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Algebraic Methods in the Theory
of Theta Functions

FRANCESCO BOTTACIN

The functions of theta type were introduced for the first time in 1968

by I. Barsotti [1] as a generalization of the classical theta functions. This

generalization consists in considering formal power series over an algebraically
closed field k : a non-zero element V(t) E k[[t]] is called a theta type if

belongs to the quotient field of the tensor product over k, 
(for a more detailed description see Section 1).

The first construction of theta types was strongly geometric and could not
be generalized to characteristic p &#x3E; 0. Only several years later (cfr. [2] and [7])
the true cohomological nature of F was discovered, and this allowed the direct
construction of 3 from the function F. The new technique, which is called the
"F method", applies in quite different situations, and in particular in the case
of positive characteristic.

More recently (cfr. [3]), the introduction of another function, called g, was
proposed. This is simply a specialization of the function F, by means of which
a simpler and more useful definition of theta types can be given; but the proof
of this fact is once more geometric.

In this paper we propose first of all to develop the "g method" and to
show that it is perfectly equivalent to the previous "F method", and finally
to give an algebraic proof of the following fundamental result: the so called

"prosthaferesis formula"

is sufficient to define theta types ([3], Theorem 3.7).
We begin, in Section 1, by recalling some basic definitions and results on

the theory of theta types; then, in Section 2, we introduce the function g and
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show that there exists a functional relation which is a necessary and sufficient
condition for a power series g(t 1, t2) to split as

When g splits, we give a completely algebraic way to construct 3 starting
from g.

Finally, in Section 3, we show that the definition of theta type can be
given in terms of the function g, thus proving the complete equivalence of the
two methods. The proof we give here is almost completely algebraic: more
precisely, we will show in a purely algebraic way that ~92 is a theta type but,
to conclude that also 3 is a theta type, we must use a geometric argument,
involving the group variety and the divisor of 3.

The section ends with some remarks on the hyperfield C of a theta type ~:
more precisely, we show that C is finitely generated over k by the coefficients
of the Taylor expansion of g, together with their first order partial derivatives.

1. - Preliminaries

We recall some basic facts on functions of theta type, refering the reader
to the fundamental works of I. Barsotti [1] and [3] for an introduction and a
detailed treatment of the subject.

Let k be an algebraically closed field of characteristic zero and k[[t]],
t = (t(l), ... , t(n)), the ring of formal power series in n variables over k. If I is
an integral domain, we denote by Q(I) its quotient field. A non-zero element
V(t) c Q(k[[t]]) is called a function of theta type, or simply a theta type, if the
function

belongs to the quotient field of the tensor product over k, k [ [t 1 ] ] ® l~ [ [t2 ] ] ® J~ [ [t3 ] ] .
Two theta types are associate if their ratio is a quadratic exponential, i.e. a
factor of the form c exp q(t), where c E k and q(t) is a polynomial of degree  2
with vanishing constant term. To a theta type 0, one can associate a hyperfield
C in the following way: C is the smallest subfield of Q(k[[t]]), containing k,
such that F E Q(C 0 C o C); the coproduct P of C is induced by the coproduct
of k[[t]],

(for the definition of hyperfield, see the brief exposition in [1] or the more
detailed treatment in [8]).
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We define the transcendency of 3, in symbols transc t9, as transc 
and the dimension of V, dim t9, as the least positive integer m such that there
exists a theta type 0, associate to v, and linear combinations u(1), ... , u(m) of
t(l), ... , t(n), with coefficients in k, such that 0(t) E We always have
dim v  n, and 3 is called degenerate if dim v  n. Moreover it is dim v 
transc ~, and 3 is a theta function if the equality holds.

