role
of the basis functions uk in the previous proof.) Let now

A =
⋃

(l−K ,...,lK)∈L

C
l−K ,...,lK
−K,...,K , B =

⋃

(l′−K
,...,l′

K
)∈L′

C
l′−K ,...,l′K
−K,...,K ,

L and L′ being any sets of indices in I2K+1. Quite clearly, it is

µ(Φ−t(A) ∩B) = µ(A)µ(B) for t > 2k + 1 ;

indeed the base of cylinders forming A, after translation, get disjoint from the base of cylinders
forming B, so the measure of the intersection factorizes. (Sets A and B play the same role as
Fourier polynomials in the previous proof.)

The extension to any pair of measurable sets is straightforward: since the cylinders generate
the σ–algebra of measurable sets, then for any ε > 0 there exist A0, B0 of the form above, with
sufficiently large K(ε), such that

µ(A−A0) < ε, µ(B −B0) < ε ,

the symbol “−” denoting symmetric difference. One gets immediately

|µ(Φ−t(A) ∩B)− µ(Φ−t(A0) ∩B0)| < (const) ε
|µ(A)µ(B)− µ(A0)µ(B0)| < (const) ε ,

and so for t > 2K(ε) + 1 it is

µ(Φ−t(A) ∩B)− µ(A)µ(B) < (const) ε ;

M1 is thus satisfied.

Exercise 6 Prove that the rubber–band map (exercise 6) is mixing.

Exercise 7 Show that (M,µ,Φ2) is mixing, if and only if (M,µ,Φ) is mixing; show that if (M,µ,Φ2)
is ergodic, then (M,µ,Φ) is ergodic, but not conversely.

Exercise 8 Show that in the Bernoulli shift Bp,1−p, for almost all strings the frequency of the
symbol “0” is p.

Exercise 9 For Arnol’d cat, find a continuous function f such that f̄(x) 6= 〈f〉 in a dense set. [Hint:
take any function with nonvanishing average, which however vanishes in the origin, for example
f(x1, x2) = sin2 x1; look at f̄(x) for x in the contracting eigenspace E2 of the origin, reported to
the torus via mod 1.]

Besides elementary examples as the above ones, not so many systems are known to be ergodic, or
mixing. Among them, there are some billiards. Billiards, as dynamical systems, have been first
studied by Birkhoff, in his celebrated book Dynamical Systems. Quickly: a billiard is a region
M of the plain, or of the torus, with piecewise smooth border, on which a point freely moves,
bounching on the border according to the laws of elastic reflection. The measure dµ = Cdxdydϑ
is easily seen to be preserved. The ergodic properties entirely depend on the shape of the border,

20



and the question is highly nontrivial. The first billiard for which ergodicity and mixing have been
proved (Sinai, 1962) is the Sinai billiard: a torus T2 with a circular obstacle inside. An equivalent
problem is that of two discs on a torus, bounching elastically. The proof has been extended to
n ≤ 5 discs; a proof of ergodicity for generic n has been longly searched, but obstacles have been
found (a model of n bounching discs, or spheres in three dimensions, is a beautiful model of a gas
in classical mechanics).

2.3 Comparing measures

Let M be a compact metric space and Φ a dynamics on it; the Krylov–Bogoliobov theorem (Section
1.1) ensures the existence of at least one invariant measure. In special cases the invariant measure
is unique (for example, the rotation ẋ = 1 on S1), but in general it is not; an example is the set of
the Bernoulli shifts Bp,1−p, 0 < p < 1. Whenever there are more than one invariant measures, they
are necessarity infinite: quite clearly, if µ′ and µ′′ are invariant measures, the convex combination

µ = c µ′ + (1− c)µ′′ , 0 ≤ c ≤ 1 ,

is also an invariant measure. This also shows that the set of invariant measures is convex.

The ergodic properties of the dynamical system (M,µ,Φ) obviously depend on the choice of µ.
A good nontrivial question, for given M and Φ, is characterizing the set of the invariant measures,
and among them the set of the ergodic measures, i.e. the measures such that (M,µ,Φ) is ergodic.
It is fairly possible that (M,µ,Φ) and (M, ν,Φ), with µ 6= ν, are both ergodic; this is precisely the
case of Bp,1−p and Bq,1−q if q 6= p.

Proposition 16 For given M and Φ,

i) If both µ and ν are ergodic, µ 6= ν, there exist disjoint subsets Mµ, Mν such that

µ(Mµ) = 1 , ν(Mν) = 1 , µ(Mν) = 0 , ν(Mµ) = 0 (15)

(each measure is supported by a subset which has zero measure for the other).

ii) If µ is ergodic and ν 6= µ is invariant, then ν is singular with respect to µ (there exists a
measurable A, such that µ(A) = 0, ν(A) 6= 0).

iii) If µ and ν are invariant, µ 6= ν, any strictly convex linear combination

λ = cµ+ (1− c)ν , 0 < c < 1 , (16)

is invariant but not ergodic. Conversely, if a measure λ is not ergodic, there exist µ and ν
invariant, such that (16) holds.

Proof. Point (i): since µ 6= ν, there exists A measurable such that µ(A) 6= ν(A). Let

Mµ = {x ∈ M : τA(x) = µ(A)} , Mν = {x ∈ M : τA(x) = ν(A)} .

The two sets are invariant (indeed, τA(Φ
t(x)) = τA(x)) and obviusly disjoint. For the assumed

ergodicity of µ and ν, (15) holds.

Point (ii): we can assume ν is not ergodic, otherwise (ii) is already acheived (ν(Mν) > 0,
µ(Mν) = 0). But then, according to E4, there exists A invariant such that both ν(A) and ν(M \A)
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are positive. On the other hand, since µ is assumed to be ergodic and A is invariant, either A or
M \A have zero µ–measure.

Point (iii): if both µ and ν are ergodic, then the set Mµ as constructed in point (i) is invariant
and λ(Mµ) = c 6= 0, 1. If instead (for example) µ is not ergodic, let A be invariant, 0 < µ(A) < 1;
no matter which ν(A) is, it is λ(A) 6= 0, 1. Conversely, let λ be not ergodic, and let A be invariant,
λ(A) 6= 0, 1; denote by µ and ν, respectively, the restrictions of λ to A and M \A, defined by

µ(B) =
λ(B ∩A)

λ(A)
, ν(B) =

λ(B ∩ (M \A))
λ(M \A)

for any measurable B. Both µ and ν are invariant and (16) holds, with c = λ(A).

• The situation (i), which might appear paradoxical, occurs for the Bernoulli shifts. Take for
simplicity shifts with only two symbols, and denote by µp the measure of Bp,1−p. Let Σp be
the subset of Σ, including strings σ for which the frequency of the symbol “0” is defined and
is p. For any p (exercise 8) it is

µp(Σp) = 1 .

Now for p 6= q the sets Σp, Σq are by definition disjoint, and so

µp(Σq) = 0 ∀q 6= p .

We see that each µp is supported by a set Σp, which has zero measure for any other Bernoulli
measure µq with q 6= p.

• According to (iii), ergodic measures cannot be expressed as convex combinations of other
invariant measures: they stay at the border of the set of invariant measures. Instead, any
non–ergodic measure is internal, namely can be expressed as convex combination of invariant
measures. The question arises whether any invariant measure can be expressed as suitable
convex combination of ergodic measures. The answere is positive, but infinitely many ergodic
measures in general are needed (an infinite sum and/or an integral). Correspondingly, M is
decomposed into invariant sets, such that the dynamics restricted to any of them is ergodic
with respect to measure supported by that set. See, in textbooks, the Ergodic decomposition.

3 The Kolmogorov–Sinai entropy

In this section we shall introduce one of the most fundamental notions of ergodic theory, namely
entropy. Entropy is a real number associated to any dynamical system (M,µ, ϕ), which turns out to
be invariant by isomorphism. It has connections with information theory, and leads, in particular
for smooth dynamical systems, to quite interesting developments, including an important connec-
tion (Pesin’s theorem) between entropy and dynamical quantities like the Lyapunov characteristic
exponents, see Section 4.

3.1 The Entropy of a partition

Let
α = {A0, . . . , An−1}
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Figure 8: The function ρ entering the definition of the entropy of a partition

be a measurable partition of M in n atoms A0, . . . , An−1; in ergodic theory partition means “up
to zero measure sets”, i.e. different atoms may intersect in a zero measure set and the union of
all atoms may differ from M by a zero measure set. Two partitions α = {A0, . . . , An−1} and
α′ = {A′

0, . . . , A
′
n−1} are considered to be the same partition if, after suitable ordering, Ai and A′

i,
i = 1, . . . , n, are identical up to zero measure sets; zero measure sets can always be removed. A
partition can be usefully thought of as an experiment, with a finite set of possible exits represented
by the symbols 0, . . . , n− 1.

