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EXPLICIT CONSTRUCTION OF GROUP VARIETIES RELATED
TO SOLITON SOLUTIONS OF THE KP HIERARCHY

FRANCESCO BOTTACIN

Abstract. A remarkable relation between N -soliton solutions of the KP hier-
archy and some group varieties is found. Precisely, we prove that to each such
solution there is associated, in a natural way, a commutative group variety, which
we are able to construct explicitly. These varieties turn out to be products of
multiplicative groups.

Introduction

In a previous paper [3] we have shown that to each element in a large class of
solutions to the KP hierarchy there is associated, in a natural way, a group variety.
This result was achieved by showing that these solutions are in fact functions of
theta type. Let us recall here that the functions of theta type were introduced by
I. Barsotti in 1968 as a generalization of classical theta functions: a (holomorphic)
theta type is essentially a formal power series in n indeterminates, θ(x) ∈ k[[x]],
which satisfies the holomorphic prosthaferesis:

θ(x+ y)θ(x− y) ∈ k[[x]]⊗k k[[y]].

It turns out that the field generated over k by the iterated logarithmic derivatives
of a theta type θ(x), from the seconds on, is the function field of a commutative
group variety, called the group variety of θ. Needless to say, when k is the complex
field, the theory of theta types covers the classical theory of theta functions.

In this paper we restrict to a class of solutions of particular interest in physics,
namely the so-called N -solitons. We prove that an N -soliton solution to the KP
hierarchy is actually a holomorphic theta type, and its associated group variety is
a product of multiplicative groups. Hence the same conclusions also hold for the
KdV and all other hierarchies which can be obtained as specializations of the KP.
Moreover all these constructions are made explicitly.

This fact sheds a new light on a result proved by D. Mumford in [7]: he showed
that starting from the Jacobian theta function of a nonsingular curve one can con-
struct solutions to the KP hierarchy, and these functions also give solutions to the
KdV hierarchy when the curve is taken to be hyperelliptic. Moreover, if one takes
an algebraic family Ct of smooth hyperelliptic curves of genus g, which, as t → 0,
tend to a singular curve C0 having only nodes as singularities, then the Jacobian va-
rieties JacCt of the curves tend to a generalized Jacobian JacC0, which is precisely
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(k∗)g, the product of g copies of the multiplicative group k∗. Under this deforma-
tion, Riemann’s theta functions on the abelian varieties JacCt tend to a function
on the generalized Jacobian JacC0: this is the analogue of the classical Riemann
theta function on a group variety which is no longer abelian (it is what we call a
theta type). The fundamental fact is that this function is essentially the g-soliton
solution of the KdV hierarchy.

Our result shows that this is not a special case but only an aspect of a general
situation: every soliton solution of the KP hierarchy is actually a theta type of a
multiplicative group.

This paper is organized as follows: in Sect. 1 we recall the definitions and some
basic results concerning functions of theta type. Then we also recall the definition
of hyperfield and its connections with group varieties, essentially because this termi-
nology, introduced by I. Barsotti, is not at all “well-known” to the mathematical
public.

In Sect. 2 we first give a brief description of the KP hierarchy and recall how it can
be expressed as a set of Hirota’s bilinear differential equations for a τ -function. Then
we introduce infinite order differential operators, called vertex operators, which act
on the space of τ -functions, sending a given solution to the KP hierarchy to a new
one. This allows us to construct the famousN -soliton τ -function, obtained by letting
a particular vertex operator act on the constant function 1. Finally we describe in
detail how one can find an explicit expression for the solitons constructed in this
way.

In Sect. 3 we make use of the explicit expression previously found to prove that
N -soliton τ -functions are functions of theta type, and their associated group varieties
are precisely the multiplicative groups. The last part of the Section is then devoted
to the analysis of the dependence of the dimension of these varieties on the original
soliton.

1. Theta types and group varieties

Let k be an algebraically closed field of characteristic zero, and k[[x]] = k[[x1, . . . , xn]]
denote the ring of formal power series in n variables, with coefficients in k. For an
integral domain I, the symbol Q(I) denotes the quotient field of I.

A non-zero element θ(x) ∈ Q(k[[x]]) is a function of theta type, or simply a theta
type, if it satisfies the prosthaferesis :

(1.1) θ(x+ y) θ(x− y) ∈ Q(k[[x]]⊗k k[[y]]).

