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Abstract. Let X be a smoothn-dimensional projective variety defined
over C and letL be a line bundle onX. In this paper we shall con-
struct a moduli spaceP(L) parametrizing(n − 1)-cohomologyL-twisted
Higgs pairs, i.e., pairs(E, φ̄) whereE is a vector bundle onX and φ̄ ∈
Hn−1(X, End(E) ⊗ L). If we takeL = ωX , the canonical line bundle on
X, the varietyP(L) is canonically identified with the cotangent bundle of the
smooth locus of the moduli space of stable vector bundles onX and, as such,
it has a canonical symplectic structure. We prove that, in the general case, in
correspondence to the choice of a non-zero sections ∈ H0(X,ω−1

X ⊗ L),
one can define, in a natural way, a Poisson structureθs on P(L). We also
analyze the relations between this Poisson structure onP(L) and the canon-
ical symplectic structure of the cotangent bundle to the smooth locus of the
moduli space of parabolic bundles overX, with parabolic structure over the
divisorD defined by the sections. These results generalize to the higher
dimensional case similar results proved in [Bo1] in the case of curves.

Mathematics Subject Classification (1991):14D20, 14J60, 14B10, 58F05

Introduction

LetC be a smooth projective curve of genus≥ 2 defined over the complex
field C, and let us denote byM(r, d) the moduli space of stable vector
bundles of rankr and degreed overC.

It is well known that the cotangent bundle ofM(r, d) can be canonically
identified with the set of isomorphism classes of pairs(E, φ), whereE ∈
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M(r, d) andφ : E → E⊗ωC is a homomorphism of vector bundles. These
pairs are known asHiggs bundles. Since the introduction of these objects
by Hitchin in [Hi], moduli spaces of Higgs bundles have been studied by
various authors, and several generalizations have been proposed.

In this paper we shall consider the general situation in which the curve
C is replaced by a smoothn-dimensional projective varietyX, defined over
C. Let us fix some “moduli data” and denote byM s the moduli space of
stable vector bundles onX. Since, in general,M s is not a smooth variety, we
shall restrict to its smooth locusM s

sm. By standard infinitesimal deformation
considerations, the cotangent bundle ofM s

sm can be canonically identified
with the set of isomorphism classes of pairs(E, φ̄), whereE ∈ M s

sm and
φ̄ ∈ Hn−1(X, End(E)⊗ωX). We are thus naturally led to consider the more
general situation of pairs(E, φ̄) with φ̄ ∈ Hn−1(X, End(E)⊗L), for some
fixed line bundleL onX. We shall call these objects(n − 1)-cohomology
L-twisted Higgs pairs, or simplypairs, in the sequel.

The main result of this paper is the construction of a canonical family
of (compatible) Poisson structures on the moduli spaceP(L) of (n − 1)-
cohomologyL-twisted Higgs pairs, parametrized by the global sections of
the line bundleω−1

X ⊗ L. If L = ωX there is only one Poisson structure
(up to scalars). This is actually non-degenerate, hence defines a symplectic
structure onP(ωX), which coincides with the canonical symplectic structure
of the cotangent bundle toM s

sm. In the general case, ifL ∼= ωX(D) for
some effective divisorD, the Poisson structure ofP(L) corresponding to
the sections of ω−1

X ⊗ L defining the divisorD is related to the canonical
symplectic structure of the cotangent bundle to the smooth locus of the
moduli space of parabolic vector bundles with parabolic structure over the
divisorD. These results generalize to the higher dimensional case the results
obtained by Hitchin in [Hi] and by the present author in [Bo1].

The paper is organized as follows. In Sect. 1, we define the objects of
our study, the(n−1)-cohomologyL-twisted Higgs pairs, and construct the
moduli spaceP(L); this variety has a natural structure of vector bundle over
a suitable open subset ofM s.

In Sect. 2 we use infinitesimal deformation theory to study the tangent
and cotangent bundles ofP(L). In particular we prove that the tangent
spaces toP(L) can be naturally identified with the first cohomology groups
of certain complexes and, by means of duality theory, we also obtain an
explicit description of the cotangent spaces. Then we use these results to
define a homomorphismBs : T ∗P(L) → TP(L), depending on the choice
of a non-zero global sectionsofω−1

X ⊗L. This map defines an antisymmetric
contravariant2-tensorθs ∈ H0(P(L),∧2TP(L)), which will turn out to
be a Poisson structure. The mapBs will be studied in Sect. 3.
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In Sect. 4 we introduce the main technical tools used in the sequel.
Precisely we show how tangent vector fields onP(L) can be expressed in
terms of certain first order differential operators.

In the following section, Sect. 5, we recall some general results about
symplectic and Poisson structures, and define the canonical Poisson structure
on the dual of a vector bundle endowed with the structure of a locally free
sheaf of Lie algebras. This construction is a generalization of the canonical
symplectic structure of the cotangent bundle of a smooth variety.

In Sect. 6 we use the results obtained in the previous sections to prove
that the antisymmetric contravariant2-tensorθs actually defines a Poisson
structure onP(L), that coincides with the canonical symplectic structure
onT ∗M s

sm, whenL = ωX ands is the identity section.
In Sect. 7 we compare our definition of(n− 1)-cohomologyL-twisted

Higgs pairs with the usual definition of Higgs bundles on higher dimensional
varieties, as found, e.g., in [S1] or [S2].

Finally, in Sect. 8, we recall the construction of the moduli spaceMpar

of parabolic vector bundles onX, with parabolic structure over an effective
divisorD (defined by a sections), and describe the relations between the
Poisson structure ofP(L) (corresponding to the sections) and the canonical
symplectic structure of the cotangent bundle to the smooth locus ofMpar.

1. (n − 1)-cohomology Higgs pairs

LetX be a smoothn-dimensional projective variety defined overC, with a
very ample invertible sheafOX(1). For a coherent torsion-freeOX -module
E, we denote byrk(E) the rank ofE at the generic point, bydeg(E) the
intersection number ofc1(E) with c1(OX(1))n−1 and byPE = PE(t) the
Hilbert polynomial ofE. Finally, the slope ofE is defined by setting

µ(E) =
deg(E)
rk(E)

.

Let M = M s
sm(P ) denote the smooth locus of the moduli space of

stable vector bundles onX with fixed Hilbert polynomialP . By abuse of
notation we shall denote byE either a vector bundle onX or the point of
M corresponding to the isomorphism class ofE.

Remark 1.1.In general, even if a universal familyE does not exist on any
Zariski open subset ofM s(P ), the sheafEnd(E) is always defined. This
follows from the construction of the moduli spaceM s(P ) by Geometric
Invariant Theory, by the same reasoning as in [Bo1, Remark 1.1.2]. As for
the universal familyE , its local existence in théetale (or complex) topology,
will be sufficient for our purposes.
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It is well known that the tangent spaceTEM to M at a pointE is
canonically identified toH1(X, End(E)). By Serre duality, it follows that
the cotangent spaceT ∗

EM is identified toHn−1(X, End(E) ⊗ ωX), where
ωX denotes the canonical line bundle onX. From this it follows that the
cotangent bundleT ∗M to M can be described set-theoretically as the set
of isomorphism classes of pairs(E, φ̄), consisting of a vector bundleE on
X and an element̄φ ∈ Hn−1(X, End(E) ⊗ωX). If X is a projective curve
(n = 1), we obtain the classical notion of Higgs bundles, introduced by
Hitchin in [Hi].

Let us fix a line bundleL onX (in the sequel we shall impose some
conditions onL).

Definition 1.2. A (n−1)-cohomologyL-twisted Higgs pair (simply called
pair in the sequel) is a pair(E, φ̄), whereE is a locally free sheaf onX and
φ̄ ∈ Hn−1(X, End(E) ⊗ L).

If λ : F → E is a homomorphism of vector bundles, composition with
λ on the right and withλ⊗ idL on the left induce, respectively, the following
homomorphisms

· ◦ λ : Hn−1(X, End(E) ⊗ L) → Hn−1(X,Hom(F,E ⊗ L)),(1.1)

and

(λ⊗ idL) ◦ · : Hn−1(X, End(F ) ⊗ L) → Hn−1(X,Hom(F,E ⊗ L)).
(1.2)

Then we have:

Definition 1.3. A homomorphism of(n−1)-cohomologyL-twisted Higgs
pairs(F, ψ̄) and(E, φ̄) is a homomorphism of vector bundlesλ : F → E
such that the image of̄φ by the map (1.1) is equal to the image ofψ̄ by the
map (1.2). Ifλ is an isomorphism of vector bundles, then we speak of an
isomorphism of(n− 1)-cohomologyL-twisted Higgs pairs.