In information theory, it is natural to assign to α the number

η(α) = −
n−1∑

i=0

pi Log pi , pi = µ(Ai) , 0Log 0 = 0 ,

where Log denotes4 logarithm in base 2; η is called the entropy of the partition α. We shall use
the notation

η =

n−1∑

i=0

ρ(pi) , ρ(p) = −pLog p ;

the graph of ρ is shown in figure 8. The idea underlying the definition is that of the “a priori
uncernitainity” of the exit of the measurement, if the individual probabilities of the exits are
p0, . . . , pn−1; such an uncernitainity then represents the expected information produced by the
measurement. So, η is zero if the exit is certain (one of the pi’s is one, the other vanish), and is
maximal if nothing is known, i.e. all exits have a priori the same probability; for n = 2, η increases,
left to right, for

(p0, p1) = (0, 1) , (0.01, 0.99) , (13 ,
2
3) , (12 ,

1
2) .

To state a first proposition, which will help us to understand the meaning of η, we need a couple
of definitions.

Definition 9 Two partitions

α = {A0, . . . , An−1} , β = {B0, . . . , Bm−1}

are said to be independent, if for any pair of atoms Ai, Bj it is µ(Ai ∩Bj) = µ(Ai)µ(Bj).

Examples of independent partitions are any partition of a rectangle in vertical and horizontal strips,
or for Bernoulli shifts, the partitions αk = {C0

k, . . . ,C
n−1
k } for different k.

4The base of the logarithm plays no role at all, as it simply provides the unit of measure of the entropy. The
logarithm in base 2 allows to use the language of “bits”, and is natural witin information theory. Nowadays most
books in ergodic theory use the natural logarithm.
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Definition 10 The partition β is said to be finer than α, or to be a refinement of α, denoted β � α,
if (up to zero measure sets) each of the atoms of β is entirely contained in one of the atoms of α:
for any j there exists i such that µ(Bj ∩Ai) = µ(Bj) (and consequently µ(Bj ∩Ai′) = 0 for i′ 6= i).

Definition 11 The composition α ∨ β of two partitions

α = {A0, . . . , An−1} , β = {B0, . . . , Bm−1}

is the partition
{Ai ∩Bj 6= ∅, 0 ≤ i < n, 0 ≤ j < m} .

Proposition 17 The function η has the following properties:

i) η = 0 iff one of the pi is one, and consequently the remaining ones are zero.

ii) For given n, η is maximal if p0 = . . . = pn−1 = 1/n, and ηmax = Logn.

iii) If α and β are independent, then

η(α ∨ β) = η(α) + η(β) .

iv) If β � α, then η(β) ≥ η(α).

In the proof we shall use an elementary inequality valid for concave functions, known as Jensen’s
inequality:

Lemma 18 (Jensen’s inequality). If f : R → R is concave, then

f(
∑n

i=1 cixi) ≥ ∑n
i=1 ci f(xi) for

∑n
i=1 ci = 1 .

Proof of the Lemma. For n = 2 it is just the definition of concave function; for larger n it is an
easy induction.

Proof of the Proposition. Point i) depends only on the fact that ρ vanishes in 0, 1 and
is positive in between. Point ii) follows from the concavity of ρ, using Jensen’s inequality with
ci = 1/n, xi = pi (also recalling

∑
i pi = 1). Point iii) uses the explicit form of ρ, with the

logarithm inside: if p0, . . . , pn−1 and q0, . . . , qm−1 are respectively the measures of the atoms of α
and β, for independent partitions it is

η(α ∨ β) = −∑
ij piqj(Log pi + Log qj) = η(α)

∑
j qj + η(β)

∑
i pi = η(α) + η(β) .

Finally, for point iv), it is enough to show that if an atom A of α of measure p is the union of two
atoms B and B′ of β, of measure respectively cp and (1− c)p, then ρ(cp)+ρ((1− c)p) ≥ ρ(p). This
follows from concavity of ρ together with ρ(0) = 0: indeed,

ρ(cp) = ρ(cp+ (1− c)0) ≥ cρ(p) + (1− c)ρ(0) = cρ(p) ;

similarly ρ((1− c)p) ≥ (1− c)ρ(p), and the conclusion follows.

• It can be proved5 that properties i) — iv) completely characterize η, up to a multiplicative
constant (corresponding to the arbitrary choice of the base of the logarithm).

5See for example A.I. Kinchin, Mathematical foundations of information theory, Dover, New York (1957).
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• If there are only two possible exits of a measurement, with equal a priori probability, then
η = 1: this is the elementary information corresponding to one binary digit, or bit . Four,
eight,. . . equally probable exits, give two, three. . . bits of information. If there are three exits
A,B,C with a priori probability 1

2 ,
1
4 ,

1
4 , then with probability 1

2 one gains one bit, with prob-
ability 1

4 one gains two bits, and again with probability 1
4 one gains two bits. Correspondingly

it is η = 1
2 × 1+ 1

4 × 2+ 1
4 × 2 = 3

2 bits (the uniform probability would give η = Log 3 ≃ 1.58).

3.2 The entropy of a system

A. Entropy of (M,Φ) relative to a partition α. Let (M,µ,Φ) be a discrete dynamical system and
α = {A0, . . . , An−1} be any measurable partition of M . Let

βt = α ∨ Φ−1(α) ∨ · · · ∨ Φ−t+1(α) ,

where of course
Φ−1(α) = {Φ−1(A0), . . . ,Φ

−1(An−1)} .

Definition 12 We shall call entropy of (M,Φ) relative to the partition α the limit, which will be
proved to exist,

h(Φ, α) = lim
t→∞

1

t
η(βt) . (17)

• Each atom of β can be interpreted is as one of the possible exits of a sequence of t measure-
ments of α, at times 0, 1, . . . , t− 1; indeed, if x belongs to the atom

t−1⋂

s=0

Φ−s(Als)

of β, for some l0, l1, . . . , lt−1, then

x ∈ Al0 , Φ(x) ∈ Al1 , . . . , Φt−1(x) ∈ Alt−1 ,

and l0, l1, . . . , lt−1 is the sequence of results. The entropy h(Φ, α) appears then as the expected
information per measurement, in an infinite sequence of measurements.

• A positive value of h(Φ, α) indicates that βt fragments, in a sense, with a rate “on the average,
exponential” (remember the Log inside η). Indeed, let B(x, t) be the atom of βt that contains
x; one easily checks that

h(Φ, α) = lim
t→∞

−1

t

∫

M
Log µ(B(x, t)) dµ . (18)

In this (weak) sense, it appears that the measure of atoms contracts, on the average, expo-
nentially (this does not mean that all of them effectively do). A stronger result, in which we
shall not enter, is provided by the Shannon–McMillan–Brian theorem.

Proposition 19 The limit (17) exists.

To prove the proposition, we need a definition and a couple of lemmas.
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Definition 13 The quantity

µ(A|B) =
µ(A ∩B)

µ(B)

is called measure of A conditioned to B.

Observe that for atoms A and B of two independent partitions, it is µ(A|B) = µ(A).

Lemma 20 For any pair of measurable partitions

α = {A0, . . . , An−1} , β = {B0, . . . , Bm−1} ,

it is
η(α ∨ β) ≤ η(α) + η(β) , (19)

the equality holding iff the partitions are independent.

Proof. From the definition of η, one easily writes

η(α ∨ β) = −∑
ijµ(Ai ∩Bj)Log (µ(Bj)µ(Ai|Bj))

= −∑
ijµ(Ai ∩Bj)Logµ(Bj)−

∑
ijµ(Ai ∩Bj)Logµ(Ai|Bj)

= η(β)−∑
ijµ(Bj)µ(Ai|Bj)Logµ(Ai|Bj)

(use is made of
∑

i µ(Ai ∩Bj) = µ(Bj)). The second term on the r.h.s. has the form

∑
i [
∑

j cj ρ(pij) ] ,

with
cj = µ(Bj) , pij = µ(Ai|Bj) , ρ(p) = −pLog p ;

using Jensen’s inequality for each index i, and then summing over i, one immediately sees that such
a term does not exceed η(α), i.e. (19) is satisfied. On the other hand, due to the strict concavity
of ρ, Jensen’s inequality is strict, unless all pij , for any i, do not depend on j; this means µ(Ai|Bj)
is independent of j, and this in turn implies that partitions are independent.

Lemma 21 If the sequence h1, h2, . . . is bounded from below and satisfies the sub–additivity condition

ht+s ≤
t

t+ s
ht +

s

t+ s
hs ,

the limit limt→∞ ht exists and is equal to h = inf {ht, t ∈ N}.