A theta type θ(x) is holomorphic if it satisfies the holomorphic prosthaferesis (hence
it belongs to k[[x]]):

(1.2) θ(x+ y) θ(x− y) ∈ k[[x]]⊗k k[[y]].

It follows that a theta type is always the quotient of two holomorphic theta types.
It is not useless to remember here that, if k is the complex field, a holomorphic theta
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type is actually an entire function, i.e. its power series converges, and the theory of
theta types generalizes the classical theory of theta functions (this is proved in [1,
Sect. 4]).

We need some more definitions: two theta types are associate if their ratio is a
quadratic exponential, i.e. a factor of the form a ·exp q(x), where a ∈ k and q(x) is a
polynomial of degree ≤ 2, with vanishing constant term. If θ(x1, . . . , xn) is a theta
type, it may happen that there exist a θ′, associate to θ, and linear combinations
y1, . . . , ym of x1, . . . , xn with coefficients in k and m < n, such that θ′(x) ∈ Q(k[[y]]).
In other words θ itself, or one of its associates, may effectively depend on less then n
variables. The least m for which this is possible is called the dimension of θ, dim θ.
It also equals n−m′, where m′ is the maximum, as θ′ varies among the associates
of θ, reached by the dimension of the k-vector space of derivations d ∈ DerQ(k[[x]])
(i.e. linear combinations of the di = ∂/∂xi, with coefficients in k) that annihilate θ′.
A theta type of dimension < n is called degenerate.

Now we briefly recall the definition and basic properties of hyperfields, refering
the reader to [1] and [6] for a more detailed treatment of this subject.

A hyperfield C over k is an extension field of k which satisfies the following
properties:

(i) C⊗k C and C⊗k C⊗k C are integral domains: this is true for all extensions
C of k, if k is algebraically closed;

(ii) there is given a unitary k-algebra homomorphism P : C → Q(C⊗kC), called
the coproduct, which is coassociative (i.e. it satisfies (ι ⊗ P)P = (P ⊗ ι)P,
where ι is the identity map on C) and cocommutative (δ ◦ P = P, where δ
is the natural extension to Q(C ⊗k C) of the map sending x ⊗ y ∈ C ⊗k C
to y ⊗ x);

(iii) there is also given a unitary endomorphism ρ of the k-algebra C, called the
inversion, such that µ(ι ⊗ ρ)Px = εx ∈ k, for all x ∈ C for which this
expression makes sense, where µ is the natural extension to Q(C ⊗k C) of
the multiplication map C⊗kC → C sending x⊗y to x y. The map ε defined
by the preceding formula is called the coidentity ;

(iv) C is equal to the quotient field of the local ring RC = ε−1k;
(v) µ(ι⊗ ε)Px = x, for all x ∈ C.

From these conditions it follows that P and ρ are isomorphisms and ρ2 = ι.
We also define the notion of subhyperfield : if C and K are two hyperfields over

k, we say C is a subhyperfield of K if it is a subfield of K and its coproduct and
inversion are induced by those of K.

The basic example of hyperfield is constructed as follows: let A be a commutative
group variety over k, and C = k(A), the function field of A. Take as the coproduct
P : C = k(A)→ Q(C⊗kC) = k(A×A) the natural map induced by the composition
law on A, and as ρ : C → C the map induced by the morphism which sends a point
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in A to its inverse, for the given group law (when this is defined). This C turns out
to be a finitely generated hyperfield over k.

The fundamental fact is that the converse is also true, i.e. for any finitely generated
hyperfield C over k, there exists a commutative group variety A over k, such that
C = k(A), the composition law on A being dual to the coproduct of C. In this
situation we say that A is the group variety of C, and C is the hyperfield of A.
Moreover, if C = k(A) and K = k(B) are hyperfields, for some group varieties A and
B, then C is a subhyperfield of K if and only if there is a surjective homomorphism
of group varieties B → A corresponding to the inclusion of C in K.