A fundamental result, on the hyperfield C of a theta type 0, states that it
is finitely generated over k by the logarithmic derivatives of 3 from the seconds
on, hence it is the function field C = k(A) of a commutative group variety A over
k, called the group variety of 0. By definition F E Q( C (f9 C (jl) C) = k(A x A x A),
so it defines a divisor on A x A x A. It can be shown that there exists a unique
divisor X on A such that the divisor of F on A x A x A is

where pi : A x A x A - A, denotes the i-th canonical projection, i = l, 2, 3.
This divisor X on A, which is automatically on A - Ad, where Ad denotes the
degeneration locus of the group variety A, is the divisor of the theta X =

div 3. If 3 and 0 are associated theta types, they define the same hyperfield C,
the same variety A and the same divisor X. Moreover the following properties
hold: if X = div 3x and Y = div then div(3x3y ) = X + Y ; X = 0 if and only

. if 3x = 1 and X - 0 if and only if 3x E k(A), where all equalities between
theta types are considered modulo substitution of a theta type with an associate
one. It can also be shown that, if 3 is non-degenerate, its divisor X has the

property that T;X = X if and only if P = 0, the identity point of A, where
Tp : A --&#x3E; A denotes translation by P, and a necessary and sufficient condition,
for X to be an effective divisor, is that 3 satisfy the following relation, called
holomorphic prosthaferesis:

in this case we say that ~9 is a holomorphic theta type (if k = C, the complex
field, a holomorphic theta type is precisely an entire function).

To conclude, we just mention a result which explains the relationships
between theta types and theta functions; it asserts that a theta type is just a
theta whose arguments are replaced by "generic" linear combinations of fewer
arguments, precisely:

THEOREM 1.1. If ~9(u) E Q(k[[U1,..., un]]) is a non-degenerate theta type,
then there exists a non-degenerate theta 0(v) E Q(k[[vl, ... , vm]]) and elements
cij E k (i = 1,..., m; j - 1,..., n) such that m &#x3E; n, the matrix has rank
n and = 8(x 1, ... , xm ), where xi = rj cijuj. The homomorphism of k[[vll ]
onto k[[u]], which sends vi to xi, induces an isomorphism a of Co into C,~,
such 3) = div 0.

Conversely if 0(v) E Q(k[[vl,...,vmll) is a non-degenerate theta and if
the homomorphism just described, with rank = n, induces an isomorphism
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of Co into Q(k[[u]]), then is a non-degenerate theta type with hyperfield
CO.

2. - The function g

For a given i9(t) E t = (t~l~, ... , t~n~), ~9(t) Q 0, let us denote by g
the following function

In the sequel we will always assume that 79(t) E k[[t]] and ~9(0) - 1

(this is not restrictive if 3(0) Q 0, i.e. if 3 is a unit in k[[t]]) and we
will call such an element normalized. Under these hypotheses, we have

g(tl, t2) E g(0, t2) - 1 and, in particular, we note that

By a simple calculation, we can check that g satisfies the following
functional relation:

which states the invariance of the left hand side under the mutual exchange of
t2 and t3.

There are other properties of g which can be derived from (2.2): if we
let t1 = t2 = 0, we get g(-t3, t4) = g(-t3, -t4), which shows that g is an even
function of the second variable; if we let t 1 ;:::: t4 = 0, we have

and finally, letting t3 = 0 and using the two preceding relations, we find another
functional relation already pointed out by I. Barsotti in the introduction of [3]:

g(tl + t2, t4)9(tl - t2, t4)g(t1, t2)2 = g(t1, t2 + t4)g(t1, t2 - t4)g(t4, t2)g(-t4, t2)-

Now we come to the most important result of this section, i.e. to the proof
that the relation (2.2) is not only necessary but also sufficient in order that a
power series g(t 1, t2 ) splits as in (2.1 ).

THEOREM 2.3. Let g(tl, t2) E t2l] satisfy (2.2), and suppose also that
g(t1,0) = 9(0, t2) = 1. Then there exists a power series ~9(t) E k[[t]], uniquely
determined up to multiplication by a quadratic exponential, such that (2.1)
holds.