The lemma extends to sub–additive functions the well known property of monotone non increasing
functions.6

Proof. We need to show that for large t, the difference ht − h is arbitrarily small. From the
definition of h, one has that for any ε > 0 there exists s = s(ε) such that

hs < h+ ε ;

6Monotone non increasing functions are immediately seen to be sub–additive; an example of sub–additive non
monotone function is ht = 0 for even t, ht = t−1 for odd t.
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from sub–additivity it follows immediately hjs ≤ hs, and so

hjs < h+ ε ∀j > 0 .

Let now t stay between js and (j + 1)s, say t = js + k with 0 < k < s. From sub–additivity one
has

ht ≤
js

js+ k
hjs +

k

js+ k
hk < h+ ε+

1

j
hk ;

on the other hand, once more for additivity, it is hk < h1: as a consequence,

ht < h+ 2ε

for large enough j ≥ h1/ε, and so for large enough t ≥ T (ε) = h1s(ε)/ε.

The proof of the proposition now gets trivial.

Proof of Proposition 19. From the definition of βt and from Lemma 20, it follows

η(βt+s) ≤ η(βt) + η(Φ−t(βs)) = η(βt) + η(βs) .

The sequence ht =
1
t η(βt) then satisfies the assumptions of Lemma 21, and so the limit (17) does

exist.

Exercise 10 Show that for the Bernoulli shift Bp0,...,pn−1 , denoting by α the partition in elementary
cylinders α = {Cl

0 , l ∈ I}, it is

h(Φ, α) = η(α) = −
n−1∑

i=0

pi Log pi .

Exercise 11 Let (M,µ,Φ) be any discrete dynamical system and α be any measurable partition
of M ; let βs = α ∨ Φ−1(α) ∨ · · · ∨ Φ−s+1(α), for some s > 1. Show that h(Φ, βs) = h(Φ, α).

(In particular, for a Bernoulli shift Bp0,...,pn−1 , denoting βs = {Cl0,...,ls−1

0,...,s−1 , l0, . . . , ls−1 ∈ I}, it is
h(Φ, βs) = h(Φ, α).) In the interpretation of measurements: by measuring βs several times, we
repeat some already done measures, and do not acheive new information.

B. The entropy of a system. We are now ready to define the entropy of a system.

Definition 14 Let (M,µ,Φ) be any discrete dynamical system. The quantity

h(Φ) = sup
α measurable

h(Φ, α)

is called Kolmogorov–Sinai entropy of the system.

Exercise 12 Show that h is invariant by isomorphism

Exercise 13 Show that, for a discrete invertible system, h(Φ−1) = h(Φ). Hint: use η(Φt−1(βt) =
η(βt).

Exercise 14 Show that for any s it is h(Φs) = |s|h(Φ). Hint: study h(Φs, α(s)), α(s) = α ∨ . . . ∨
Φ−s+1(α).
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Let us now come to continuous dynamical systems, that till now we disregarded. Consider any
continuous dynamical system (M,µ,Φ) and let (M,µ,Φs) denote the discrete system corresponding
to the time–s map of the continuous flow. It can be shown that for any s ∈ R, the entropy of
(M,µ,Φs) is h(Φs) = |s|h(Φ1). This motivates the following definition:

Definition 15 Let (M,µ,Φ) be a continuous dynamical system. Its Kolmogorov–Sinai entropy is
defined as the entropy h(Φ1) of the discretized system (M,µ,Φ1).

Definition 14 might appear obscure: taking the supremum among all measurable partitions —
a quite huge set, far beyond the intuition — is apparently abstract and non constructive at all;
moreover, since η(α) and thus η(βt) grow by taking finer and finer α, one could be afraid the
supremum is infinite. Some relevant results, shortly sketched in the next papagraph, will help to
make clear the situation. Here we only show, on the basis of an example, that taking a finer and
finer α, does not obviously produce a growth of h(Φ, α). The example is that of a Bernoulli shift.
Let α be the partition in elementary cylinders based on zero,

α = {Cl
0 , l ∈ I} ,

and denote
αk = {Cl−k,...,lk

−k,...,k , l−k, . . . , lk ∈ I}
(α0 = α). Quite clearly, αk gets finer for larger k, namely η(αk) = (2k + 1)η(α); however,

αk ∨ · · · ∨ Φ−t+1(αk) = Φk(α) ∨ · · · ∨ Φ−k−t+1(α)
η(αk ∨ · · · ∨ Φ−t+1(αk)) = (2k + t)η(α)

and consequently h(Φ, αk) = h(Φ, α) = η(α).

3.3 Some results on entropy

The set P of all measurable partitions is naturally endowed with a distance.

Definition 16 Given any two measurable partitions α = {A0, . . . , An−1}, β = {B0, . . . , Bm−1}, the
quantity

η(α |β) = −∑
j µ(Bj)

∑
i µ(Ai|Bj) Log µ(Ai|Bj)

is called entropy of α relative to β.

An equivalent definition, as is immediately checked, is

η(α |β) = η(α ∨ β)− η(β) . (20)

By means of relative entropy, we can introduce a distance in P, according to

dist (α, β) = η(α |β) + η(β |α) .

Lemma 22

i. The above defined quantity dist (α, β) is a distance in P.
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atom A

atom Φ−1(A)

Φ

σ Φ−1(σ)

λ

Figure 9: An atom A and its pre-image Φ−1(A). Due to volume conservation, a portion
σ of the surface cannot grow more than the maximal dilatation λ of lengths in the
foreward dynamics.

ii. For any dynamical system (M,µ,Φ), h(Φ, α) is continuous in α, more precisely it is

|h(Φ, α)− h(Φ, β)| ≤ dist (α, β) .

The proof is in Appendix C.

The above lemma is important: it allows to approximate partitions with “easier” ones, and the
search of the supremum, in the definition 15 of entropy, can be restricted to any subset P0 dense
in P.

Definition 17 Let M be a compact manifold. A partition of M is said to be smooth, if its atoms
are polyhedra having as border a piecewise smooth submanifold of M of codimension 1.

Lemma 23 The subset P0 of smooth partitions of M is dense in the space P of measurable partitions
of M .

The proof is in Appendix C.

Proposition 24 (Kouchnirenko’s theorem). The entropy of smooth dynamical systems is finite.

We provide only a sketch of the proof, assuming Φ is a diffeomorphism and M is endowed with a
Riemannian metrics such that dµ = ρ(x)dV with smooth positive ρ.

Proof. Thanks to Lemma 23, it is enough to take into consideration smooth partitions of M .
One proceeds as follows:

i) The metrics can by adapted to the measure, so as dµ = dV (multiply the metric tensor by
ρ(x)−1/n). Let S(A) be the surface of atom A in such a metrics, and S(α) be the sum of the
surfaces of all atoms of partition α. Then the surface of βt = α ∨ · · · ∨ Φ−t+1(α) grows at
most exponentially with t:

S(βt) ≤ (const)λt
S(α) , (21)

λ being the maximal dilatation coefficient of lengths produced by Φ (the operator norm of
the derivative DΦ).

Indeed, take a thin disc with base on the surface of A (Figure 9); since the volume is preserved
by Φ, the base of the disc grows, by applying Φ−1, only if the thickness of the disc decreases.
But the maximal contraction produced by Φ−1 is the maximal dilatation produced by Φ. It
follows

S(Φ−t(A)) ≤ λt
S(A) ,
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and then (also using the obvious inequality S(α ∨ α′) ≤ S(α) + S(α′))

S(βt) ≤
λt − 1

λ− 1
S(α) ; (22)

(21) follows. For λ = 1, i.e. rigid transformations in the adapted metrics, (22) is be replaced
by

S(βt) ≤ t S(α) . (23)

ii) In turn, a bound on the surface of a partition β turns into a bound on η(β), namely

η(β) ≤ (const) + mLog S(β) , m = dimM (24)

(fragmenting M in small atoms, so as to increase η(β), has a minimal cost in surface).

Indeed, in any Riemannian manifold an isoperimetric inequality holds: there exist constants
C and V such that, if Vol (B) ≤ V , then

Vol (B) ≤ CS(B)
m

m−1 .

It is not restrictive to assume the atoms of β have volume smaller than V (if not, replace β
with a convenient refinement); it is then, denoting pi = Vol (Bi),

η(β) = − ∑
i piLog pi = m

∑
i piLog p

− 1
m

i

≤ mLog
(∑

i pip
− 1

m

i

)
= mLog

(∑
i p

m−1
m

i

)

≤ mLog
(
C

m−1
m

∑
i S(Bi)

)
= mLog (S(β)) + (m− 1) LogC .