The notion of family of pairs is defined as follows:

Definition 1.4. A family of (n− 1)-cohomologyL-twisted Higgs pairs on
X, parametrized by a noetherian schemeS, is the data of a vector bundleE
onS ×X and a global section̄Φ of the sheafRn−1q∗(Hom(E , E ⊗ p∗L)),
wherep : X × S → X andq : X × S → S are the canonical projections.

Let us come now to the definition of stability. We recall that, whenX is
a curve, a Higgs bundle(E, φ) is semistable (resp. stable) ifµ(F ) ≤ µ(E)
(resp.µ(F ) < µ(E)), for everyφ-invariant proper subbundleF of E (see
[N]).

There is an obvious generalization of this notion of stability to the case of
(n−1)-cohomologyL-twisted Higgs pairs on a higher dimensional variety;
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we must only be careful to consider the right notion of subobjects of a pair
(E, φ̄). In fact, whendimX > 1, it is not sufficient to consider subpairs
(F, ψ̄) with F locally free, but we must allowF to be only a torsion-free
sheaf. Correspondingly,̄ψ should be an element ofExtn−1(F, F ⊗L). The
definition of a homomorphism of these more general pairs is the obvious
generalization of the one given in Definition 1.3. Hence we define subpairs
as follows:

Definition 1.5. A subpair of a(n − 1)-cohomologyL-twisted Higgs pair
(E, φ̄) is a pair(F, ψ̄), whereF is a coherent torsion-free subsheaf ofE
and ψ̄ ∈ Extn−1(F, F ⊗ L), such that the inclusionF ↪→ E induces a
homomorphism of pairs.

Now we can state the definition of (slope) stability:

Definition 1.6. A (n−1)-cohomologyL-twisted Higgs pair(E, φ̄) is semi-
stable (resp. stable) ifµ(F ) ≤ µ(E) (resp.µ(F ) < µ(E)) for every proper
subpair(F, ψ̄).

Remark 1.7.In [BGP] the authors introduced a notion of stability (depend-
ing on parameters) for a more general class of objects calledp-cohomology
triples. It is easy to see that this definition of stability reduces to our def-
inition in the case of(n − 1)-cohomologyL-twisted Higgs pairs (and the
dependence on parameters disappears).

Remark 1.8.As usual, this definition of stability leads to the construction of
moduli spaces of (semi)stable(n− 1)-cohomologyL-twisted Higgs pairs.
In this paper, however, we shall restrict our attention to pairs(E, φ̄) such
thatE is a stable vector bundle. We note that, ifE is stable, then(E, φ̄) is
a stable pair for anȳφ ∈ Hn−1(X, End(E) ⊗ L).

Remark 1.9.In the case of surfaces, a(n−1)-cohomologyL-twisted Higgs
pair (E, φ̄) is actually a1-cohomologyL-twisted Higgs pair, i.e.̄φ ∈
H1(X, End(E) ⊗ L) = Ext1(E,E ⊗ L), hence it determines an exten-
sion ofE byE ⊗ L,

0 → E ⊗ L → Eφ̄ → E → 0.

Extensions of holomorphic vector bundles are studied in [BGP] and, partic-
ularly, in [DUW], where moduli spaces of extensions are constructed. There
is a notion of stability for extensions, depending on a real parameterα, de-
fined as follows: for an extensione given by an exact sequence of coherent
torsion-free sheaves

e : 0 → E1 → E → E2 → 0,
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we define theα-slope by setting

µα(e) = µ(E) + α
rk(E2)
rk(E)

.

Then we say that an extensione isα-stable (resp.α-semistable) if, for every
proper subextensione′, we have

µα(e′) < µα(e) (resp.≤).

It is easy to prove that this notion ofα-stability, applied to the extension
corresponding to a1-cohomologyL-twisted Higgs pair(E, φ̄) coincides
with the notion of stability for pairs given in Definition 1.6. Again, we note
that the dependence on the real parameterα has disappeared.

Let us denote byP(L) the set of isomorphism classes of(n − 1)-
cohomologyL-twisted Higgs pairs(E, φ̄) on X such thatE ∈ M (this
means, in particular, thatE is stable). There is a natural projection map
π : P(L) → M , which sends a pair(E, φ̄) to E and whose fibers are
π−1(E) = Hn−1(X, End(E) ⊗ L).

As we have previously seen, if we takeL = ωX , P(ωX) is canonically
identified with the cotangent bundleT ∗M of the smooth locusM of the
moduli space of stable vector bundles onX. This means, in particular, that
the dimension of the fibersπ−1(E) = Hn−1(X, End(E)⊗ωX) is constant
asE varies inM .

Unfortunately, for a genericL, the dimension ofHn−1(X, End(E)⊗L)
will not be necessarily constant asE varies inM , hence it is not possible
to regardP(L) as a vector bundle overM . However, by the semicontinuity
theorem, there exists an open subsetM ′ of M such thatdimHn−1(X,
End(E) ⊗ L) is constant asE varies inM ′. Now, if we consider pairs
(E, φ̄) with E ∈ M ′, and we use the symbolP(L) to denote the set of
isomorphism classes of such pairs, it is easy to prove thatP(L) can be given
the structure of a vector bundle overM ′.

In the language of algebraic geometry, this can be done as follows. Let
us consider the universal sheafEnd(E) onM ′ ×X defined in Remark 1.1,
and denote byp : M ′ × X → X andq : M ′ × X → M ′ the canonical
projections. From the fact that the dimension ofHn−1(X, End(E) ⊗ L) is
constant asE varies inM ′, it follows that the sheaf

H = Rn−1q∗(End(E) ⊗ p∗L)

is a vector bundle onM ′, whose fibers areHE
∼= Hn−1(X, End(E) ⊗ L).

We may then define the varietyP(L) as follows:

P(L) = Spec(Sym(H∗)),
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whereSym(H∗) denotes the symmetric algebra of the dual sheaf ofH.
ThusP(L) has a natural structure of vector bundle overM ′, with fibers
isomorphic toHn−1(X, End(E) ⊗ L), forE ∈ M ′.

On the varietyP(L) there does not exist, in general, a “universal pair”
(E , Φ̄), since there does not even exist a universal vector bundleE onM ′.
We can however prove the following result:

Proposition 1.10. If there exists a universal vector bundleE onM ′, then
there exists a universal(n−1)-cohomologyL-twisted Higgs pair onP(L).

Proof. Let us consider the following commutative diagram:

P(L) ×X M ′ ×X

P(L) M ′,

-π′

?
q′

?

q

-π

whereπ′ = π × idX .
To construct a universal pair onP(L) ×X, we first consider the vector

bundleE ′ = π′∗(E), obtained by pulling-back the universal vector bundleE
onM ′ ×X. Then we observe that the vector bundleπ∗(H) onP(L) has a
canonical section̄Φ. By using the flatness ofπ and the fact thatE is locally
free of finite rank, we have:

π∗(H) = π∗(Rn−1q∗(End(E) ⊗ p∗L))

= Rn−1q′
∗π

′∗(End(E) ⊗ p∗L)

= Rn−1q′
∗(End(E ′) ⊗ p′∗L),

wherep′ : P(L) ×X → X denotes the canonical projection.
It follows that Φ̄ can be considered as a section ofRn−1q′∗(End(E ′) ⊗

p′∗L). The pair(E ′, Φ̄) has the property that, for every(E, φ̄) ∈ P(L), its
restriction to{(E, φ̄)} ×X is isomorphic to the pair(E, φ̄). Now, by using
the fact thatE is a universal vector bundle onM ′, it is easy to prove that
(E ′, Φ̄) is a universal pair.

Remark 1.11.As we have already observed in Remark 1.1, even when there
is no universal vector bundleE onM ′, the sheafEnd(E) is always defined.
It follows that, even if the universal sheafE ′ on P(L) ×X may not exist,
the sheafEnd(E ′) is always defined. By adapting the proof of the preceding
proposition, it follows that the universal section̄Φ of Rn−1q′∗(End(E ′) ⊗
p′∗L) is always defined.
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2. Infinitesimal study of P(L)

In this section we study infinitesimal deformations of Higgs pairs. Let
C[ε]/(ε2) be the ring of dual numbers overC; in the sequel it will be denoted
simply byC[ε].

Definition 2.1. An infinitesimal deformation of a(n− 1)-cohomologyL-
twisted Higgs pair(E, φ̄) is a family (Eε, φ̄ε) of pairs parametrized by
Spec(C[ε]), together with an isomorphism of(E, φ̄) with the specialization
of (Eε, φ̄ε) (we shall say for short that(Eε, φ̄ε) restricts to(E, φ̄)).

Two infinitesimal deformations(E′
ε, φ̄

′
ε) and(E′′

ε , φ̄
′′
ε ) of a pair(E, φ̄) are

isomorphic if there exists an isomorphism of pairsλε : (E′
ε, φ̄

′
ε) → (E′′

ε , φ̄
′′
ε )

which restricts to the identity over(E, φ̄).