Now we come back to theta types. Given a theta type θ(x) ∈ Q(k[[x]]), there is
a natural way to associate to it a hyperfield C ⊂ Q(k[[x]]), whose coproduct and
inversion are induced by those defined on k[[x]] (which is not a hyperfield!):

P : k[[x]]→ k[[x]]⊗̂k[[x]] ∼= k[[x, y]]

xi 7→ xi⊗̂1 + 1⊗̂xi
and

ρ : k[[x]]→ k[[x]]

xi 7→ −xi.
We don’t mention here how this can be done (see [1] or [2]), but we recall that C
turns out to be finitely generated over k by the iterated logarithmic derivatives of
θ, from the seconds on, hence it is the hyperfield of a commutative group variety A,
called the group variety of θ. It follows immediately that two associate theta types
have the same hyperfield and group variety. Then we define the transcendency of θ,
transc θ, as transcC/k, and it can be easily proved that transc θ ≥ dim θ; θ is called
a theta function when equality holds.

To end this Section, we just mention that there is also a natural way to define a
divisor on A, called the divisor of θ, which is effective if and only if θ is holomorphic,
and is linearly equivalent to zero if and only if θ ∈ C (modulo substitution of θ
with an associate theta type). All this works well, in the sense that it gives a
generalization of the classical notion of theta divisor. We refer to [1] and [2] for
further information.

2. The KP hierarchy and its soliton solutions

In this Section we briefly recall the definition of the Kadomtsev-Petviashvili (KP)
hierarchy and its expression as a set of Hirota’s bilinear differential equations for a
τ -function. Then we introduce the N -soliton solutions to the KP hierarchy and find
their explicit expressions. For a detailed account of this subject the reader is referred
to [4]. Let k be the complex field and x denote the infinite set of indeterminates
x1, . . . , xn, . . . . For convenience of notation, we simply write ∂ for the derivative
∂/∂x1.
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A (formal) pseudodifferential operator P is a formal Laurent series in ∂−1, with
coefficients in k[[x]]: P =

∑m
j=−∞ aj(x) ∂j.

For a pseudodifferential operator P , we denote by P+ =
∑m

j=0 aj(x) ∂j the ordi-

nary differential operator part, and by P− =
∑

j<0 aj(x) ∂j its residual part.
We also introduce the space of formal oscillating functions{

f(x, λ) exp ξ(x, λ) | f(x, λ) ∈ k[[x]]((λ−1))
}
,

where λ is a formal parameter and ξ(x, λ) =
∑∞

i=1 xiλ
i.

Let w(x, λ) =
(∑∞

i=0wi(x)λ−i
)

exp ξ(x, λ) be a formal oscillating function, nor-
malized by letting w0(x) = 1, and consider the following system of linear equations:

(2.1)

Lw = λw,
∂w

∂xn
= Bnw n = 1, 2, . . . ,

where L is a pseudodifferential operator of the form L = L(x) = ∂ + u−1(x) ∂−1 +
u−2(x) ∂−2 + . . . , and Bn = (Ln)+.

The KP hierarchy is defined as the system of non-linear differential equations for
the u−i(x)’s, resulting from the compatibility conditions of (2.1); these turn out to
be equivalent to the system of Lax equations for the operator L:

(2.2)
∂L

∂xn
= [Bn, L], n = 1, 2, . . . .

Moreover it can be shown that the system (2.1) has a solution w if and only if L
satisfies the KP hierarchy (2.2), in which case the solution is unique up to multipli-
cation by elements in 1 + k[[λ−1]]λ−1 (see, for example, [8, Sect. 1.2]).

We must now make a brief digression to introduce Hirota’s bilinear differential
operators: for polynomials P (y1, . . . , yn) ∈ k[y1, . . . , yn] and functions f(x) and g(x),
they are defined as

P (D1, . . . , Dn)f · g = P (∂/∂y1, . . . , ∂/∂yn)[f(x+ y) g(x− y)]|y=0.

The differential equations P (D)f · g = 0 are Hirota’s bilinear differential equations.
Returning to our previous situation, it is shown in [4, Sect. 1] that if w(x, λ) is

a solution of (2.1), for a pseudodifferential operator L satisfying (2.2), then there
exists a power series τ(x) ∈ k[[x]], called the τ -function associated to L, such that

w(x, λ) =
τ
(
x1 − 1

λ
, x2 − 1

2λ2 , x3 − 1
3λ3 , . . .

)
τ(x)

exp ξ(x, λ).

