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Exercise Sheet 2

(Note: the reference [AT] in the exercises refers to the textbook by Abate, Tovena, “Ge-
ometria Differenziale”)

Exercise 1. ([AT] Exercise 3.6 p. 193) Let π1 : E1 → M1 and π2 : E2 → M2 be two
vector bundles, and let (L, F ) be a morphism of vector bundles

E1
L //

π1
��

E2

π2
��

M1 F
//M2

Let us assume that L has constant rank, i.e., that dimL(EP ) does not depend on P ∈M1.
Prove that Ker(L, F ) = {(P, v) ∈ E1 |L(v) = 0} ⊂ E1 is a sub-vector bundle of E1, and
that Im(L, F ) = L(E1) ⊂ E2 is a sub-vector bundle of E2.

Exercise 2. ([AT] Exercise 3.10 p. 193) Let A = {(Uα, φα)} be an atlas on M , and
gαβ : Uα ∩ Uβ → GL(r,R) a family of transition functions for a vector bundle E over
M . Let us assume that, for every α, we are given a r-tuple of differentiable functions
aα = (a1α, . . . , a

r
α) with aiα ∈ C∞(Uα), such that on Uα ∩ Uβ the r-tuples aα and aβ are

related by

ajα =
r∑

h=1

(gαβ)jha
h
β.

Show that there exists a unique section σ of E such that the functions ajα are the compo-
nents of σ with respect to a suitable local basis of E on Uα.

Exercise 3. Compute the transition function for TS2 associated with the two local
trivializations determined by stereographic projections.

Exercise 4. ([AT] Exercise 3.14 p. 194) Let F : M → N be a differentiable function,
and π : E → N a vector bundle of rank r over N . Prove that the space of sections over
M of the pull-back bundle F ∗E (see definition in the book) is isomorphic to the space of
C∞ functions σ : M → E such that σ(P ) ∈ EF (P ), for every P ∈M .

Exercise 5. ([AT] Exercise 3.17 p. 194) Let τ ∈ T hk (M) be a tensor field of type
(
h
k

)
.

For 1 ≤ i ≤ h and 1 ≤ j ≤ k, let ω1, . . . , ωi ∈ A1(M) be 1-forms, and X1, . . . , Xj ∈ T (M)
be vector fields. Show that the function

P 7→ τP (ω1
P , . . . , ω

i
P , ·, X1(P ), . . . , Xj(P ), ·)

can be naturally interpreted as a tensor field of type
(
h−i
k−j

)
.

Exercise 6. Show that there is a smooth vector field on S2 that vanishes at exactly one
point.
[Hint: try using stereographic projection.]



Exercise 7. ([AT] Exercise 3.19 p. 195) For every z ∈ S2n−1 ⊂ Cn let σz : R→ S2n−1 be
the curve σz(t) = eit z. Prove that by setting X(z) = σ′z(0) we get a nowhere vanishing
vector field X ∈ T (S2n−1).

Exercise 8. ([AT] Exercise 3.25 p. 196) Determine explicitely the flux of the following
vector fields on R2:

• y ∂
∂x

+ ∂
∂y

• x ∂
∂x

+ 3y ∂
∂y

• x ∂
∂x
− y ∂

∂y

• y ∂
∂x

+ x ∂
∂y

Exercise 9. ([AT] Exercise 3.27 p. 196) Let X ∈ T (M) be a vector field, and σ be a
maximal integral curve of X.

• Show that if σ is not constant then it is either injective or periodic.

• Prove that if σ is periodic and non constant then there exists a unique positive
number T0 (the period of σ) such that σ(t) = σ(t′) if and only if t − t′ = kT0, for
some k ∈ Z.

• Prove that if σ is not constant then it is an immersion, and the image of σ has a
natural structure of 1-dimensional variety, diffeomorphic to R or to S1.

Exercise 10. Let M be the open submanifold of R2 where both x and y are positive,
and let F : M → M be the map F (x, y) = (xy, y/x). Show that F is a diffeomorphism,
and compute F∗X and F∗Y , where

X = x
∂

∂x
+ y

∂

∂y
, Y = y

∂

∂x
.

Exercise 11. For each of the following pairs of vector fields X, Y defined on R3, compute
the Lie bracket [X, Y ].

• X = y ∂
∂z
− 2xy2 ∂

∂y
, Y = ∂

∂y

• X = x ∂
∂y
− y ∂

∂x
, Y = y ∂

∂z
− z ∂

∂y

• X = x ∂
∂y
− y ∂

∂x
, Y = x ∂

∂y
+ y ∂

∂x
.

Exercise 12. Let M be a smooth manifold and X, Y ∈ T (M) be smooth vector fields
on M . Show that, for any Z ∈ T (M), we have

LXLYZ − LYLXZ = L[X,Y ]Z.