Let (E, φ̄) be a(n− 1)-cohomologyL-twisted Higgs pair inP(L). We
shall use thěCech complexesC ·(U , End(E)) andC ·(U , End(E)⊗L), with
respect to a suitable affine open coveringU = (Ui)i∈I of X, to compute
the cohomology of these sheaves (in the sequel, to simplify the notation, the
indication of the open coveringU will be omitted). The cohomology class
φ̄ ∈ Hn−1(X, End(E) ⊗ L) can thus be represented by aČech(n − 1)-
cocycle{φi0,...,in−1} in Cn−1(End(E) ⊗ L).

For{αj0,...,jp} ∈ Cp(End(E)), we define

{[α, φ]i0,...,ip+n−1} ∈ Cp+n−1(End(E) ⊗ L)

by setting

[α, φ]i0,...,ip+n−1
= [αi0,...,ip , φip,...,ip+n−1 ]

= (αi0,...,ip ⊗ idL) ◦ φip,...,ip+n−1 − φip,...,ip+n−1

◦ αi0,...,ip .

It is easy to check that the maps

[·, φ] : Ci(End(E)) → Ci+n−1(End(E) ⊗ L)(2.1)

define a homomorphism (of degreen− 1) of Čech complexes.
We now define a new complexC ·([·, φ]) by setting

Ci([·, φ]) = Ci(End(E)) ⊕ Ci+n−2(End(E) ⊗ L),

with coboundarydi : Ci([·, φ]) → Ci+1([·, φ]) given by

di =
(
δi 0

[·, φ] −δi+n−2

)
.

It is straightforward to verify thatC ·([·, φ]) is actually a complex and
that its first cohomology groupH1(C ·([·, φ])) is the set of equivalence
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classes of pairs(α, η) = ({αi0,...,in−1}, {ηj0,j1}) ∈ Cn−1(End(E) ⊗ L) ⊕
C1(End(E)) such thatδη = 0 andδα = [η, φ], modulo the equivalence
relation defined by(α, η) ∼ (α′, η′) if there existβ ∈ Cn−2(End(E) ⊗ L)
andζ ∈ C0(End(E)) such thatα′ = α− δβ + [ζ, φ] andη′ = η + δζ.

Let us fix our notation here. In terms ofČech cocycles, the equality
δα = [η, φ] means precisely

(δα)i0,...,in = [ηi0,i1 , φi1,...,in ],

andα′ = α− δβ + [ζ, φ] means

α′
i0,...,in−1

= αi0,...,in−1 − (δβ)i0,...,in−1 + [ζi0 , φi0,...,in−1 ].

Remark 2.2.The complexC ·([·, φ]) is essentially the “mapping cone” of
the homomorphism of̌Cech complexes defined by (2.1), with a shift of−1
in the degrees, if we take as definition of the mapping cone the one given in
[KS].

The complexC ·([·, φ]) actually depends on the representativeφ of the
cohomology class̄φ. The following lemma shows that, on the other hand,
the cohomology of this complex depends only on the cohomology classφ̄.

Lemma 2.3. Let φ and φ′ be two(n − 1)-cocycles which represent the
same cohomology class̄φ ∈ Hn−1(X, End(E) ⊗ L), and letC ·([·, φ])
andC ·([·, φ′]) denote the corresponding complexes. Then the cohomology
groupsH i(C ·([·, φ])) andH i(C ·([·, φ′])) are canonically isomorphic.

Proof. We shall prove the result only fori = 1, the proof in the general
case being similar. Let us writeφ′ = φ+ δψ, for ψ ∈ Cn−2(End(E) ⊗L).
Using the explicit description of the first cohomology groupH1(C ·([·, φ]))
given before, it is straightforward to prove that the mapH1(C ·([·, φ′])) →
H1(C ·([·, φ])), which sends the element(α, η) to (α + [η, ψ], η) is well-
defined and is an isomorphism of cohomology groups.

Now, by an infinitesimal deformation computation similar to the one
used in [Bo1] in the proof of Proposition 3.1.2, we can prove the following
result:

Theorem 2.4. The set of isomorphism classes of infinitesimal deformations
of a pair (E, φ̄) is canonically identified with the first cohomology group
H1(C ·([·, φ])).

From the existence of a local universal family of(n − 1)-cohomology
L-twisted Higgs pairs, we obtain:

Corollary 2.5. The tangent spaceT(E,φ̄)P(L) to P(L) at the point(E, φ̄)
is canonically isomorphic toH1(C ·([·, φ])).
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Remark 2.6.We remark, without giving any details, that the methods used to
study infinitesimal deformations of(n − 1)-cohomologyL-twisted Higgs
pairs can be applied, with only minor modifications, to the study of the
infinitesimal deformations ofp-cohomology triples, defined in [BGP].

Now we turn to the study of the cotangent spaceT ∗
(E,φ̄)P(L). For this we

have to “dualize” all the constructions we have previously done. We begin
by constructing the “dual complex”̌C ·([φ, ·]) of C ·([·, φ]). This is defined
as follows:

Či([φ, ·]) = Ci(End(E) ⊗ L−1 ⊗ ωX) ⊕ Ci+n−2(End(E) ⊗ ωX),

with coboundary given by

di =
(
δi 0

[φ, ·] −δi+n−2

)
.

Remark 2.7.The reason for considering the map[φ, ·] instead of[·, φ] in
the dual complex is the following: when we dualize, we obtain sheaves
(End(E))∗ ⊗ L−1 ⊗ ωX and(End(E))∗ ⊗ ωX . Now, there is a canonical
identification between(End(E))∗ andEnd(E) given by the pairing trace.
Under this identification, the transpose of the map[·, φ] coincides precisely
with the map[φ, ·].

The following result follows now from the general theory of duality (but
can also be proved directly):

Proposition 2.8. The dual of thei-th cohomology groupH i(C ·([·, φ])) is
canonically identified withH2−i(Č ·([φ, ·])). In particular, we have a canon-
ical isomorphism

H1(C ·([·, φ]))∗ ∼= H1(Č ·([φ, ·])).
We can now state the following result:

Corollary 2.9. The cotangent spaceT ∗
(E,φ̄)P(L) is canonically isomorphic

to the first cohomology groupH1(Č ·([φ, ·])).
Remark 2.10.An analogue of Lemma 2.3 holds for the complexČ ·([φ, ·]),
i.e., its cohomology groups actually depend only on the cohomology class
φ̄.

Remark 2.11.In terms ofČech cocycles, the groupH1(Č ·([φ, ·])) may be
described in a way perfectly similar to the groupH1(C ·([·, φ])): it is the
set of equivalence classes (modulo an obvious equivalence relation, that
we do not write explicitly) of pairs(β, ζ) = ({βi0,...,in−1}, {ζj0,j1}) ∈
Cn−1(End(E) ⊗ ωX) ⊕ C1(End(E) ⊗ L−1 ⊗ ωX) such thatδζ = 0 and
δβ = [φ, ζ], where this equality means precisely

(δβ)i0,...,in = [φi0,...,in−1 , ζin−1,in ].
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Remark 2.12.By using the description of the cohomology groups in terms
of Čech cocycles, it is possible to give an explicit description of the duality
pairing

H1(C ·([·, φ])) ×H1(Č ·([φ, ·])) → Hn(X,ωX) ∼= C.(2.2)

If (α, η) ∈ H1(C ·([·, φ])) and(β, ζ) ∈ H1(Č ·([φ, ·])) are represented by
cocycles({αi0,...,in−1}, {ηj0,j1}) and({βi0,...,in−1}, {ζj0,j1}), respectively,
it is easy to verify that

{tr(αi0,...,in−1ζin−1,in + ηi0,i1βi1,...,in)}i0,...,in

defines an-cocycle with values inωX , hence determines an element of
Hn(X,ωX) ∼= C. It follows that the duality pairing (2.2) may be written
explicitly as follows:

〈(α, η), (β, ζ)〉 = {tr(αi0,...,in−1ζin−1,in + ηi0,i1βi1,...,in)}
= tr(α ∪ ζ + η ∪ β),

where we denote by∪ the “cup product”.

Remark 2.13.We can also globalize the preceding constructions to the
whole tangent and cotangent bundles toP(L).

For simplicity, let us denote byEnd(E) the sheaf onP(L) × X which
was previously denoted byEnd(E ′), in Remark 1.11. Let̄Φ be the canonical
section ofRn−1q∗(End(E) ⊗ p∗L), where we now denote byp : P(L) ×
X → X andq : P(L)×X → P(L) the canonical projections. The section
Φ̄ can be represented by aČech(n−1)-cocycle with values inEnd(E)⊗p∗L,
with respect to a suitable affine open covering ofP(L)×X. Let us consider
the resolutions of the sheavesEnd(E) andEnd(E) ⊗ p∗L given by theČech
complexes of sheavesC·(End(E)) andC·(End(E) ⊗ p∗L).

