DIFFERENTIAL GEOMETRY

Prof. F. Bottacin

Exercise Sheet 2

(Note: the reference [AT] in the exercises refers to the textbook by Abate, Tovena, "Geometria Differenziale")

Exercise 1. ([AT] Exercise 3.6 p. 193) Let $\pi_{1}: E_{1} \rightarrow M_{1}$ and $\pi_{2}: E_{2} \rightarrow M_{2}$ be two vector bundles, and let (L, F) be a morphism of vector bundles

Let us assume that L has constant rank, i.e., that $\operatorname{dim} L\left(E_{P}\right)$ does not depend on $P \in M_{1}$. Prove that $\operatorname{Ker}(L, F)=\left\{(P, v) \in E_{1} \mid L(v)=0\right\} \subset E_{1}$ is a sub-vector bundle of E_{1}, and that $\operatorname{Im}(L, F)=L\left(E_{1}\right) \subset E_{2}$ is a sub-vector bundle of E_{2}.

Exercise 2. ([AT] Exercise 3.10 p. 193) Let $\mathcal{A}=\left\{\left(U_{\alpha}, \phi_{\alpha}\right)\right\}$ be an atlas on M, and $g_{\alpha \beta}: U_{\alpha} \cap U_{\beta} \rightarrow \mathrm{GL}(r, \mathbb{R})$ a family of transition functions for a vector bundle E over M. Let us assume that, for every α, we are given a r-tuple of differentiable functions $a_{\alpha}=\left(a_{\alpha}^{1}, \ldots, a_{\alpha}^{r}\right)$ with $a_{\alpha}^{i} \in C^{\infty}\left(U_{\alpha}\right)$, such that on $U_{\alpha} \cap U_{\beta}$ the r-tuples a_{α} and a_{β} are related by

$$
a_{\alpha}^{j}=\sum_{h=1}^{r}\left(g_{\alpha \beta}\right)_{h}^{j} a_{\beta}^{h} .
$$

Show that there exists a unique section σ of E such that the functions a_{α}^{j} are the components of σ with respect to a suitable local basis of E on U_{α}.

Exercise 3. Compute the transition function for $T S^{2}$ associated with the two local trivializations determined by stereographic projections.

Exercise 4. ([AT] Exercise 3.14 p. 194) Let $F: M \rightarrow N$ be a differentiable function, and $\pi: E \rightarrow N$ a vector bundle of rank r over N. Prove that the space of sections over M of the pull-back bundle $F^{*} E$ (see definition in the book) is isomorphic to the space of C^{∞} functions $\sigma: M \rightarrow E$ such that $\sigma(P) \in E_{F(P)}$, for every $P \in M$.

Exercise 5. ([AT] Exercise 3.17 p. 194) Let $\tau \in \mathcal{T}_{k}^{h}(M)$ be a tensor field of type $\binom{h}{k}$. For $1 \leq i \leq h$ and $1 \leq j \leq k$, let $\omega^{1}, \ldots, \omega^{i} \in A^{1}(M)$ be 1-forms, and $X_{1}, \ldots, X_{j} \in \mathcal{T}(M)$ be vector fields. Show that the function

$$
P \mapsto \tau_{P}\left(\omega_{P}^{1}, \ldots, \omega_{P}^{i}, \cdot, X_{1}(P), \ldots, X_{j}(P), \cdot\right)
$$

can be naturally interpreted as a tensor field of type $\binom{h-i}{k-j}$.
Exercise 6. Show that there is a smooth vector field on S^{2} that vanishes at exactly one point.
[Hint: try using stereographic projection.]

Exercise 7. ([AT] Exercise 3.19 p. 195) For every $z \in S^{2 n-1} \subset \mathbb{C}^{n}$ let $\sigma_{z}: \mathbb{R} \rightarrow S^{2 n-1}$ be the curve $\sigma_{z}(t)=e^{i t} z$. Prove that by setting $X(z)=\sigma_{z}^{\prime}(0)$ we get a nowhere vanishing vector field $X \in \mathcal{T}\left(S^{2 n-1}\right)$.

Exercise 8. ([AT] Exercise 3.25 p. 196) Determine explicitely the flux of the following vector fields on \mathbb{R}^{2} :

- $y \frac{\partial}{\partial x}+\frac{\partial}{\partial y}$
- $x \frac{\partial}{\partial x}+3 y \frac{\partial}{\partial y}$
- $x \frac{\partial}{\partial x}-y \frac{\partial}{\partial y}$
- $y \frac{\partial}{\partial x}+x \frac{\partial}{\partial y}$

Exercise 9. ([AT] Exercise 3.27 p. 196) Let $X \in \mathcal{T}(M)$ be a vector field, and σ be a maximal integral curve of X.

- Show that if σ is not constant then it is either injective or periodic.
- Prove that if σ is periodic and non constant then there exists a unique positive number T_{0} (the period of σ) such that $\sigma(t)=\sigma\left(t^{\prime}\right)$ if and only if $t-t^{\prime}=k T_{0}$, for some $k \in \mathbb{Z}$.
- Prove that if σ is not constant then it is an immersion, and the image of σ has a natural structure of 1-dimensional variety, diffeomorphic to \mathbb{R} or to S^{1}.

Exercise 10. Let M be the open submanifold of \mathbb{R}^{2} where both x and y are positive, and let $F: M \rightarrow M$ be the map $F(x, y)=(x y, y / x)$. Show that F is a diffeomorphism, and compute $F_{*} X$ and $F_{*} Y$, where

$$
X=x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}, \quad Y=y \frac{\partial}{\partial x} .
$$

Exercise 11. For each of the following pairs of vector fields X, Y defined on \mathbb{R}^{3}, compute the Lie bracket $[X, Y]$.

- $X=y \frac{\partial}{\partial z}-2 x y^{2} \frac{\partial}{\partial y}, \quad Y=\frac{\partial}{\partial y}$
- $X=x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}, \quad Y=y \frac{\partial}{\partial z}-z \frac{\partial}{\partial y}$
- $X=x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}, \quad Y=x \frac{\partial}{\partial y}+y \frac{\partial}{\partial x}$.

Exercise 12. Let M be a smooth manifold and $X, Y \in \mathcal{T}(M)$ be smooth vector fields on M. Show that, for any $Z \in \mathcal{T}(M)$, we have

$$
\mathcal{L}_{X} \mathcal{L}_{Y} Z-\mathcal{L}_{Y} \mathcal{L}_{X} Z=\mathcal{L}_{[X, Y]} Z
$$