Putting together (20) and (21) one finds η(βt) ≤ const+mS(α)+tmLog λ and thus, for any smooth
α, h(Φ, α) ≤ mLog λ. As a consequence,

h(Φ) ≤ mLog λ . (25)

• Equation (25), concluding the proof, establishes a connection between entropy and dilatation
of distances, here found as an upper bound to entropy. Far beyond this inequality, for smooth
systems there exists an exact formula, called Piesin’s formula, connecting entropy to the so-
called Lyapunov characteristic exponents; see the next section. For the Arnol’d cat, (25)
provides the inequality h ≤ 2Log λ, where λ = 1

2(3+
√
5) is the maximal eigenvalue of matrix

A; the exact value is h = Log λ.

• For rigid transformations, the growth of S(βt) is sub-exponential, see (23), and thus h(Φ) = 0.
In particular, for the translations on the torus (examples 1–3) it is h(Φ) = 0.

We close the section by mentioning one further results, the so-calles Sinai’s Generator Theorem;
the proof is in Appendix D.

Definition 18 A partition α = (A0, . . . , An−1) is said to be generating for a dynamical system
(M,µ,Φ), if the atoms of the partition, together with all their iterated Φ−t(Ai) for any t and i,
generate the σ–algebra of the measurable sets of M .
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This is the case, for example, of the partition α = {Cl
0 , l ∈ I} for a Bernoulli shift.

Proposition 25 If α is a generating partition, then h(Φ) = h(Φ, α).

So, in presence of a generating partition, the supremum in Definition 14 is in fact a maximum.

Corollary 26 For a Bernoulli shift it is h(Φ) = −∑
i piLog pi.

This means that, for example, B 1
2
, 1
2

and B 1
3
, 2
3

cannot be isomorphic. Instead, B 1
4
, 1
4
, 1
4
, 1
4

and

B 1
2
, 1
8
, 1
8
, 1
8
, 1
8
have the same entropy, so it is not excluded they are isomorphic. In fact, they are

(Ornstein, 1970: Bernoulli shifts are isomorphic iff they have the same entropy.)

4 The Lyapunov Characteristic Exponents

The study of the Lyapunov Characteristic Exponents (LCE’s) as indicators of stability of equi-
librium points or periodic orbits goes back to the work of Lyapunov, in the early 20th century.
Modern theory started in 1968, with an important paper by V. Oseledets (also spelled Oseledec),
where the general existence of LCE’s is proved, within ergodic theory, for almost all orbits of a
dynamical system.7 The role of LCE’s in ergodic theory become definitely clear in 1975, when
Ya. Pesin drew the exact connection between LCE’s and entropy, in the so-called Pesin’s formula.8

LCE’s, in the very essence, are a way to introduce formally the notion of exponential divergence
of nearby trajectories, with a sufficiently weak definition which allows to prove that such quantities
do exist generically. Much beyond their interest in Ergodic Theory, LCE’s become soon important
in a variety of applications: celestial mechanics, statistical mechanics, turbolence, plasma physics,
economy, ecology, biomedicine... indeed, on the one hand they are mathematically well defined
quantities, on the other hand it became soon clear they can be computed numerically, and even
be investigated experimentally. Nowadays, the common notion of “chaotic” system is based on the
positivity of LCE’s.

4.1 Exponential divergence of nearby trajectories

Although, since Oseledets paper, there exists an abstract notion of LCE’s, we shall consider here
only the smooth case, where the notion is more easily understood.

Consider a smooth dynamical system (M,Φ); the invariant measure will be introduced later,
when needed. Let M be endowed with any Riemannian metrics, denote by TxM the tangent space
to M in x ∈ M and let ‖ . ‖ be the norm induced in TxM by the metrics on M .

For x ∈ M , let y(s), with s ∈ (−ε, ε), be a curve on M , such that y(0) = x. The image of the
curve at time t is the curve yt(s) = Φt(y(s)), and yt(0) = Φt(x). If ξ ∈ TxM is tangent to y(s) in
x, then ξ is mapped linearly in DΦt

xξ ∈ TΦt(x), tangent to yt in Φt(x), where DΦt
xξ denotes the by

the so-called tangent application to Φt in x. The “dilatation coefficient” at point x, at time t, in
the direction of ξ, is then

γ(t, x, ξ) = lim
s→0

dist (yt(s), xt)

dist (y(s), x)
=

‖DΦt
x ξ‖

‖ξ‖ .

7The result is contained in the Ph.D. thesis of Oseledets, at the Moscow State University; the advisor was Ya. Sinai.
8The result is contained in the Ph.D. thesis of Pesin, at the Moscow State University, Ya. Sinai and D.V. Anosov

being the advisors.
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It is spontaneous to say there is exponential divergence of trajectories close to Φt(x), with initial
datum shifted in the direction of ξ, if for large t the coefficient γ(t, x, ξ) grows exponentially in
time, γ ∼ eχt with positive χ; exponential contraction if χ < 0. A convenient weak way to define
χ is the following:9

Definition 19 Let (M,Φ) be a smooth dynamical system, let x ∈ M and ξ ∈ TxM . The quantity

χ(x, ξ) = lim
t→∞

1

t
log

‖DΦt
x ξ‖

‖ξ‖ , (26)

provided the limit exists, is called the Lyapunov characteristic exponent of ξ in x.

The denominator ‖ξ‖ in (26) could be omitted. From the very definition it follows that equiv-
alent metrics give the same value of χ(x, ξ).

4.2 The “filtration” for a periodic motion

Let us consider the simple case of a periodic motion of period τ , so that Φτ (x) = x; the tangent
application DΦτ

x is then an ordinary linear operator: TxM → TxM , and it makes sense to discuss
of its eigenvalues and eigenvectors. Assume for simplicity DΦτ

x has n = dimM real eigenvalues
λ1, . . . , λn such that

|λ1| > |λ2| > . . . > |λn| ; (27)

let e1, . . . , en be the corresponding eigenvectors. Then:

a) It is
χ(x, ei) = τ−1 log |λi|

(this is immediate if one takes the limit on the subsequence t = kτ , k ∈ N, but the general
existence of the limit easily follows).

b) Consider a vector ξ =
∑

i≥r ciei, with cr 6= 0. Then the dilatation of er dominates and

χ(x, ξ) = χ(x, er) .

Consequently, by varying ξ in TxM , χ(x, ξ) assumes only n = dimM different values.

c) Denote by [a, b, c, . . .] the linear subspace of TxM generated by a, b, c, . . . ∈ TxM , and let

L1 = [e1, . . . , en] = TxM
L2 = [e2, . . . , en]
...

Ln = [en] ;

it is clearly
TxM = L1 ⊃ L2 ⊃ . . . ⊃ Ln (28)

and
χ(x, ξ) = χ(x, ei) for ξ ∈ Li \ Li+1 , i = 1, . . . , n ,

having denoted Ln+1 = {0}.
9A stronger definition of exponential divergence would be: there exist C,χ > 0 such that γ(t, x, ξ) > Ceχt. Such

a uniform exponential divergence characterizes a very special class of dynamical systems, called Anosov systems.
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Let us introduce the following general definition:

Definition 20 Let E be any vector space of finite dimension n. A sequence of linear subspaces

E = L1 ⊃ · · · ⊃ Lm , m ≤ n ,

of strictly decreasing dimension, is called a filtration of E.

So, (28) is an example of filtration. It is easy to see that the special assumption of real eigenvalues
satisfying (27) can be released: in any case for a periodic orbit, even in presence of multiple possibly
complex eigenvalues λ1, . . . , λm, m ≤ n, with multiplicities ν1, . . . , νm, a filtration

TxM = L1 ⊃ . . . ⊃ Lm , m ≤ n , dimLi \ Li+1 = νi , (29)

remains defined, such that

χ(x, ξ) = τ−1 log |λi| for ξ ∈ Li \ Li+1 (30)

(it is enough to represent DΦt
x by a matrix in Jordan form).