We are now in a position to define a sheafified version of the complex
C ·([·, φ]). We set

Ci([·, Φ]) = Ci(End(E)) ⊕ Ci+n−2(End(E) ⊗ p∗L),

with coboundarydi given by

di =
(

δi 0
[·, Φ] −δi+n−2

)
.

Note that this is a complex of sheaves onP(L) × X; its restriction to
{(E, φ̄)} ×X gives a sheafified version of the complexC ·([·, φ]) onX.

From what we have previously seen, it follows that we have a canonical
identification

TP(L) ∼= R1q∗(C·([·, Φ])).(2.3)
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In a similar way, we can define the global dual complexČ·([Φ, ·]), and obtain
a global isomorphism

T ∗P(L) ∼= R1q∗(Č·([Φ, ·])).(2.4)

There is also an obvious global analogue of the explicit expression of the
duality pairing given in Remark 2.12.

Let us now choose a non-zero sections ∈ H0(X,ω−1
X ⊗ L). Multipli-

cation bys and−s respectively, induces homomorphisms of complexes

C·(End(E) ⊗ p∗ωX) s−→ C·(End(E) ⊗ p∗L)

and
C·(End(E) ⊗ p∗(L−1 ⊗ ωX)) −s−→ C·(End(E)).

From these maps we obtain a homomorphism of complexes

Bs : Č·([Φ, ·]) → C·([·, Φ]),(2.5)

which, in turn, induces a homomorphism

Bs : R1q∗(Č·([Φ, ·])) → R1q∗(C·([·, Φ])).

By recalling the natural identifications (2.3) and (2.4), we can define a con-
travariant2-tensorθs ∈ H0(P(L),⊗2TP(L)) by setting

θs(w1, w2) = 〈w1, Bs(w2)〉,
for 1-formsw1 andw2 considered as sections ofR1q∗(Č·([Φ, ·])), where
〈·, ·〉 denotes the duality pairing betweenTP(L) andT ∗P(L).

For any (E, φ̄) ∈ P(L), we obtain from (2.5) a homomorphism of
complexes

Bs : Č ·([φ, ·]) → C ·([·, φ]),

which determines a homomorphism

Bs : H1(Č ·([φ, ·])) → H1(C ·([·, φ])).(2.6)

By recalling the description of the cohomology groups in terms ofČech
cocycles, the map (2.6) can be written as follows: for(α, η) = ({αi0,...,in−1},
{ηj0,j1}) ∈ H1(Č ·([φ, ·])), we have

Bs(α, η) = ({sαi0,...,in−1}, {−sηj0,j1}) ∈ H1(C ·([·, φ])).

It is now immediate to prove thatBs is skew-symmetric, henceθs is actually
an antisymmetric contravariant2-tensor, i.e.,θs ∈ H0(P(L),∧2TP(L)).
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Remark 2.14.If we suppose thatdeg(L) < deg(ωX) and that there exists
a non-zero global sections of ωX ⊗L−1, we are in a situation similar to the
one just described, but with all the arrows reversed.

Precisely, by multiplying bys and−s respectively, we obtain two ho-
momorphisms of complexes

C·(End(E) ⊗ p∗L) s−→ C·(End(E) ⊗ p∗ωX)

and
C·(End(E)) −s−→ C·(End(E) ⊗ p∗(L−1 ⊗ ωX)),

hence a homomorphism

Bs : C·([·, Φ]) → Č·([Φ, ·]).
This, in turn, determines a homomorphism

Bs : R1q∗(C·([·, Φ])) → R1q∗(Č·([Φ, ·])),
which is equivalent to giving a2-formωs ∈ H0(P(L),∧2T ∗P(L)), defined
by setting

ωs(ξ1, ξ2) = 〈ξ1, Bs(ξ2)〉,
for two vector fieldsξ1 andξ2, considered as sections ofR1q∗(C·([·, Φ])).

Remark 2.15.As a final remark we point out that all the constructions car-
ried out in this section could be done, in a more intrinsic way, using the
language of derived categories.

3. The mapBs

Let us study more closely the morphism

Bs : H1(Č ·([φ, ·])) → H1(C ·([·, φ])).

The sections ∈ H0(X,ω−1
X ⊗ L) defines an effective divisorDs onX,

such thatOX(Ds) = ω−1
X ⊗L. For any sheafF onX let us denote byFDs

the sheafF ⊗ ODs .
From the exact sequences

0 → End(E) ⊗ ωX
s−→ End(E) ⊗ L → End(E) ⊗ LDs → 0(3.1)

and

0 → End(E) ⊗ L−1 ⊗ ωX
−s−→ End(E) → End(E)Ds → 0,(3.2)

we obtain an exact sequence of complexes

0 → Č ·([φ, ·]) Bs−→ C ·([·, φ]) → C ·([·, φ]Ds) → 0,(3.3)
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whereC ·([·, φ]Ds) is defined similarly toC ·([·, φ]), by replacing the sheaves
End(E) and End(E) ⊗ L with their restrictions toDs, End(E)Ds and
End(E) ⊗ LDs , respectively.

From the exact sequence (3.3) we obtain a long exact sequence of coho-
mology groups

0 → H0(Č ·([φ, ·])) → H0(C ·([·, φ])) → H0(C ·([·, φ]Ds))

→ H1(Č ·([φ, ·])) Bs−→ H1(C ·([·, φ])) → H1(C ·([·, φ]Ds)) → · · · .

(3.4)

The stability ofE implies that

H0(C ·([·, φ])) ∼= Hn−2(X, End(E) ⊗ L) ⊕ C,

and

H0(Č ·([φ, ·]))
∼=

{
C ⊕Hn−2(X, End(E) ⊗ ωX) if Ds = 0, i.e.L ∼= ωX ,

Hn−2(X, End(E) ⊗ ωX) if Ds 6= 0.

Analogously, if we suppose that the restriction ofE toDs is again stable, it
follows that

H0(C ·([·, φ]Ds)) ∼= Hn−2(Ds, End(E) ⊗ LDs) ⊕ C.

From the long exact sequence (3.4) it follows that

ker(Bs : H1(Č ·([φ, ·])) → H1(C ·([·, φ])))

∼= Hn−2(Ds, End(E) ⊗ LDs)
Hn−2(X, End(E) ⊗ L)

,

which, in turn, is isomorphic to

ker(Hn−1(X, End(E) ⊗ ωX) s−→ Hn−1(X, End(E) ⊗ L)),

as follows at once from the exact sequence (3.1).
Note that, ifL ∼= ωX , we obtainker(Bs) = 0, which corresponds to the

fact (obvious, from the very definition ofBs) thatBs is an isomorphism.

Remark 3.1.The situation is more complicated if we suppose thatH0(X,
ωX ⊗L−1) 6= 0. In this case, in correspondence to the choice of a non-zero
sections ∈ H0(X,ωX ⊗ L−1), we get two exact sequences

0 → End(E) ⊗ L
s−→ End(E) ⊗ ωX → End(E) ⊗ ωX ⊗ ODs → 0

and

0 → End(E) −s−→ End(E)⊗L−1⊗ωX → End(E)⊗L−1⊗ωX⊗ODs → 0,



A generalization of Higgs bundles 233

whereDs denotes the effective divisor defined bys.
These sequences determine an exact sequence of complexes

0 → C ·([·, φ]) Bs−→ Č ·([φ, ·]) → Č ·([φ, ·]Ds) → 0,

whereČ ·([φ, ·]Ds) is the complex obtained from̌C ·([φ, ·]) by replacing the
sheavesEnd(E) ⊗ ωX andEnd(E) ⊗ L−1 ⊗ ωX with their restrictions to
Ds.

The corresponding long exact cohomology sequence

0 → H0(C ·([·, φ])) → H0(Č ·([φ, ·])) → H0(Č ·([φ, ·]Ds))

→ H1(C ·([·, φ])) Bs−→ H1(Č ·([φ, ·])) → H1(Č ·([φ, ·]Ds)) → · · ·
may be used to study the kernel of the mapBs, i.e., the degeneracy locus of
the corresponding2-form ωs.

4. Vector fields onP(L)

In this section we extend to then-dimensional case the results proved in
[Bo1, Sect. 3.3]. The following, somewhat technical, results are needed
for our subsequent computations. Since most of what follows is a rather
straightforward generalization of what we proved inloc. cit., the proofs of
the following results are only sketched.