Moreover the KP hierarchy can be written equivalently as an infinite set of Hirota’s
bilinear differential equations for the τ -function τ(x), obtained from the following
generating function expansion:

(2.3)
∞∑
i=0

pi(−2y) pi+1(D̃) exp
( ∞∑
j=1

yj Dj

)
τ · τ = 0,
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where pn(x) are Schur polynomials, defined by

exp
( ∞∑
j=1

xj q
j
)

=
∞∑
n=0

pn(x) qn,

and D̃ = (D1, 2
−1D2, 3

−1D3, . . . ) with the Dj’s being Hirota’s symbols, so that every
coefficient of (2.3), regarded as a power series in the y’s, gives Hirota’s equation for
a τ -function.

An important result states that the set of solutions to (2.3) admits the trans-
formation τ(x) → exp

(
aX(p, q)

)
τ(x), sending a given solution τ(x) to a new one.

Here a, p, q are parameters, and X(p, q) is an infinite order differential operator,
called a vertex operator, defined as follows:

X(p, q) = exp
(
ξ(x, p)− ξ(x, q)

)
exp

(
− ξ(∂̃, p−1) + ξ(∂̃, q−1)

)
,

where ∂̃ = (∂/∂x1, 2
−1∂/∂x2, 3

−1∂/∂x3, . . . ).
This result provides an effective method to construct explicit solutions to the

KP hierarchy (2.3): just start with one known solution and let the operators
exp

(
aiX(pi, qi)

)
act repeatedly on it. In particular, starting from the constant

function 1 (which obviously solves (2.3)!), we can get a special solution defined as
follows:

(2.4) τ(x) = exp
( N∑
i=1

aiX(pi, qi)
)

1.

This is precisely the N -soliton solution of the KP hierarchy (actually the classical
N -soliton is given by ∂2/∂x2

1 log τ(x)).
Now we want to describe in detail how one can find the explicit expression of the

N -soliton τ -function, starting from its definition (2.4). We divide what follows into
3 steps, whose proof consists of straightforward computations which are left to the
reader.

Step 1. First observe that the operator exp(λ∂/∂t) acts by translation on t:

exp(λ∂/∂t)f(t) = f(t+ λ);

from this it follows immediately that the action of the vertex operator X(p, q) on a
function of infinitely many variables is the following:

X(p, q)f(x1, x2, . . . ) = exp
(
ξ(x, p)− ξ(x, q)

)
f
(
. . . , xi −

1

ipi
+

1

iqi
, . . .

)
.

In particular we note that X(pi, qi) 1 = exp ξi, where we set ξi = ξ(x, pi)− ξ(x, qi),
and this allows us to evaluate the first order terms in the series expansion of (2.4).

Step 2. Note that from the power series expansion of

log
( 1

1− λ

)
= − log(1− λ) =

∞∑
i=1

λi

i
,
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we formally have: exp
(∑∞

i=1
λi

i

)
= 1

1−λ .

Using this simple remark, we can evaluate X(pk, qk) exp
(∑n

i=1 ξi
)
, and find that

it is equal to
∏n

i=1 cki exp
(
ξk +

∑n
i=1 ξi

)
, where we set

cki =
(pk − pi)(qk − qi)
(pk − qi)(qk − pi)

.

Finally, using induction on m, and noting that cij = cji and cii = 0, it is not difficult
to prove the following result:[

N∑
i=1

aiX(pi, qi)

]m
· 1 = m! ·

∑
1≤i1<···<im≤N

m∏
j=1

aij ·
∏

1≤h<k≤m

cihik · exp
( m∑
j=1

ξij

)
for all m such that 2 ≤ m ≤ N , and is equal to 0 if m > N (the reason for this is
that, for m > N , in each term of the summation there is a factor of the form cii = 0,
for some i).

Step 3. Putting all this together, and using the series expansion of (2.4), we finally
get the desired expression for the general N -soliton τ -function:

(2.5) τ(x) = 1 +
N∑
i=1

ai exp ξi +
∑

1≤i<j≤N

aiajcij exp(ξi + ξj) + . . .

=
∑

0≤m≤N
1≤i1<···<im≤N

m∏
j=1

aij ·
∏

1≤h<k≤m

cihik · exp
( m∑
j=1

ξij

)
.