PROOF. First of all we must introduce some notations. If tt =

(/J1, it.), v = (vl , ... , vn) E Nn are multiindices and r is a positive integer,
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we let + v = + VI, ... , ¡.,tn + "n» TF * ro.), ITLI = ¡.,t1 + ... + 

and ti! IL 1! ... ~un!;  v means tij  vi for all i, and 1L  v means

but tij for some j. In the sequel ei will always denote the
multiindex (bli, ... , is Kronecker’s symbol. If t = (t~l~, ... , t(n)), tll
means ..... 8t~~~ , ... , are the differentials of t~~~ , ... , t(n) and d
denotes derivation with respect to the variables t. When there are more than
one set of variables, we use d, to mean derivation with respect to the variables
~ = (t21~, ... , ti ’ more precisely, we let

Let us start with ] as in the statement of the theorem.
The normalization of g assures us of the existence of log g(tl, t2) and from (2.2)
it follows that g, and also log g, is an even function of the second variable; so
we can expand log g in a power series as follows:

where the sum is over all it E Nun - {0} such that 1J.l1 - 0 mod 2.
Let us consider the 1-forms

for j = 1, ... , n: we shall prove that they are closed.
In order for wj to be closed, we must have

To show this, we apply log to (2.2) and use the power series expansion of log
g, getting
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Now if we apply d2r d3s to (2.5) and let t2 = t3 = t4 = 0, we easily
obtain (2.4).

This proves that wj is closed, hence it is exact (remember we are in a ring
of formal power series over a field of characteristic zero) and we can consider
its integral ?7j, normalized by letting qj(0) = 0. Let s where j

. .

ranges from 1 up to n : it follows immediately from the definition of i7j that s
is closed, so we can take its integral -y, again normalized by letting /y(0) = 0.
Now let v = exp -y: we claim this is the function we are looking for. We have
only to show that 

~ ". I I’~ 1. 1

or equivalently:

Expanding the right hand side of (2.6) in a power series in t2, we find

while the left hand side is simply

This shows that (2.6) is equivalent to

Now let us apply to (2.5) and let t2 = t3 = t4 = 0, we get:

From this, under the hypotheses IÀI - 0 mod 2, Ivl - 0 mod 2 and t = tl,
we find

which becomes, by taking
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This holds, however, only if and 1-ij are both &#x3E; 1, otherwise, if there
is only one pi &#x3E; 2 (recall that 1J.l1 I must be even), we must take i = j and get

These two last relations are really meaningful. They show that all A,~’s
are completely determined by and give explicit formulas by which to
construct them. Now recall that

i.e. = 7~ from which it follows immediately that

In order to prove (2.7), just substitute in (2.9)
or in (2.10) according to whether there exist i, j with
i =I j, J.Li 2:: 1 and pj &#x3E; 1, or there is only one tij &#x3E; 2.

It is now straightforward to verify that any other solution of

is of the form c exp(q(t))3(t), where q(t) is a polynomial of degree  2 such
that q(O) = 0 and c is a non-zero constant; the normalization of g then implies
that c = 1 or c = -1. In the sequel, we shall always choose the normalization
19(0) = 1. Q.E.D.

By now we have shown how to construct 0 starting from g, then, using
~9, we can also construct F; but we can find a more direct relation between the
functions F and g.

Let us consider log F(t 1, t2, t3 ) and expand in power series, we find:

the sum being performed over all multiindices 
We have already observed that F(ti, t2, -t2)-I; from this,

substituting the power series expansions of log F and log g, by some simple
calculations, we conclude that
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which holds for 1J.t1 - 0 mod 2.
We can also find an expression for the B,v’s in terms of the A, ’s: from

the proof of Theorem 2.3, we have

and also

With similar considerations, made on the function F, it can be shown that
(cfr. [6], Theorem A.4):

and

From these relations it follows immediately that

Note that (2.13) holds under the restrictive condition |u + v| - 0 mod 2;
if we want to find an expression for in I is odd, we must use
(2.12) (or other equivalent relations), and the derivatives of the are also
involved in such an expression.