Let us start by recalling some general facts. IfY is ak-scheme, a tangent
vector field onY may be thought of as an automorphism overSpec(k[ε])

Y × Spec(k[ε]) Y × Spec(k[ε])

Spec(k[ε]),

-D

HHHHHj

������

that restricts to the identity morphism ofY when one looks at the fibers over
Spec(k).

Let nowD be a tangent vector field onP(L). If we denote by(E , Φ̄)
the local universal family onP(L) × X, and by(E [ε], Φ̄[ε]) its pull-back
to P(L) × Spec(k[ε]) × X, the vector fieldD may be described, locally,
by giving the infinitesimal deformation(Eε, Φ̄ε) = (D × idX)∗(E [ε], Φ̄[ε])
of the local universal family(E , Φ̄). At a point(E, φ̄) ∈ P(L), the corre-
sponding tangent vector is given by(Eε, φ̄ε) = (Eε, Φ̄ε)|{(E,φ̄)}×X , which
is an infinitesimal deformation of the pair(E, φ̄).

From what we have seen in Sect. 2, the tangent field given by(Eε, Φ̄ε) cor-
responds to a global section(α, η) = ({αi0,...,in−1}, {ηj0,j1}) ofR1q∗(C·([·,
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Φ])). We shall see in the sequel how this section can be expressed in terms
of first order differential operators.

First we need another general fact. Letπ : X → Y be a morphism (lo-
cally of finite presentation) of schemes, andF ,G two locally free sheaves on
X. We denote byDiff 1

X/Y (F,G) the sheaf of relative differential operators
from F to G of order≤ 1. There is an exact sequence (cf. [EGA, Ch. IV,
§16.8])

0 → Hom(F,G) → Diff 1
X/Y (F,G) σ→ DerY (OX) ⊗ Hom(F,G) → 0,

whereσ is the “symbol” morphism. Then, ifF = G and we restrict to
differential operators with scalar symbol, which we denote byD1

X/Y (F ),
we get the exact sequence

0 → End(F ) → D1
X/Y (F ) σ→ DerY (OX) → 0.(4.1)

Now we shall apply these results to the morphismp : P(L)×X → X. The
idea is to take asF the universal familyE on P(L) × X; actually it may
not exist but, as already remarked, the sheafEnd(E) is always defined. By a
similar argument, it follows that also the sheafD1

X(E) = D1
P(L)×X/X(E),

of first order differential operators with scalar symbol which arep∗(OX)-
linear, is always defined. From (4.1) we thus obtain the exact sequence

0 → End(E) → D1
X(E) → q∗TP(L) → 0,(4.2)

whereq : P(L) ×X → P(L) is the canonical projection.
Exactly as in Sect. 2, we can consider the resolutions of the sheaves

End(E)andD1
X(E)given by thěCech complexesC·(End(E))andC·(D1

X(E)).
In this case too there is a well-defined map

[·, Φ] : Ci(D1
X(E)) → Ci+n−1(End(E) ⊗ p∗L).

(To this respect, note that iḟD is a first order differential operator, then[Ḋ, Φ]
is a differential operator of order0, hence a homomorphism of sheaves.)

It follows that we can define a new complexD·([·, Φ]) by setting

Di([·, Φ]) = Ci(D1
X(E)) ⊕ Ci+n−2(End(E) ⊗ p∗L),

with coboundary given by

di =
(

δi 0
[·, Φ] −δi+n−2

)
.

Now, from the exact sequence (4.2), we deduce that there is an exact se-
quence of complexes

0 → C·([·, Φ]) → D·([·, Φ]) → C·(q∗TP(L)) → 0,
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whereC·(q∗TP(L)) is a suitableČech resolution of the sheafq∗TP(L)
(this result could be better stated in the derived categoryDb(P(L)×X); in
this case we actually have an exact sequence of complexes

0 → C·([·, Φ]) → D·([·, Φ]) → q∗TP(L) → 0,

whereq∗TP(L) is regarded as a complex concentrated in degree0).
By applying the functorq∗, and noting thatq∗q∗TP(L) ∼= TP(L), since

q is a proper morphism, we get a long exact sequence, a piece of which is

· · · → TP(L) → R1q∗(C·([·, Φ])) → R1q∗(D·([·, Φ])) → · · · .(4.3)

It is evident that the mapTP(L) → R1q∗(C·([·, Φ])) coincides with the iso-
morphism (2.3), hence the image ofR1q∗(C·([·, Φ])) in R1q∗(D·([·, Φ])) is
zero. This means that for each section({αi0,...,in−1}, {ηj0,j1}) ofR1q∗(C·([·,
Φ])), there exist differential operatorṡDi and homomorphismsβi0,...,in−2 ,
determining sections ofC0(D1

X(E)) andCn−2(End(E)⊗p∗L) respectively,
such that

ηj0,j1 = Ḋj1 − Ḋj0

and

αi0,...,in−1 = [Ḋi0 , Φi0,...,in−1 ] − (δβ)i0,...,in−1 .

Finally, by observing that the cocycles(α, η) and(α− δβ, η) represent the
same section ofR1q∗(C·([·, Φ])), we obtain a proof of the following result:

Proposition 4.1. For any tangent vector fieldD on P(L), corresponding
to an infinitesimal deformation(Eε, Φ̄ε) of (E , Φ̄), described by a global
section(α, η) ofR1q∗(C·([·, Φ])), there exist a suitable open affine covering
U = (Ui)i∈I of P(L) × X and first order differential operatorṡDi ∈
Γ (Ui,D1

X(E)) such that the section(α, η) is represented by ǎCech cocycle
({αi0,...,in−1}, {ηj0,j1}), with

αi0,...,in−1 = [Ḋi0 , Φi0,...,in−1 ]

and

ηj0,j1 = Ḋj1 − Ḋj0 .

To end this section, let us remark that all the considerations made in
[Bo1, Remark 3.3.4], concerning a different proof of the analogue of Propo-
sition 4.1, and also those expressed in Remark 3.3.5 ofloc. cit., can be
generalized to the present situation. We leave the details to the reader.
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5. Symplectic and Poisson structures

We recall here some definitions and results of symplectic geometry that will
be used in the sequel.

Let Y be a smooth algebraic variety over the complex fieldC. A sym-
plectic structure onY is a closed nondegenerate2-form ω ∈ H0(Y,Ω2

Y ).
Given a symplectic structureω, the Hamiltonian vector fieldHf of a regular
functionf is defined by requiring thatω(Hf , v) = 〈df, v〉, for every tangent
vector fieldv. Then we define the Poisson bracket of two regular functions
f andg onY by setting

{f, g} = 〈Hf , dg〉 = ω(Hg, Hf ).

The pairing{·, ·} onOY is a bilinear antisymmetric map that is a derivation
in each entry and satisfies the Jacobi identity

{f, {g, h}} + {g, {h, f}} + {h, {f, g}} = 0,(5.1)

for anyf, g, h ∈ Γ (U,OY ). This implies that[Hf , Hg] = H{f,g}, where
[u, v] = uv − vu is the commutator of the vector fieldsu andv.

Example 5.1.The cotangent bundleT ∗Y of a smooth varietyY has a canon-
ical symplectic structure, defined as follows. Letπ : T ∗Y → Y be the
structure morphism. By restricting the cotangent morphism toπ,

T ∗π : π∗T ∗Y = T ∗Y ×Y T ∗Y → T ∗T ∗Y,

to the diagonal ofT ∗Y ×Y T ∗Y , we get a mapT ∗Y → T ∗T ∗Y , which is
a section of the bundleT ∗T ∗Y → T ∗Y , i.e., a differential form of degree1
onT ∗Y . This is the canonical1-form onT ∗Y , denoted byαY . The closed
2-form ω = −dαY is the canonical symplectic form onT ∗Y .

A natural generalization of symplectic structures is given by the notion
of a Poisson structure.

A Poisson structure onY is a Lie algebra structure{·, ·} onOY satisfying
the identity{f, gh} = {f, g}h+ g{f, h}. Equivalently, this is given by an
antisymmetric contravariant2-tensorθ ∈ H0(Y,∧2TY ), where we set

{f, g} = 〈θ, df ∧ dg〉.
Thenθ is a Poisson structure if the bracket it defines satisfies the Jacobi
identity (5.1). Whenθ has maximal rank everywhere, we say that the Poisson
structure is symplectic. In fact, in this case, to giveθ is equivalent to giving
its inverse2-form ω ∈ H0(Y,Ω2

Y ), i.e., a symplectic structure onY .
The following construction generalizes to the Poisson case the canonical

symplectic structure of the cotangent bundle of a smooth variety.
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Let Y be a smooth variety andG a locally freeOY -module endowed
with a structure of a locally free sheaf of Lie algebras overC. We shall
regardG as a vector bundle overY . Letu : G → TY be a homomorphism
for the structures ofOY -modules and of sheaves of Lie algebras, satisfying
the following compatibility condition between the two structures:

[ξ, f ζ] = f [ξ, ζ] + u(ξ)(f) ζ,(5.2)

for anyf ∈ Γ (U,OY ) and anyξ, ζ ∈ Γ (U,G), where[·, ·] denotes the Lie
bracket operation onG. Let G∗ be the dual ofG.