3. Group varieties of N-soliton τ-functions

In the preceding Section we have shown that the general N -soliton solution to the
KP hierarchy is written as a particular linear combination of linear exponentials,
with coefficients in k (see (2.5)). This leads us to consider the following general
situation:

(3.1) τ(x) =
m∑
i=0

ai exp(bix) ∈ k[[x]],

where x = (x1, . . . , xn), bix =
∑n

j=1 bij xj, and k is an algebraically closed field of

characteristic zero (not necessarily the complex field).
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It follows easily from the definition that this function is a holomorphic theta type,
in fact it satisfies the holomorphic prosthaferesis (1.2):

τ(x+ y) τ(x− y) =

[
m∑
i=0

ai exp(bi x+ bi y)

]
·

[
m∑
j=0

aj exp(bj x− bj y)

]
=

=
∑
i,j

ai aj exp(bi x+ bj x) exp(bi y − bj y) ∈ k[[x]]⊗k k[[y]].

Let us denote by C the hyperfield of the theta type τ(x), and by A its group variety,
i.e. A is a commutative group variety over k such that C = k(A). Our purpose, in
this section, is to give a precise description of the group variety associated to a theta
type of the form (3.1), and, in particular, to apply this to the case of N -solitons (2.5).

We recall from Sect. 1 that C is finitely generated over k by the iterated logarith-
mic derivatives of τ(x), from the seconds on, and this implies that C is a subfield
of K = k(expx1, . . . , expxn). But we note that K itself is a finitely generated hy-
perfield, with the same coproduct and inversion of C, which are induced by those
defined on k[[x]]. Furthermore we have an isomorphism of hyperfields (i.e. an iso-
morphism of k-algebras preserving the coproduct and the inversion):

(3.2)


K = k(expx1, . . . , expxn)

with coproduct
P : xi 7→ xi ⊗ 1 + 1⊗ xi

and inversion
ρ : xi 7→ −xi

 ∼=

K ′ = k(y1, . . . , yn)

with coproduct
P : yi 7→ yi ⊗ yi
and inversion
ρ : yi 7→ y−1

i

 .

Now let us make another brief digression in order to describe a natural model for
the group variety of a finitely generated hyperfield.

If C is a finitely generated hyperfield over k, we say that an automorphism σ of
C over k is left-invariant (resp. right-invariant) if it satisfies (σ ⊗ ι)P = Pσ (resp.
(ι ⊗ σ)P = Pσ). When C is cocommutative, these two conditions are equivalent
and we simply say σ is invariant. Let us denote by Gl(C) (resp. Gr(C)) the set of
left-invariant (resp. right-invariant) automorphisms of C over k: it is easy to prove
that they are isomorphic subgroups of the group of all automorphisms of C over k.
The fundamental fact, proved in [6], is that this subgroup may be given the structure
of an algebraic group, such that its function field is precisely the hyperfield C. In
other terms, the set of (left-)invariant automorphisms of C over k may be regarded
as the set of k-rational points of the group variety of C.

In our situation one sees immediately that the only invariant automorphisms of
K ′ over k are given by σ(xi) = ai xi, for some ai ∈ k∗, i = 1, . . . , n, so that we get
an isomorphism Gl(K

′) ∼= (k∗)n, which shows that the group variety of K ′ (hence
of K) is (k∗)n, the product of n multiplicative groups.
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From what we have stated above, it follows that C is a subhyperfield of K, hence
we have a surjective homomorphism of group varieties (k∗)n → A, of the group
variety of K onto the one of C.

Now we recall a general result on algebraic groups (see, for example [5, Ch. 4,
§ 1, Coroll. 2.4]), which states that every quotient of a multiplicative group is itself
a multiplicative group. Hence we can conclude that A must be isomorphic to (k∗)s,
for some s ≤ n.

To complete the description of the variety A, there remains only the evaluation of
its dimension s, which is equal to the transcendence degree of C over k (with regard
to C, we can also note that it must be a pure transcendental extension of k, since
its variety (k∗)s is rational).

In order to do that, let us recall from Section 1 that transc(C/k) ≥ dim τ(x), so
we now propose to evaluate the dimension of the theta type τ(x): when τ(x) turns
out to be non-degenerate, i.e. dim τ(x) = n, then transc(C/k) = n (it is always ≤ n,
from what we have stated before), hence A = (k∗)n and C = K.