4.3 Generalization to any motion; Oseledets’ theorem

For a non periodic motion, the notion of eigenvalue and eigenvector of DΦt
x does not make sense

anymore, since there is no way, in general, to identify TxM and TΦt(x)M . Instead, from the very
definition of χ(x, ξ), and even from the weaker temporary definition

χ(x, ξ) = lim sup
t→∞

1

t
log ‖DΦt

x ξ‖ ,

which allows to postpone the question of the existence of the limit, a filtration of TxM satisfying
(29) and (30) remains defined. Precisely:

Proposition 27 Let x ∈ M .

i) By varying ξ in TxM , χ(x, ξ) assumes a finite number m ≤ n different values

χ∗
1(x) > χ∗

2(x) > · · · > χ∗
m(x) .

ii) Ther exists a filtration of Tx in m subspaces,

TxM = L1 ⊃ L2 ⊃ · · · ⊃ Lm ,

such that
χ(x, ξ) = χ(x, ei) for ξ ∈ Li \ Li+1 , i = 1, . . . ,m ,

where Lm+1 = {0}.

iii) Let (e1, . . . , en) be a basis of Tx obtained by taking νi = dimLi−dimLi+1 independent vectors
in Li \ Li+1 (normal basis), and (f1, . . . , fn) any basis of TxM . Then

n∑

i=1

χ(x, ei) ≤
n∑

i=1

χ(x, fi) ,

the equality holding iff (f1, . . . , fn) is also a normal basis.
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Definition 21 The number νi = dimLi − dimLi+1 is called the multiplicity of χ∗
i ; the set

Sp (x) = {χ1(x), . . . , χn(x)} ,

obtained by repeating each χ∗
i as many times as its multiplicity, is called the spectrum in x.

Equivalently, one could define

χi(x) = χ(x, ei) , i = 1, . . . , n ,

(e1, . . . , en) being any (suitably ordered) normal basis of TxM .

Proof. Let x ∈ M . For any c > 0 and any ξ, ξ′ ∈ TxM it is

χ(x, cξ) = χ(x, ξ) , χ(x, ξ + ξ′) ≤ max (χ(x, ξ), χ(x, ξ′)) .

The former relation is trivial, the latter is easily deduced from the definition of lim sup (the in-
equality takes into account the possibility that the dominant divergence of ξ and ξ′ cancel). This
shows that for any ϑ, the set

L(ϑ) = {ξ ∈ TxM : χ(x, ξ) ≤ ϑ}

is a linear subspace of TxM (let χ(x, 0) = −∞, so as to include in L(ϑ) the null vector). But
L(ϑ′) ⊂ L(ϑ) for ϑ′ < ϑ, and if there exists ξ ∈ L(ϑ) which realizes χ(x, ξ) = ϑ, then ξ /∈ L(ϑ′),
i.e. the inclusion is proper and dimL(ϑ′) < dimL(ϑ) strictly. As a conclusion, χ(x, ξ) assumes at
most m ≤ n distinct values χ∗

1 > · · · > χ∗
m, and the subspaces Lk = L(χ∗

k), 1 ≤ k ≤ m, provide the
desired filtration.

The last point follows because the normal basis has as many vectors as possible in subspaces
with high index and so small χ.

The trivial property χ(x, cξ) = χ(x, ξ), used in the proof, shows that χ depends only the one-
dimensional linear space E ∈ TxM including ξ. It is then spontaneous to generalize to subspaces
of any dimension.

Definition 22 Let E ⊂ TxM , dimE = p ≤ n. The limit (if existing)

χ(p)(x,E) = lim
t→∞

1

t
log

Vol p(DΦt
x(ξ1), . . . , DΦt

x(ξp))

Vol p(ξ1, . . . , ξp)
, (31)

where (ξ1, . . . , ξp) is any basis of E and Vol p(ξ1 . . . ξp) is the p-dimensional volume of the par-
allelepiped generated by ξ1, . . . , ξp, is called Lyapunov Characteristic Exponent of order p of the
subspace E.

The existence of the Lyapunv exponents of any order as exact limits is guaranted by a nontrivial
theorem proved in 1968 by Oseledets within Ergodic Theory, that is with reference to a conserved
measure µ and thus to a dynamical system (M,µ,Φ).10

Proposition 28 Let (M,µ,Φ) be any dynamical system, M being a Riemannian manifold.

10It should be stressed that (possibly piecewise) smoothness of M is essential to define LCE’s, but no smoothness
assumption is needed on µ. So, the theorem holds also for dissipative systems, having a possibly non smooth attractor.
Such systems play an important role in the description of turbolence.
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i) For almost any x ∈ M , and any subspace E ∈ TxM , dimE = p, the limit (31) exists finite.
In particular, the exact limit (26) exists a.e. for any tangent vector ξ ∈ TxM .

ii) The spectrum Sp (x) is a summable function of x.

iii) For any subspace E ∈ TxM there exists a normal basis (e1, . . . , ep), such that

p∑

i=1

χ(x, ei) ≤
p∑

i=1

χ(x, fi) ,

(f1, . . . , fp) being any basis of E. Moreover it is

χ(p)(x,E) =

p∑

i=1

χ(x, ei) .

We shall not prove the theorem.

4.4 Further properties of LCE’s; Pesin’s formula

With some attention, but without real difficulties, it is possible to work out some useful properties
of LCE’s, once their existence is known.

Proposition 29

a) LCE’s are constants of motion: Sp (Φt(x)) = Sp (x); in an ergodic system Sp (x) is constant
a.e.

b) For an invertible system, if the preserved measure is equivalent to the volume, then

χ(n)(x, TxM) =
n∑

i=1

χi(x) = 0 .

c) For a continuous system for which Φ is solution of a differential equation ẋ = X(x) on M , if
Φt(x) does not converge to an equilibrium point for t → ∞, then

χ(x,X(x)) = 0 .

d) For a Hamiltonian system (M,µ,Φ) with n degrees of freedom, M being a compact constant
energy surface (dimM = 2n− 1), the spectrum is symmetric:

Sp (x) = {χ1(x), . . . , χn−1(x), χn(x),−χn−1(x), . . . ,−χ1(x)} ;

according to point c), if Φt(x) does not converge to an equilibrium point, χn(x) = 0.

For the corresponding Hamiltonian system for which M is the layer between two compact
constant energy surfaces (dimM = 2n),

Sp (x) = {χ1(x), . . . , χn−1(x), χn(x),−χn(x),−χn−1(x), . . . ,−χ1(x)} (32)

(χn, in the middle, is repeated twice; generically, there are two zeros in the middle).

For a symplectic diffeomorphism M → M , where M is a compact symplectic manifold of
dimension 2n, the spectrum is also symmetric and satisfies (32).

35



Points a–c) are easy. Point d) instead is not completely trivial and requires some work. The
idea is to compare, for each t, DΦt

x : TxM → TΦt(x)M with its inverse and its adjoint, both
TΦt(x)M → TxM .

We now consider the completely smooth case, that is we assume the measure µ is also smooth.
Pesin’s theorem then holds (1975):

Proposition 30 For a smooth dynamical system (M,µ,Φ) it is

h(Φ) = C

∫

M

∑+
i χi(x) dµ , C = 1/ log 2 , (33)

where
∑+ denotes the sum restricted to χi(x) positive.

The theorem is definitely not elementary and we shall not prove it. There exist extensions to piece-
wise smooth systems (including billiards) and, with appropriate formulation, to certain nonsmooth
systems with attractors. The constant C in (33) disappears, if natural logarithm is used in the
definition of entropy in place of logarithm in base 2. Equation (33) is known as Pesin’s formula.
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APPENDICES

A The roots of Ergodic Theory in Boltzmann and Gibbs

As already remarked in the Foreword, the roots of Ergodic Theory go back to the work of the
founding fathers of Statistical Mechanics, in particular Boltzmann and Gibbs, who understood
that the key idea to connect thermodynamics and microscopic dynamics, in systems with many
degrees of freedom, is a statistical treatment, in which the volume of the phase space acquires the
meaning of probability.

A.1 Macroscopic vs. microscopic description

Thermodynamics is a macroscopic experimental science, in which every quantity entering the game
is conceptually defined with reference to an ideal experimental procedure. Take for simplicity a
gas in a box of volume V; the thermodynamical state, at equilibrium, is completely characterized
by specifying the density ̺ = n/V , n being the amount of gas in moles, the pressure p and the
temperature T ; such variables however are not independent but related by an “equation of state”,
namely a relation (depending on the substance at hand) of the form F (̺, p, T ) = 0. For ideal gases
it is, as is well known,

pV = nRT , i.e. p/̺ = RT ,

R being the so-called universal constant of gases. For real gases the equation of state is more
complicated, but does exist; more complex systems (mixtures, coexistence of different phases...)
require more variables to define the state, but conceptually the situation is not different. Non
equilibrium situations can also be considered, in which ̺, p and T are not uniform in the box and
an equation of state F (̺(x), p(x), T (x)) = 0 is satisfied locally in any point x of the box.

Besides such variables, thermodynamics introduces further important quantities depending on
the state of the system, among them the internal energy U and the entropy S, and describes
what happens to such quantities during a thermodinamical transformation, namely a change of
the thermodynamical state, the system possibly interacting with nearby systems (making work,
absorbing heat). The statements include the fact that in any isolated system U is conserved (1st

principle), while S can only grow, and does grow in any irreversible (or spontaneous, or natural)
process (2nd principle). An easy example to have in mind is a gas initially confined in a corner of
a box and let free to expand: it will expand, and so raise its entropy, while the opposite process
is not natural and cannot take place. More generally, if ̺, p and T are not initially uniform in an
isolated system, they become, and correspondingly entropy increases.