In this situation there is a canonical Poisson structure onG∗, considered
as a variety overY . First we note thatOG∗ = SymOY

(G), the symmetric
algebra ofG over OY . Then, for any open subsetU ⊂ Y and sections
ξ, ζ ∈ Γ (U,G) andf, g ∈ Γ (U,OY ), we set

{ξ, ζ} = [ξ, ζ],
{ξ, f} = u(ξ)(f),(5.3)

{f, g} = 0,

and extend{·, ·} to all of OG∗ by linearity and by using Leibnitz rule for
the product of two elements.

The following result follows easily:

Proposition 5.2. The bracket{·, ·} onG∗ is a Poisson bracket.

The corresponding Poisson structure on the vector bundleG∗ is called
the canonical Poisson structure associated to the sheaf of Lie algebrasG
and the homomorphismu : G → TY .

For further details on this construction, we refer to [Bo1]. To end this
section we note that, if we take asG the tangent bundleTY and asu the
identity morphism, the canonical Poisson structure onG∗ = T ∗Y defined
above coincides with the canonical symplectic structure on the cotangent
bundle ofY .

6. Poisson structures onP(L)

In Sect. 2 we used the map

Bs : R1q∗(Č·([Φ, ·])) → R1q∗(C·([·, Φ]))

to define an antisymmetric contravariant2-tensor

θs ∈ H0(P(L),∧2TP(L)).

By what we have previously seen, to prove thatθs is a Poisson structure it
remains to prove that the corresponding bracket satisfies the Jacobi identity
(5.1).
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Let us begin by considering the caseL = ωX . In this case the vari-
ety P(L) = P(ωX) coincides with the cotangent bundle ofM ′. As we
have seen, the choice of the identity sections = 1 of H0(X,ω−1

X ⊗ ωX)
determines an isomorphism

B1 : T ∗P(ωX) → TP(ωX).

As in the case of curves we have the following result:

Theorem 6.1. The antisymmetric contravariant2-tensorθ1 onP(ωX) de-
fines a Poisson structure, that is symplectic and coincides with the canonical
symplectic structure onT ∗M ′, under the natural identificationP(ωX) ∼=
T ∗M ′.

Proof. The proof is an adaptation to the higher dimensional case of the proof
of Theorem 4.5.1 of [Bo1]. We only sketch here the relevant modifications.

The canonical1-formαP(ωX) : P(ωX) → T ∗P(ωX) coincides with the
global section(Φ̄, 0) of R1q∗(Č·([Φ, ·])), defined as the image of̄Φ by the
natural map

π∗(H) → R1q∗(Č·([Φ, ·])).
In terms ofČech cocycles, we can write, for any(E, φ̄) ∈ P(ωX),

αP(ωX)(E, φ̄) = ({φi0,...,in−1}, 0),

where{φi0,...,in−1} is a(n− 1)-cocycle representing the cohomology class
φ̄.

The canonical symplectic form onP(ωX) is then given byω=−dαP(ωX).
LetD1 andD2 be two tangent vector fields onP(ωX), represented re-

spectively by the global sections(α1, η1) and(α2, η2) of R1q∗(C·([·, Φ])).
From Proposition 4.1, it follows that there exist first order differential oper-
atorsḊ1

i andḊ2
j such that

αh
i0,...,in−1

= [Ḋh
i0 , Φi0,...,in−1 ]

and
ηh

j0,j1 = Ḋh
j1 − Ḋh

j0 ,

where({αh
i0,...,in−1

}, {ηh
j0,j1

}), for h = 1, 2, are cocycles representing the

global sections(αh, ηh).
Exactly as in the case of curves, it follows that the second order differ-

ential operatorD1D2 is described by giving gluing isomorphisms of the
form

1 + εη1
j0,j1 + ε′η2

j0,j1 + εε′(Ḋ1
j1η

2
j0,j1 − η2

j0,j1Ḋ
1
j0),

in terms of which the infinitesimal deformation ofΦ̄ is locally written as

Φi0,...,in−1 + εα1
i0,...,in−1

+ ε′α2
i0,...,in−1

+ εε′[Ḋ1
i0 , α

2
i0,...,in−1

].
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It follows that the “infinitesimal deformation of the pair(α2, η2) along the
vector fieldD1” is given by the pair

({α2
i0,...,in−1

+ ε[Ḋ1
i0 , α

2
i0,...,in−1

]}, {η2
j0,j1 + ε(Ḋ1

j1η
2
j0,j1 − η2

j0,j1Ḋ
1
j0)}).

Analogous considerations hold for the second order differential operator
D2D1.

Finally, the vector field[D1, D2] corresponds to the cocycle given by

({[[Ḋ1, Ḋ2]i0 , Φi0,...,in−1 ]}, {[Ḋ1, Ḋ2]j1 − [Ḋ1, Ḋ2]j0}).

Using these expressions we are now able to compute explicitly the differ-
ential dαP(ωX), evaluated against the two vector fieldsD1 andD2. The
computations are similar to those carried out in the proof of Theorem 4.5.1
of [Bo1]. We obtain:

dαP(ωX)(D
1, D2) = {tr(η2

i0,i1α
1
i1,...,in − η1

i0,i1α
2
i1,...,in)},(6.1)

where this is regarded as an-cocycle determining a cohomology class in
Hn(X,ωX). If we denote by∪ the cup product, (6.1) can be written simply
as follows:

dαP(ωX)(D
1, D2) = tr(η2 ∪ α1 − η1 ∪ α2).

Now we recall that, by the choice of the identity sections = 1 of H0(X,
ω−1

X ⊗ωX), we have defined an antisymmetric contravariant2-tensorθ1 on
P(ωX). Its inverse2-formω1 is defined byω1(D1, D2) = 〈D1, B−1

1 (D2)〉.
Using the preceding notations, we have:

ω1(D1, D2) = 〈(α1, η1), B−1
1 (α2, η2)〉

= 〈(α1, η1), (α2,−η2)〉
= tr(−α1 ∪ η2 + η1 ∪ α2),

henceω1 = −dαP(ωX). This shows thatω1 is precisely the canonical sym-
plectic structure onP(ωX) ∼= T ∗M ′.

Remark 6.2.We have already seen in Remark 2.14 that, ifdeg(L)<deg(ωX)
ands is a section ofωX ⊗ L−1, there is a natural2-form ωs ∈ H0(P(L),
∧2T ∗P(L)) defined by setting

ωs(D1, D2) = 〈D1, Bs(D2)〉,
whereD1 andD2 are two tangent vector fields onP(L).

Let us consider the1-formαP(L) : P(L) → T ∗P(L) determined by the
global section(sΦ̄, 0) ofR1q∗(Č·([Φ, ·])). This is the1-form that associates
to a point(E, φ̄) ∈ P(L) the cohomology class of({sφi0,...,in−1}, 0) in
H1(Č ·([φ, ·])).
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The computations carried out in the proof of Theorem 6.1 can be repeated,
almost unchanged, to prove thatωs = −dαP(L). It follows, in particular,
thatωs is aclosed2-form onP(L). However, it is not a symplectic form, in
general, because it may be degenerate.

Now we come to the general case. Let us suppose thatL = ωX(Ds),
whereDs is an effective divisor defined by the non-zero sections. The variety
P(L) is the total space of the vector bundleH = Rn−1q∗(End(E) ⊗ p∗L),
whose (relative) dual isH∗ = R1q∗(End(E) ⊗ p∗(L−1 ⊗ ωX)), which, by
abuse of notation, we shall denote simply byR1q∗(End(E) ⊗ OX(−Ds)).

From the discussion made at the end of Sect. 5, it follows that the
data of a structure of sheaf of Lie algebras onH∗ plus a homomorphism
u : H∗ → TM ′ satisfying the compatibility condition (5.2), determine a
Poisson structure onP(L).

If L = ωX this is easy to define. In fact, in this case we haveH∗ =
R1q∗(End(E)), and we have seen that for every section ofR1q∗(End(E)),
represented by a cocycle{ηj0,j1}, there exist differential operatorṡDi such
thatηj0,j1 = Ḋj1 − Ḋj0 .