We start by noting that we can always consider an associate theta type, obtained
from the expression (3.1) by multiplication by the linear exponential exp(−b0x);
hence we are reduced to the case of functions of the form:

(3.3) τ(x) = a0 +
m∑
i=1

ai exp(bi x), ai 6= 0 ∀i.

Then, if the rank of the matrix of the bij’s is equal to r < n, we can consider
y1 = b1 x, . . . , yr = br x as a new set of indeterminates (modulo a renumbering of
the bi’s), and express the remaining br+1 x, . . . , bm x as linear combinations of the
yi’s. With this change of variables we have an inclusion of C in k(exp y1, . . . , exp yr),
hence we have transc(C/k) ≤ r < n (actually the transcendence degree is equal to r,
as we shall see later). This is the case in which τ(x) is degenerate, in fact it effectively
depends on less than n variables: it is not possible to reach the maximum dimension
n in this situation.

Therefore we are reduced to the case of a function τ(x) given by (3.3), with m ≥ n
and rank(bij) = n.

Proposition 3.4. – Under the preceding hypotheses, the theta type τ(x) is non-
degenerate, i.e. dim τ(x) = n.

Proof. – If dim τ(x) < n, it follows that there exist a derivative d =
∑n

i=1 λidi,
with di = ∂/∂xi and λi ∈ k, and a theta type τ ′(x), associate to τ(x), such that
dτ ′(x) = 0. Let φ(x) = exp

(∑n
i=1 βi xi +

∑
i,j γij xi xj

)
be a generic quadratic

exponential, and τ ′(x) = φ(x) τ(x) a generic associate to τ(x). From dτ ′(x) = 0, it
follows, by a straightforward computation, that:

(3.4)

{∑n
s=1 λs βs = 0,∑n
s=1 λs βs +

∑n
s=1 λs bis = 0, i = 1, . . . ,m,
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hence we must have
∑n

s=1 λs bis = 0 ∀i, with λ1, . . . , λn not all zero.
But this is in contrast with the hypothesis that rank(bij) = n, hence τ(x) is

non-degenerate. Q.E.D.

This result applies immediately to the case of solitons. Let us consider an
N -soliton solution to the KP hierarchy, and suppose that it depends only on finitely
many variables x1, . . . , xn. From the end of Section 2, we recall that it can be written
as:

(3.5) τ(x) = 1 + a1 exp ξ1 + · · ·+ aN exp ξN + · · ·+ aij exp(ξi + ξj) + · · ·+
+ a12...N exp(ξ1 + ξ2 + · · ·+ ξN),

where ξi = ξ(x, pi)− ξ(x, qi) =
∑n

j=1(p
j
i − q

j
i )xj.

Using the notations of (3.3), this amounts to setting bij = pji −q
j
i , for i = 1, . . . , N

and j = 1, . . . , n, while the bi’s, for i > N , are linear combinations of b1, . . . , bN (e.g.,
we have bN+1 = b1 + b2, bN+2 = b1 + b3, etc.).

The matrix of the bij’s has therefore the following form:

(3.6)



p1 − q1 p2
1 − q2

1 . . . pn1 − qn1
p2 − q2 p2

2 − q2
2 . . . pn2 − qn2

...
...

...
pN − qN p2

N − q2
N . . . pnN − qnN

other rows which are
linear combinations of

the first N ones


hence we can distinguish essentially two cases:

i) n > N : for generic values of the parameters pi and qj, the rank of (3.6) is
equal to N , and it is not the highest possible. The N -soliton τ -function (3.5) is a
degenerate theta type and has (k∗)N as its associated group variety.

ii) n ≤ N : for generic values of the parameters pi and qj, the rank of (3.6) is n.
In this case the group variety related to τ(x) is (k∗)n, and has the highest possible
dimension. Correspondingly τ(x) is a non-degenerate theta type.

We have thus proved the following

Theorem 3.7. – An N-soliton solution τ(x) to the KP hierarchy, depending on
n independent variables, is a holomorphic theta type. Its group variety is (k∗)s, the
direct product of s copies of the multiplicative group k∗, where s is generically equal
to min(N, n).

As a final remark, we note that all this applies not only to soliton solutions of
the KP hierarchy, but also to those of other hierarchies (such as KdV), which are
specializations of the KP.
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