On the other hand, one knows or believes11 that thermodynamic systems have a microscopic
internal structure, namely are composed of a huge number of very small subsystems, which individ-
ually obey the laws of mechanics. The highly relevant and deep question then arises, whether it is

11This was still a little conjectural throughout the 19th century, before the determination of Avogadro’s number
and so of the mass of atoms and molecules. Avogadro’s number is approximately 6× 1023; this is indeed the number
of molecules in 2 grams of hydrogen or 18 grams of water.
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possible to deduce the macroscopic behavior of a system from the microscopic mecanical laws govern-
ing its elementary constituents. A quite ambitious goal: reducing thermodynamics to mechanics.
Boltzmann was certainly the person who more strongly felt, and even suffered, the necessity of such
a reduction.

Apparently the purpose is hopless, while instead some paradoxes suggest that thermodynamics
and mechanics are incompatible.

◦ The Loschmidt paradox (or reversibility paradox): mechanical processes are reversible, namely
for each process the reversed one is possible as well, while instead, as remarked above, ther-
modynamical processes in general are irreversible and entropy definitely grows. How is it
then possible the reduction?

◦ The Zermelo paradox (or recurrence paradox): conservative mechanical systems, like Hamil-
tonian systems, are recurrent, that is for most initial data, after a convenient time — possibly
huge but finite — the system comes back near the initial state (Poincaré recurrence theorem,
Section 1.1). Nothing similar, however, is expected in thermodynamics. How does recurrence
disappear, passing from microcopic to macroscopic?

The question is indeed subtle, and a crucial role is played by the distinction, to be stressed,
between a microscopic mechanical state (a point in a suitable phase space) and a macroscopic or
thermodynamical state, defined with reference to experimental procedures, to be better understood
in a theoretical frame. The ideas of Boltzmann and Gibbs can be regarded, in a sense, as attempts
to give a meaning to the notion of macroscopic state, such that the paradoxes in principle solve
and the reduction is al least conceptually possible.

It is of course impossible to enter here the not easy work and thougt of Boltzmann and Gibbs,
and we shall (drastically) limit ourselves to a few comments, in which the ideas of these authors
are oversimplified and also a little reinterpreted.

A.2 Boltzmann’s equiprobability of microscopic states

Let us follow Boltzmann and consider a gas in a box composed of N identical weakly interacting
molecules, each having l degrees of freedom, so that the complete system has n = lN degrees
of freedom; denote by12 γ and Γ, respectively, the phase space of the single molecule and of the
complete system, Γ = γN (for a gas of point masses in a box B, it is n = 3, γ = B × R3). Let

(p(i), q(i)) = (p
(i)
1 , . . . , p

(i)
l , q

(i)
1 , . . . , q

(i)
l ) ∈ γ

denote the canonical coordinates of the i-th molecule. The state of the whole system is then
described by N (ordered) points in γ or equivalently by a single point

x = (p, q) = (p1, . . . , pn, q1, . . . , qn) ∈ Γ ;

the evolution of the system appears then equivalently as a single movement in Γ, or an evolving
cloud of N points in γ. The evolution is supposed to be governed by a Hamiltonian of the form

H(p, q) =
N∑

i=1

h(p(i), q(i)) + V (q) ,

12The traditional notation for the phase of a single molecule is µ; we use here γ to avoid the conflict with the
measure.
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h being the individual Hamiltonian of a molecule, while V is some interaction potential; V is
supposed to be small and not much relevant in the energy balance (almost free molecules).

Boltzmann’s thaught then develops more or less as follows:

i. A macroscopic state of the system is identified with a distribution of the cloud of the N points
in γ. In a rough but deep analysis, Boltzmann imagines γ is partitioned into very small cells
of identical volume ω — so small that moving molecules inside their cell is not appreciable
physically — and identifies a macroscopic state with the “occupation numbers” N1, N2, . . .
of the cells,

∑
j Nj = N . Each cell has an energy εi (that of any chosen point in it) and so,

denoting by E the total energy, it is

E ≃ ∑
j Nj εj .

The macroscopic state does not change by moving molecules inside a cell, or exchanging
molecules among different cells. In place of the numbers Nj one could use the densities13

fj =
Nj

Nω
,

∑
jfjω = 1 .

ii. A macroscopic state (given occupation numbers) occupies a volume W (N1, N2, . . .) in Γ,
actually in a layer ΓE±∆E around the constant energy surface ΣE , with ∆E related to the
size of the cells in γ. One immediately gets

W (N1, N2, . . .) =
N !

N1!N2! . . .
ωN , (A.1)

where ωN accounts for the displacements of the N molecules inside their cell, while the
combinatorial coefficient counts the exchanges among different cells.

The volume W of a state (up to a normalization) is given the strong meaning of the a priori
probability that the state is realized. This is often referred to as the “a priori equiprobability of
the microscopic states (points) in Γ”: it is not important where points are, only their overall
volume is relevant.

A standard computations then shows that

iii. The maximum W ∗ of W , for fixed N and E, is found for14

N∗
j = C N e−βεj , C−1 =

∑
j e

−βεj ,

where β is a Lagrange multiplier determined by the energy per molecule E/N ; equivalently
for fj = f∗

j , with

f∗
j =

C

ω
e−βεj . (A.2)

13The underlying idea, difficult unfortunately to formalize in well defined limit procedure, is to make a finer and
finer partition of γ in smaller and smaller cells, letting correspondingly N go to infinity. Boltzmann in fact did not
care too much of the continuum limit. Also the microscopic dynamics in Γ is replaced, if useful, by a discretized
dynamics: Γ itself is discretized (decomposed into cells), and a finite time step is introduced, more or less as we do
today in computer simulations. The fundamental intuition is that the details of the dynamics should be irrelevant,
provided a few essential features, like the conservation of the volume in phase space and the conservation of energy,
are saved.

14Stirling approximation for the factorials, the Nj ’s being treated as real numbers; computing the constrained
maximum of logW is straightforward.
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Figure 10: The Maxwell-Boltzmann state dominates in Γ±E.

Such a state is commonly called the Maxwell-Boltzmann state; the exponential is called the
Boltzmann exponential factor.

Moreover: small changes δNj of the occupation numbers drastically reduce W , namely15

W (N∗
1 + δN1, N

∗
2 + δN2, . . .) ≃ W ∗

∏
j
e
− 1

2

(δNj)
2

N∗
j ;

for example, for minor changes of the occupation numbers, say

δNj =
√
N∗

j ≪ Nj ,

the volume W reduces by a huge factor, actually the exponential of the number of the occu-
pied cells; for δNj proportional to N (assigned fluctuations δfj), W reduces as much as the
exponential of N .

Finally, and this is the most important point for us, the interpretation of the volume as probability
is supported by a fundamental dynamical assumption, known as the Boltzmann ergodic hypothesis:16

iv. A typical trajectory, observed over a long time interval, wanders erratically in ΓE±∆E , spend-
ing asymptotically in any subset of volume W a time proportional to W . In this sense, the
chance a macroscopic state is dynamically realized, in a long time while, is proportional to
W , in agreement with the idea of equiprobability of microscopic states.

The overall picture is summarized in figure 10, representing symbolically the layer ΓE±∆E . The
big set, of overwhelming volume, is the Maxwell-Boltzmann state, together with the states similar
to it within δNj = (N∗

j )
1/2. Small sets correspond instead to states well distinguishable from

15For this, it is enough to compute the second derivatives of logW at N∗
j (the first derivatives obviously vanish).

16The notion of ergodicity in Boltzmann has been often misinterpreted, even by higly qualified authors like P.
Ehrenfest. For a critical discussion, see G. Gallavotti, L’hypothèse ergodique et Boltzmann, in Dictionnaire Phy-

losophique des Presses Univ. Francaises, p. 1081–1085 (Paris, 1988); Ergodicity, Ensembles, Irreversibility and beyond,

Journ. Stat. Phys. 78, 1571–1589 (1995).
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it. Practically, no matter how the initial state is chosen, the trajectory is expected to reach
soon the Maxwell-Boltzmann state, and spend there the overwhelming majority of time, up to
very short stays, unlike but possible, again in small sets. The transient, i.e. the time needed to
enter the Maxwell-Boltzmann state, represents, in this view, the approach to equilibrium, starting
from an exceptional state far from it. Properly speaking, however, the equilibrium is not the
Maxwell-Boltzmann state, but the collection of all macroscopic states, each having probability to be
realized proportional to its volume. Equilibrium is the equiprobability of microscopic states in Γ,
or equivalently the distribution (A.2) in γ. Equilibrium includes fluctuations.