By recalling the canonical isomorphismH∗ = R1q∗(End(E)) ∼= TM ′,
which we shall take as the homomorphismu, the Lie algebra structure
of TM ′ can be transferred toH∗. It follows that, if η1

j0,j1
= Ḋ1

j1
− Ḋ1

j0

andη2
j0,j1

= Ḋ2
j1

− Ḋ2
j0

represent two sections ofH∗, their Lie bracket is
expressed by

[{η1
j0,j1}, {η2

j0,j1}] = {[Ḋ1, Ḋ2]j1 − [Ḋ1, Ḋ2]j0}
= {[η1

j0,j1 , Ḋ
2
j1 ] + [Ḋ1

j0 , η
2
j0,j1 ]}.(6.2)

Needless to say, the Poisson structure we obtain in this way onP(ωX)
is precisely the canonical symplectic structure on the cotangent bundle
T ∗M ′ ∼= P(ωX), hence coincides with the one defined by the antisym-
metric contravariant2-tensorθ1 (cf. Theorem 6.1).

In the general caseL = ωX(Ds), the Lie algebra structure onH∗ can
be defined exactly as in [Bo1]. Let us recall briefly this construction here.

From the exact sequences

0 → End(E) → D1
X(E) → q∗TM ′ → 0

and

0 → OX(−Ds)
s→ OX → ODs → 0,
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where the first one is the analogue of (4.2) for the moduli spaceM ′, we
obtain a commutative diagram

TM ′ ⊗ OX(−Ds) R1q∗(End(E) ⊗ OX(−Ds))

TM ′ R1q∗(End(E)).
?

s

-

?

s

-∼=

If η1 andη2 are two global sections ofH∗, represented by the cocycles
{η1

j0,j1
} and{η2

j0,j1
} with values inR1q∗(End(E) ⊗ OX(−Ds)), we have

sη1
j0,j1

= Ḋ1
j1

−Ḋ1
j0

andsη2
j0,j1

= Ḋ2
j1

−Ḋ2
j0

, for some differential operators

Ḋ1
i andḊ2

i .
By recalling the formula (6.2), we are led to consider the cocycle{[sη1

j0,j1
,

Ḋ2
j1

] + [Ḋ1
j0
, sη2

j0,j1
]}, with values inR1q∗(End(E)). Since the differential

operators areOX -linear, it follows that{[sη1
j0,j1

, Ḋ2
j1

] + [Ḋ1
j0
, sη2

j0,j1
]} =

s{[η1
j0,j1

, Ḋ2
j1

] + [Ḋ1
j0
, η2

j0,j1
]}, for a well-defined cocycle{[η1

j0,j1
, Ḋ2

j1
] +

[Ḋ1
j0
, η2

j0,j1
]} with values inR1q∗(End(E) ⊗ OX(−Ds)). We thus define

the Lie bracket of{η1
j0,j1

} and{η2
j0,j1

} by setting

[η1, η2] = {[η1
j0,j1 , Ḋ

2
j1 ] + [Ḋ1

j0 , η
2
j0,j1 ]},

a formula which is formally analogous to (6.2). Since the multiplication by
s is injective at the level of cocycles, it follows that this defines a Lie algebra
structure onH∗. Finally, we take asu : H∗ → TM ′ the composition of
s : H∗ → R1q∗(End(E)) with the canonical isomorphismR1q∗(End(E)) ∼=
TM ′. It is trivial to verify that u is a homomorphism of sheaves of Lie
algebras and satisfies the compatibility condition (5.2).

From this construction we thus obtain a Poisson structure{·, ·} onP(L).
If we denote by{·, ·}s the bracket defined, at the end of Sect. 2, by the
antisymmetric contravariant2-tensorθs, we have the following result, whose
proof is similar to the proof of Theorem 4.6.3 of [Bo1]:

Theorem 6.3. The bracket{·, ·}s coincides with the bracket{·, ·}, hence it
defines a Poisson structure onP(L).

Remark 6.4.The family of Poisson structures{·, ·}s, parametrized by the
global sections ofω−1

X ⊗ L, is compatible, in the sense that the sum of two
Poisson structures in this family is again a Poisson structure. Precisely, we
have{·, ·}s1 + {·, ·}s2 = {·, ·}s1+s2 .
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7. Higgs bundles and(n − 1)-cohomology Higgs pairs

As we have already remarked, ifX is a curve andL = ωX , the definition
of a(n−1)-cohomologyL-twisted Higgs pair coincides with the definition
of a Higgs bundle, introduced by Hitchin in [Hi]. For higher dimensional
varieties, however, this is not the case. In this section we shall analyze the
relationships between the usual definition of Higgs bundles, as given for
example in [S1], and our definition of(n− 1)-cohomology pairs.

Let us begin by recalling the definition of Higgs bundles on higher di-
mensional varieties.

Definition 7.1. A Higgs bundle on ann-dimensional varietyX is a pair
(E, θ) consisting of a vector bundleE and a homomorphism of vector bun-
dlesθ : E → E⊗Ω1

X , such thatθ∧θ = 0, considered as a homomorphism
fromE toE ⊗Ω2

X .

The integrability conditionθ ∧ θ = 0 implies that to a Higgs bundle
(E, θ) there is associated the followingDolbeault complex:

0 −→ E
∧θ−→ E ⊗Ω1

X
∧θ−→ E ⊗Ω2

X −→ · · · ,
whose hypercohomology is called theDolbeault cohomologywith coeffi-
cients inE, denoted byH∗

Dol(X,E).
There is an obvious notion of stability for Higgs bundles, obtained by

considering, in the usual definition of stability, only subsheavesF of E
that are fixed by the Higgs fieldθ, i.e. such thatθ(F ) ⊂ F ⊗ Ω1

X . In
particular, this implies that ifE is a stable vector bundle, then(E, θ) is a
stable Higgs bundle, for any Higgs fieldθ. This definition of stability leads
to the construction of moduli spaces of (semi)stable Higgs bundles onX
(see [S2]).

Let us now fix some “moduli data” and denote byM the moduli space
of Higgs bundles(E, θ) withE stable. If we drop the integrability condition
θ ∧ θ = 0 in the definition of a Higgs bundle, we may construct another
moduli spaceN , parametrizing all pairs(E, θ) with E stable and without
any condition onθ, containingM as a closed subset.

Let us consider the following complexes:

C ·
θ : 0 −→ End(E)

[·,θ]−→ End(E) ⊗Ω1
X

[·,θ]−→ End(E) ⊗Ω2
X

[·,θ]−→ · · · ,
and

D·
θ : 0 −→ End(E)

[·,θ]−→ End(E) ⊗Ω1
X −→ 0.

By standard infinitesimal deformation computations, analogous to the ones
carried out in [Bo1], we can prove that there are canonical identifications

T(E,θ)M ∼= H
1(C ·

θ)(7.1)
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and

T(E,θ)N ∼= H
1(D·

θ).(7.2)

Moreover, the morphism of complexesC ·
θ → D·

θ defined by

0 End(E) End(E) ⊗Ω1
X End(E) ⊗Ω2

X · · ·

0 End(E) End(E) ⊗Ω1
X 0 · · · ,

- -[·,θ]

?
∼=

-[·,θ]

?
∼=

-[·,θ]

?
- -[·,θ] - -

induces a homomorphism on the hypercohomology groups

H
1(C ·

θ) → H
1(D·

θ),

which, under the identifications (7.1) and (7.2), coincides with the differen-
tial of the natural inclusionM ↪→ N .

Let us now come to the relationships between the moduli spacesN and
P(ωX). The fundamental result is contained in the following proposition:

Proposition 7.2. LetX be ann-dimensional variety and let us fix an ample
classξ ∈ H1(X,Ω1

X). IfE is a polystable vector bundle onX withc1(E) =
c2(E) = 0, then, for everyi, j ≥ 0 with i + j ≤ n, the cup-product with
ξn−(i+j) determines an isomorphism

H i(X,E ⊗Ωj
X) ∼→ Hn−j(X,E ⊗Ωn−i

X ).

Proof. This result follows easily from the Lemma 2.6 of [S1]. The vector
bundleE is, in fact, a harmonic bundle, since it is polystable (i.e. a direct
sum of stable bundles of the same slope) and has vanishing first and second
Chern classes. Hence we may apply Simpson’s lemma to the Higgs bundle
(E, 0), obtaining isomorphisms

Hp
Dol(X,E) ∼→ H2n−p

Dol (X,E)(7.3)

giving by cupping withξn−p.
Since the Higgs fieldθ is zero, the Dolbeault cohomology decomposes

as follows:

Hp
Dol(X,E) =

⊕
0≤i,j≤n
i+j=p

H i(X,E ⊗Ωj
X),

for p = 0, . . . , 2n. By combining this decomposition with the isomorphisms
(7.3), we conclude our proof.
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We recall now that a stable vector bundleE onX admits a Hermitian-
Einstein metric. The metric induced onEnd(E) is again Hermitian-Einstein,
hence the vector bundleEnd(E) is polystable, obviously with vanishing first
Chern class. From now on we shall also suppose thatc2(End(E)) = 0, in
order to be able to apply Proposition 7.2 to this vector bundle. We thus obtain
an isomorphism

H0(X, End(E) ⊗Ω1
X) ∼→ Hn−1(X, End(E) ⊗ ωX),(7.4)

given by cupping withξn−1. This, in turn, determines an isomorphism of
moduli spaces

N ∼→ P(ωX),(7.5)

defined by sending a pair(E, θ) to the (n − 1)-cohomology Higgs pair
(E, θ ∪ ξn−1).