3. - The prosthaferesis

For the sake of simplicity in this section we shall denote (¡.¿!)-1 d’ log 
by ~p~,(t), for every V(t) E Q(k[[t]]) and every multiindex p &#x3E; 0. It can be
shown that (cfr. [3], Section 3):

where the Q~,’s are polynomial functions with positive rational coefficients in
the pv’s, 0  v  ti. More precisely, we have:
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LEMMA 3.2. If E Q(k[[t]]) multiindex
&#x3E; 0 and if are all multiindices with n components, such that
0  vZ  jj, i = 1,..., h, then

J

where the sum is over all h-tuples j = (jl, ... , jh) of non-negative integers,
satisfying the condition i1 VI + ... + jhvh = it

For the proof of this result see [3], Section 3.
We need one more lemma, which we cite without proof (cfr. [3], Lemma

3.3): .

LEMMA 3.3. Let Sp(tl, t2) E If CP(t1, tz) E kIlt2l]),
the field generated over k by the derivatives 0) for all tt, is a finitely
generated subfield 01 C Q(1~[[tl]]). Analogously the field C2, generated over k by
the derivatives t2), is a finitely generated subfield of Q(l~[[t2]]). Cl is the

smallest subfield C of containing k, such that CP(t1, t2) E Q(CIlt2l]),
or equivalently such that CP(t1, tz) E Q(C 0 Q(1~[[t2]])). Moreover we have

C2)-
We can now prove the following

LEMMA 3.4. Let E k[[t]] be a formal power series such that ~O(O) = 1.
The following conditions are equivalent:

i) ?9(tl + t2) E Q(k[[till (9 

ii) g(tl, t2) E Q(C 0 C), where C is the subfield of Q(k[[t]]) generated over
k by the logarithmic derivatives d’ log v(t), for all it such that &#x3E; 2.

Moreover, under these hypotheses, C is a finitely generated hyperfield over k.

PROOF. That ii) ~ i) is obvious; the hard part is to show that i) ~ ii).
Let qj(t) = d’i i = 1, ..., n. By applying d1i log to i), we obtain

while, if we apply d’i log, we get

from these relations it follows that Q(k[[tl ]] ® k[[t2]]), for i = 1,... , n.
We are now under the hypotheses of Lemma 3.3, therefore there exists a

subfield C of Q(k[[t]]) such that Çi(t1 + t2) C 3(C 0 C). C is finitely generated
over k by the derivatives of i.e. by the derivatives dIJ log 19(t) with 1111 ~ 2,
hence P(C) is generated by dIJ log 1J(t1 +tz), actually by a finite number of them.
This shows that P(C) c Q(C (g) C).
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Let C’ be the field generated over k by d’ log I &#x3E; 2, considered
as functions of t: the same reasoning proves that P(C’) c Q(C’ 0 C’). Now
let L be the smallest subfield of Q(k[[t]]) containing both C and C’ : we have
P(L) c Q(L (D L) and also p(L) c L, where p denotes the inversion of k[[t]],
moreover L is the quotient field of k[[t]] n L, since and 
are in k[[t]]. This sufficies to conclude that L is a finitely generated hyperfield
over k (cfr. [ 1 ], Section 2). Now, from [ 1 ], Lemma 2.1, it follows that C is
also a finitely generated hyperfield over k. To complete the proof we need only
check that g(t 1, t2) E Q(C 0 C).

Let ~1~2) = 3(ti t2) E (9 from Lemma 3.3,
it follows that P(tl, t2) C Q(Cl ® C2), where G1 and C2 are the subfields
of and Q(kl[t2l]) generated over 1~ by d§p(ti,0) and 

respectively.
Lemma 3.2 states that

where the are polynomials in with 0  v  p, and

recalling the definition of t2), we can immediately check that 
-

where the Q)(pl’s are obtained from the by replacing d’ log t2)
with 2 if Ivl I is even and with 0 if v ( is odd. This shows that all

Q)(pl’s are elements of C, hence d2 Sp(t 1, o) is written as a product of 
by an element of C.