• Among the fluctuations, there is the one that reports a system close to the initial datum
in Γ: extremely unlike, and so not expected in any physically conceivable time interval,
but dynamically not excluded; this solves, in principle, the recurrence paradox. Concerning
the reversibility paradox, the answer is similar: reversed trajectories are included in the
equilibrium state, but like any other trajectory, they spend the overwhelming majority of time
in the Maxwell-Boltzmann state, and their transit in the extremely small set corresponding
to the chosen non–uniform initial conditions, is too unlike to be observed.

Since Boltzmann, the equiprobability of microscopic states is the very basis of statistical me-
chanics. Boltzmann himself could deduce from it beautiful results. He was indeed able to provide
a mechanical interpretation of the fundamental thermodynamical variables p, T , U , S, thus con-
structing a model of thermodynamics, in which the second principle of thermodynamics, in the
form dU + pdV ≤ TdS, is satisfied. Let us recall that T is connected to the multiplier β via

β =
1

kBT
,

where kB > 0 is the Boltzmann constant.17 In elementary models, 1
2kBT is also the average

kinetic energy per degree of freedom. Concerning S, it turns out to be defined, microscopically, by
S = kB logW ; so, up to an inessential additive constant, it is

S = −kB N ω
∑

jfj log fj .

A.3 Gibbs’ statistical ensembles

Let us shortly describe an alternative view, commonly referred to as Gibbs’ view. Gibbs’ view is
somehow more abstract, and probability plays a more primitive role in it. The space γ of single
molecules does not play a role, and attention is addressed only to Γ.

The basic idea is that a macroscopic state is any given probability distribution ρ in Γ. While
Boltzmann focuses the attention on a single trajectory, which assigns the probability to a set W
of states through the fraction of time spent in it in a long time interval, Gibbs instead imagines
to deal, at any time, with a family, or ensemble of evolving points, independent mental replicas of
the same system, distributed in Γ with some density ρt evolving in time. One should think that in
each experiment the way the system is prepared does not correspond to a single mechanical initial
datum, rather to a spot of initial data, more precisely to a convenient initial distribution ρ0 in Γ
(the initially prepared macroscopic state). Each replica of the system then evolves independently

17It is kB = 1.380649 × 1023 Joules/Kelvin degree: an exact value fixed conventionally, nowadays used in the
“International System of units” as a primitive value; the Kelvin degree, not anymore primitive, remains consequently
defined.
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according to Hamilton equations, and correspondingly ρt evolves in time, as in a fluid of non
interacting particles. From the conservation of the volume of the phase space one immediately
deduces the evolution law18

ρt(x) = ρ0(Φ
−t(x)) , x ∈ Γ (A.3)

(ρt is constant along trajectories).

It is now natural to search for equilibrium states, namely states such that ρt(x) at any x is
independent of t. An easy example is

ρ∗(x) =
{
c in ΓE±∆E

0 elsewhere
,

with c such as to ensure normalization; so, Boltzmann’s equiprobability of microscopic states is, in
Gibbs’ view, an equilibrium state. It is obviously not unique: for the conservation of energy, any
ρ(x) = F (H(x)), with any F : R → R up to the normalization, is an equilibrium state.

Let us then focus the attention on a single constant energy surface ΣE , passing from volume
densities to surface densities without changing the notation; a macroscopic state is then a surface
probability distribution ρt, evolving in time, such that the probability of any subset A ∈ ΣE at
time t is ∫

A
ρt(x) dµL ,

µL being the Liouville measure introduced in Section 1.2, Example 4. The measure µL being
preserved, ρt evolves in time according to (A.3). Quite clearly,

ρ∗(x) = 1 ∀x ∈ ΣE

is an equilibrium state (this is indeed Boltzmann’s equilibrium, rewritten in a more transparent
mathematical notation). Two nontrivial question now are well posed:

i. Whether ρ∗ is unique, or there is a multiplicity of equilibria;

ii. Whether, in addition, the system, prepared in a non equilibrium state ρ0, does reach asymp-
totically equilibrium:

lim
t→∞

ρt = ρ∗ .

Due to (A.3), the limit cannot be pointwise but should be understood in the weak sense

∫

ΣE

f(x)ρt(x) dµL −→
∫

ΣE

f(x) dµL ,

for some class of functions.

In Section 2 it is shown how the ideas of Boltzmann and Gibbs have been formalized in Ergodic
Theory, through the basic notions of ergodicity and mixing.

18The system is in W at time t iff it is in Φ−t(W ) at t = 0, so
∫
W

ρt(x)dV =
∫
Φ−t(W )

ρ0(x)dV . Introduce now

at the r.h.s. the change of variable x = Φ−t(x′), which reports the inegration volume to W ; for the conservation of
volume in Hamiltonian dynamics the Jacobian is 1, and so, dropping the prime,

∫
W

ρt(x)dV =
∫
W

ρ0(Φ
−t(x))dV .

The conclusion follows from the arbitrarity of W .
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B Proof of the Birkhoff ergodic theorem

The proof of Birkhoff’s ergodic theorem is based on a technical Lemma, known as maximal ergodic
theorem:

Lemma 31 (Maximal ergodic Theorem) For f ∈ L1(M,µ), let

Ft(x) = f(x) + · · ·+ f(Φt−1(x)) , A = {x ∈ M : sup
t≥1

Ft ≥ 0} .

Then A is measurable and ∫

A
f dµ ≥ 0 .

Proof. Let
Ft(x) = max

1≤s≤t
Fs(x) , At = {x ∈ M : Ft ≥ 0} ,

so that
At ⊂ At+1 , A =

⋃

0≤t<∞

At .

It is then ∫

A
f dµ = lim

t→∞

∫

At

f dµ

and to prove the lemma it is enough to show that for any t ≥ 0 it is
∫

At

f dµ ≥ 0 .

To this purpose, observe that

Ft(x) = max (f(x), . . . , f(x) + · · ·+ f(Φt−1(x))) = f(x) + max (0,Ft−1(Φ(x))) ,

i.e.
f(x) = Ft(x)− F

+
t−1(Φ(x)) ,

having denoted F
+
t (x) = max(0,Ft(x)). It follows

f(x) ≥ Ft(x)− F
+
t (Φ(x))

and consequently
∫

At

f dµ ≥
∫

At

Ft dµ −
∫

At

F
+
t ◦ Φdµ

≥
∫

M
F
+
t dµ −

∫

M
F
+
t ◦ Φdµ = 0

(for the latter inequality: F+
t = Ft in At, F

+
t = 0 in the complement).

We can now prove Birkhoff’s theorem.

Proof. (a) Existence of the limit a.e. For a, b ∈ R, a < b, let

Ea,b =
{
x ∈ M : lim inf

t→∞

1

t
Ft(x) < a < b < lim sup

t→∞

1

t
Ft(x)

}
;
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Ea,b is measurable (lim inf and lim sup of sequences of measurable functions are measurable) and
invariant. The set for which the time average of f does not exist is then

E =
⋃

a,b

Ea,b ,

but since a denumerable union is sufficient (sets are conveniently nested), it is enough to show that
any of the Ea,b has zero measure. To this purpose, let us show that, thanks to the lemma, the
“reversed” inequality

b µ(Ea,b) ≤
∫

Ea,b

f dµ ≤ aµ(Ea,b)

holds, which implies µ(Ea,b) = 0. To prove, for example, the left inequality, apply the lemma to

g(x) =

{
f(x)− b per x ∈ Ea,b

−1 per x /∈ Ea,b ;

it is easy to see that the set A appearing in the statement of the lemma, namely the set such that
Gt(x) =

∑t−1
s=0 g(Φ

s(x)) is non negative for at least one t > 0, is precisely Ea,b: indeed, if x ∈ Ea,b,
then (definition of Ea,b) there exists t > 0 such that Ft(x)/t > b, and so G(x) > 0; conversely, if
x /∈ Ea,b, then Φt(x) /∈ Ea,b for any t > 0 (Ea,b is invariant), and correspondingly Gt(x) < 0. The
lemma than says that ∫

Ea,b

g dµ =

∫

Ea,b

f dµ − b µ(Ea,b) ≥ 0 ,

and the left inequality is satisfied. Similarly, using

g(x) =

{
a− f(x) per x ∈ Ea,b

−1 per x /∈ Ea,b
,

the right inequality can be proved.

(b) Proof that f̄(Φt(x)) = f̄(x). This is a trivial consequence of the definition of f̄(x), whenever
the limit exists.