In a similar way we have:

where now the are polynomials in d’ log with 0  v  ti, and
we can easily prove that

where the Q)(pl’s are obtained from the by replacing dv log t2)
with As before, these are all elements of C, except at
most those with v = 1, i.e. but recall that Çi(tl + t2) E Q(C (9 C),
hence Çi(t1 + t2) - si (t 1 ) - Q(C ® C), and if we let t1 = -t2 in this last

expression, we find that si (t2) + s2 (-t2) E C. Thus we have shown that 
is the product of ~(t2)~9(-t2) by an element of C, therefore we can conclude
that 

~
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Now we come to the main result of this section:

THEOREM 3.5. E k[[t]] be a normalized power series (i.e. 3(0) = 1).
?9(t) is a theta. type if and only if it satisfies the prosthaferesis formula

PROOF. The necessity of this condition is straightforward: just recall that
~1~2) = F(t1, t2, -t2)-1 and 3 is a theta type if F(tl, t2, t3) E Q(k[[tl]] 0
kl[t2l] 0 

In order to prove that it is also sufficient, we recall that the prosthaferesis
formula is equivalent, by Lemma 3.4, to the fact that g(t 1, t2) E Q (C 0 C), where
C is a finitely generated hyperfield over k. From this, it follows immediately
that

Recalling the definition of F, we can easily check that

hence

In the same way, using

and

we get respectively

and

Now, if we divide (3.6) by (3.8), we find that
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and multiplying this last relation by (3.7), we finally get

which proves that ~2 (t) is a theta type.
To show that 3(t) is also a theta type, we recall that C is a finitely

generated hyperfield over k, i.e. it is the function field of a group variety A
over k, hence ~92(t), being a theta type, has a divisor X on A.

But we have shown that g(ti , t2) E Q(C ® C), so it defines a divisor Y on
A x A, and 

- -

hence we must have:

where pi : A x A ---+ A, denotes the i-th canonical projection, i = 1, 2. This
implies that X = 2V, for some divisor V on A.

Let 3v(u) be the non-degenerate theta function of the divisor V (see [1]),
Q(k[[u]]) = Q(kC[m, ... , um]]), where k[[ul, ... , um]] is the completion

of the local ring of the identity point of A. We know that C is embedded in
Q(k[[u]]), but also C c Q(k[[t]]); this gives a homomorphism

which induces an isomorphism on the hyperfields, C * C.
From X = 2V, it follows that 62(t) is associated to hence 

is associated to Now use Theorem 1.1 to conclude that O(t) is a theta
type. Q.E.D.

We end this section with a remark on the hyperfield C. Let us recall
that the hyperfield C of a theta type 3 is the smallest subfield of Q(k[[t]]),
containing k, such that F E Q(C ® C 0 C). It can be shown that such a C
exists, and is generated over k by d’ log t9(t), with 1J.t1 &#x3E; 2. At this point, we
may ask what are the relationships between the hyperfield C and the function
g. The answer is given by the following

PROPOSITION 3.9. Let g(ti,t2) E k[[tl, t2]] and 3(t) E k[[t]] be as in the
statement of Theorem 2.3. Consider the power series expansion of g:
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Then the fields C, generated over k by &#x3E; 2, and C’,
generated over k by and for every ~c fl 0 with tt _ 0 mod 2
and i = 1, ..., n, coincide.

Moreover if ~ is a theta type, i.e. if g(tl, t2) E Q(k[[till (9 kIlt2l]), then
C = C’ is a finitely generated hyperfield over k, with the coproduct P and the
inversion p induced by those of k[[t]].

PROOF. Let log g (t 1, tz ) where the sum is over all
I’

u E Nn - {O}, with * 0 mod 2. From the proof of Theorem 2.3, we
know that

Therefore it is clear that the fields where u e Nn -
{O}, 1J.t1 5E 0 mod 2 and i = 1,..., n, and k(d" log 3(t)) where 1£11 &#x3E; 2, are equal.
Thus we have only to show that = 

Let hence 1 +~1,~2) and
, 

’

Now if we substitute the power series expansion of t2)" and compare
with that of log g(tl, t2), we can easily conclude that

In a similar way, letting ’ 
1

, we have

and finally

This proves what we wanted. The last statement of the proposition, being
included in Lemma 3.4, is now obvious. Q.E.D.
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