(c) Proof that 〈f̄〉 = 〈f〉. First of all, let us observe that f̄ ∈ L1(M,µ), as follows from

∫

M

∣∣∣1
t

t−1∑

s=0

f(Φs(x))
∣∣∣ dµ(x) ≤ 1

t

t−1∑

s=0

∫

M
|f(Φs(x))| dµ(x) =

∫

M
|f | dµ .

Let now
Ca,b = (f̄)−1[a, b) = {x ∈ M : a ≤ f̄(x) < b} ;

it is then

aµ(Ca,b) ≤
∫

Ca,b

f̄ dµ ≤ b µ(Ca,b) ,

while from the lemma, proceeding as above with a convenient g, one deduces

aµ(Ca,b) ≤
∫

Ca,b

f dµ ≤ b µ(Ca,b) ;
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it follows ∣∣∣
∫

Ca,b

f̄ dµ −
∫

Ca,b

f dµ
∣∣∣ ≤ (b− a)µ(Ca,b) .

From this inequality, thanks to the arbitrarity of a abd b, it is not difficult to conclude that

∫

M
f̄ dµ−

∫

M
f dµ = 0 .

Indeed, given ε > 0, divide R in intervals [kε, (k + 1)ε), k ∈ Z; it is clearly ∪kCkε,(k+1)ε = M , and
so

∣∣∣
∫

M
f̄ dµ −

∫

M
f dµ

∣∣∣ ≤
∑

k∈Z

∣∣∣
∫

Ckε,(k+1)ε

f̄ dµ −
∫

Ckε,(k+1)ε

f dµ
∣∣∣ ≤ ε

∑

k∈Z

µ(Ckε,(k+1)ε) = ε ,

and this is enough.

(d) Proof that in the invertible case f̄− exists and coincides a.e. with f̄ . The existence is obvious
(just replace Φ with Φ−1). Suppose now it is, for example, f̄ > f̄− in a set of positive measure.
Denoting

A := {x ∈ M : f̄ − f̄− > 0} ,

it is ∫

A
(f̄ − f̄−) dµ > 0 .

But since (point b) both f̄ and f̄− are constants of motion, A is invariant: so, denoting g(x) =
χA(x)f(x), it is ḡ(x) = f̄(x) for x ∈ A, ḡ(x) = 0 elsewere, and similarly for the backwards average.
It follows

〈ḡ〉 − 〈ḡ−〉 =
∫

A
(f̄ − f̄−) dµ > 0 .

But this is a contradiction because, according to point (c), 〈ḡ〉 = 〈ḡ−〉 = 〈g〉. This concludes point
(d) and the proof of the theorem.

C Proof of Lemmas 22 and 23

The proof of Lemma 22 is based on a few rather obvious properties of relative entropy, collected in
the following lemma (the easy proof is left as an exercise):

Lemma 32

i. β � α ⇐⇒ η(α |β) = 0.

ii. η(α |β) ≤ η(α), the equality holding iff partitions are independent.

iii. β � α =⇒ η(β | γ) ≥ η(α | γ) and conversely η(γ |β) ≤ η(γ |α): as in the numerator-
denominator game.

iv. η(α ∨ β | γ) ≤ η(α | γ) + η(β | γ).
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We now prove Lemma 22.

Proof. Concerning statement (i), quite clearly it is dist (α, β) ≥ 0, dist (α, α) = 0, while
conversely, if dist (α, β) = 0, then both η(α |β) and η(β |α) vanish; it follows β � α and α � β,
that is α = β.

The symmetry of dist (α, β) is obvious.

Finally, the triangular inequality follows from

η(α | γ) = η(α ∨ γ)− η(γ)
≤ η(α ∨ β ∨ γ)− η(β ∨ γ) + η(β ∨ γ)− η(γ) = η(α |β ∨ γ) + η(β | γ)
≤ η(α |β) + η(β | γ) ,

and similarly η(γ |α) ≤ η(γ |β) + η(β |α); the conclusion is immediate.

Concerning statement (ii), it is enough to prove that for any t > 0 it is

|η(α ∨ · · · ∨ Φ−t+1(α))− η(β ∨ · · · ∨ Φ−t+1(β))| ≤ t dist (α, β) .

To this purpose, assume for example that for a given t it is η(α ∨ · · · ∨ Φ−t+1(α)) > η(β ∨ · · · ∨
Φ−t+1(β)); it follows

η(α ∨ · · · ∨ Φ−t+1(α)) − η(β ∨ · · · ∨ Φ−t+1(β))
≤ η(α ∨ · · · ∨ Φ−t+1(α) ∨ β ∨ · · · ∨ Φ−t+1(β))− η(β ∨ · · · ∨ Φ−t+1(β))
= η(α ∨ · · · ∨ Φ−t+1(α) |β ∨ · · · ∨ Φ−t+1(β))
≤ ∑

s η(Φ
−s(α) |β ∨ · · · ∨ Φ−t+1(β))

≤ ∑
s η(Φ

−s(α) |Φ−s(β)) =
∑

s η(α |β) = t η(α |β) ,

and this is enough (use was made of point (iv) of Proposition 16, of equation (20), and of points
(iv) and (iii) of the above lemma 32).

Let us pass to the proof of Lemma 23.

Proof. Any measurable set A can be approximated externally by a finite union of balls, thus
with a polyhedron Ã, such that mes (Ã \ A) is arbitrarily small. Given any measurable partition
α = {A0, . . . , An−1}, let Ã0, . . . Ãn−1 be polyhedra such that Ãi ⊃ Ai, mes (Ã \ A) < ε; by posing
recursively

B0 = Ã0 , Bi = Ãi \
⋃

0≤j<i

Bj , i = 1, . . . , n− 1 ,

one clearly obtains a smooth partition β = {B0, . . . , Bn−1}, such that

µ(Ai −Bi) < (const) ε , µ(Ai ∩Bj) < (const) ε for i 6= j .

It follows
|µ(Ai|Bj)− δi,j | < (const) ε , |µ(Bi|Aj)− δi,j | < (const) ε ,

and the conclusion is immediate.
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D Proof of the Generator Theorem

Definition 23 Let M be endowed with a measure µ. We shall say the sequence of measurable
partitions of M

γ0 � γ1 � · · · � γk � · · ·
converges to the partition in points ε̂, if for any ε > 0 and any measurable A there exist k ≥ 0 and
C1, · · · , Cm ∈ γk, such that

µ
(
A−

m⋃

i=1

Ci

)
< ε .

For example, if M is a square of side L endowed with the Lebesgue measure, and γk denotes the
partition in small squares of side 2−kL, then γk → ε̂ (any rectangle, and thus any measurable
set, can be arbitrarily well approximated by a union of sufficiently small squares). From the
very definition of generating partition, it follows that if α is generating for the dynamical system
(M,µ,Φ), supposed for example to be invertible, then the sequence

γk = Φk(α) ∨ · · · ∨ α ∨ · · · ∨ Φ−k(α) , k ∈ N ,

converges to ε̂.

Lemma 33 Let P denote the set of all measurable partitions of M . If the sequence γk, k ∈ N,
converges to ε̂, then the set

P0 = {β ∈ P ; ∃k ≥ 0 : β � γk} (D.1)

is dense in P.

Proof. We show that for any α ∈ P there exists β ∈ P0 such that dist (α, β) is arbitrarily small.
Since γk → ε̂, for any ε > 0 and any Ai ∈ α there exist k and A′

i such that

A′
i = suitable union of atoms of γk , µ(Ai −A′

i) < ε

(the same k can be taken for all i’s). A partition β of M is then obtained by posing

B0 = A′
0 , Bi = A′

i \
⋃

0≤j<i

Bj for 0 < i < n− 1 , Bn−1 = M \
⋃

0≤j<n−1

Bj .

A little reflection shows that β � γk and so β ∈ P0. On the same time,

µ(Ai −Bi) < (const) ε , dist (α, β) < (const) ε .

We can now prove proposition 25.

Proof. We show that if α is a generating partition, and β is any measurable partition, then

h(Φ, α) ≥ h(Φ, β) . (D.2)

To this purpose, given α generating, let

γk = Φk(α) ∨ · · · ∨ α ∨ · · · ∨ Φ−k(α) ;
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each partition is a refinement of the previous one and the sequence converges to ε̂, so we can apply
the above lemma and say that P0, as defined in (D.1), is dense in P. It is then enough to verify
(D.2) for β ∈ P0. This is easy: indeed if β � γk, then

h(Φ, β) ≤ h(Φ, γk) = lim
t→∞

1

t
η(γk ∨ · · · ∨ Φ−t+1(γk))

= lim
t→∞

1

t
η(Φk(α) ∨ · · · ∨ Φ−k−t+1(α))

= lim
t→∞

2k + t

t

1

2k + t
η(α ∨ · · · ∨ Φ−2k−t+1(α))

= h(Φ, α) .
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