On the moduli spaceN there is a symplectic structure, depending on
the choice of the ample classξ ∈ H1(X,Ω1

X): this is constructed in [Bi]
only for the moduli spaceM of Higgs bundles, but it is easy to see that an
analogous symplectic structure can be defined onN (needless to say, the
symplectic structure constructed by Biswas onM is then the restriction of
the analogous one defined onN ). It is now easy to see that this symplectic
structure onN coincides, under the isomorphism (7.5), with the canoni-
cal symplectic structure previously constructed onP(ωX), which, in turn,
coincides with the canonical symplectic structure on the cotangent bundle
T ∗M ′ (see Theorem 6.1).

8. Parabolic bundles

In this section we discuss the relations between the moduli spaceP(L),
whereL ∼= ωX(D) for an effective divisorD, and the moduli space of
parabolic vector bundles, with parabolic structure overD.

Let X be, as usual, a smoothn-dimensional projective variety defined
overC, with a very ample invertible sheafOX(1), and letD ⊂ X be an effec-
tive divisor. LetL ∼= ωX(D) be an invertible sheaf ands ∈ H0(X,ω−1

X ⊗L)
a section defining the divisorD.

We briefly recall here the definition of a parabolic sheaf, as given in
[MY]:

Definition 8.1. A parabolic structure overD on a coherent, torsion-free,
OX -moduleE is the data of a filtration

F∗ : E = F1(E) ⊃ F2(E) ⊃ · · · ⊃ Fl(E) ⊃ Fl+1(E) = E(−D),
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whereE(−D) is the image ofE ⊗OX
OX(−D) → E, and a sequence of

real numbersα∗ = (α1, . . . , αl), called weights, such that

0 ≤ α1 < α2 < · · · < αl < 1.

A parabolic sheaf is a coherent, torsion-free,OX -moduleE with a parabolic
structure overD.

Given a parabolic sheaf(E,F∗, α∗), we define a filtered sheafEx, for
0 ≤ x ≤ 1, by settingE0 = E andEx = Fi(E) if αi−1 < x ≤ αi, where
we have setα0 = 0 andαl+1 = 1. The definition ofEx can also be extended
to all x ∈ R by settingEx+1 = Ex(−D).

The filtered sheafE∗ = (Ex)x∈R contains all the data necessary to
recover the original parabolic sheaf(E,F∗, α∗), hence, in the sequel, it will
be convenient to denote a parabolic sheaf simply byE∗. This notation will be
particularly useful in the definition of homomorphisms of parabolic sheaves.

Remark 8.2.Some authors (cf. [B]) define a parabolic structure overD on
a sheafE as a sequence of subsheaves ofE|D

E|D = F1
D(E) ⊃ F2

D(E) ⊃ · · · ⊃ F l
D(E) ⊃ F l+1

D (E) = 0,

together with a system of weights0 ≤ α1 < α2 < · · · < αl < 1.
Our definition is related to this one by setting

Fi(E) = ker(E → E|D/F i
D(E)).

We come now to the definition of homomorphisms of parabolic sheaves.

Definition 8.3. A homomorphism of parabolic sheavesφ : E∗ → F∗ is a
homomorphism ofOX -modulesφ : E → F such thatφ(Ex) ⊂ Fx, for any
x ∈ [0, 1].

We shall denote byParHom(E∗, F∗) the sheaf of homomorphisms of
parabolic sheaves fromE∗ to F∗; it is a subsheaf ofHom(E,F ).

In order to construct moduli spaces of parabolic sheaves we need, as
usual, a suitable notion of stability. This was introduced in [MY], where
moduli spaces of semistable parabolic sheaves were constructed in great
generality. We only state here the result we shall need in the sequel.

Proposition 8.4. Let us fix a sequence of real numbersα∗ = (α1, . . . , αl)
with 0 ≤ α1 < α2 < · · · < αl < 1, and polynomialsH,H1, . . . , Hl. Then
there exists a quasi-projective moduli spaceMpar parametrizing isomor-
phism classes of stable parabolic vector bundlesE∗ havingα∗ as system
of weights and such that the Hilbert polynomial ofE isH and the Hilbert
polynomial ofE/Fi+1(E) isHi, for i = 1, . . . , l.
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By infinitesimal deformation theory (cf. [Y]), it follows that the tangent
space to the moduli spaceMpar at a pointE∗ is canonically isomorphic to the
first cohomology groupH1(X,ParHom(E∗, E∗)). From this, by applying
the version of Serre duality for parabolic vector bundles, proved in [Y,
Proposition 3.7], it follows that the cotangent space to the moduli spaceMpar

at a pointE∗ is canonically isomorphic toHn−1(X,ParHom(E∗, Ê∗) ⊗
ωX(D)), whereÊ∗ is the filtered sheaf defined by setting, for anyx ∈ [0, 1],

Êx =

{
Ex if x 6= αi,

Eαi+1 if x = αi.

Remark 8.5.With the notations of Remark 8.2, if the parabolic structure of
a vector bundleE is given by a filtration

E|D = F1
D(E) ⊃ F2

D(E) ⊃ · · · ⊃ F l
D(E) ⊃ F l+1

D (E) = 0,

and ifE∗ is the corresponding filtered sheaf, then a sectionφof ParHom(E∗,
Ê∗) is a homomorphismφ : E → E such thatφ|D is nilpotent with respect
to the filtration ofE|D given above, i.e., such thatφ|D(F i

D(E)) ⊂ F i+1
D (E),

for i = 1, . . . , l.

Unfortunately, the moduli spaceMpar is, in general, not smooth hence
we shall restrict to consider its smooth locusMsm

par . Let us denote byTpar the
cotangent bundle to the smooth locus ofMpar: Tpar = T ∗Msm

par . By what we
have previously seen,Tpar can be described as the set of isomorphism classes
of pairs(E∗, φ̄), whereE∗ ∈ Msm

par andφ̄ ∈ Hn−1(X,ParHom(E∗, Ê∗)
⊗ ωX(D)).

Being the cotangent bundle to a smooth variety,Tpar has a canonical
symplectic structure (cf. Example 5.1). This can be described explicitly in
a way very similar to the description of the Poisson structure ofP(L) (we
refer to [Bo1, Sect. 5] for the study of the symplectic structure ofTpar when
X is a curve).

Let (E∗, φ̄) ∈ Tpar. As in Sect. 2, we shall use infinitesimal deformation
theory to describe the tangent space toTpar at (E∗, φ̄).

LetU = (Ui)i∈I be a suitable affine open covering ofX and let{φi0,...,in−1}
be aČech(n− 1)-cocycle inCn−1(U ,ParHom(E∗, Ê∗) ⊗ωX(D)) repre-
senting the cohomology class̄φ. We define a complexC ·

par([·, φ]) by setting

Ci
par([·, φ]) = Ci(ParHom(E∗, E∗))

⊕Ci+n−2(ParHom(E∗, Ê∗) ⊗ ωX(D)),

with coboundarydi : Ci
par([·, φ]) → Ci+1

par ([·, φ]) given by

di =
(
δi 0

[·, φ] −δi+n−2

)
,(8.1)
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where

[·, φ] : Ci(ParHom(E∗, E∗)) → Ci+n−1(ParHom(E∗, Ê∗) ⊗ ωX(D))

is defined as in (2.1).
Now we can state the following result, whose proof is analogous to the

proof of Corollary 2.5:

Proposition 8.6. The tangent spaceT(E∗,φ̄)Tpar to Tpar at the point(E∗, φ̄)
is canonically isomorphic toH1(C ·

par([·, φ])).

In order to describe the cotangent spaces toTpar we have to “dualize”
the preceding construction. The foundamental tool is the version of Serre
duality for parabolic bundles, proved in [Y, Proposition 3.7]. From this it
follows that the “dual complex” ofC ·

par([·, φ]) is the complexC ·
par([φ, ·])

defined by setting

Ci
par([φ, ·]) = Ci(ParHom(E∗, E∗))

⊕Ci+n−2(ParHom(E∗, Ê∗) ⊗ ωX(D)),

with coboundarydi : Ci
par([φ, ·]) → Ci+1

par ([φ, ·]) given by (cf. Remark 2.7)

di =
(
δi 0

[φ, ·] −δi+n−2

)
.(8.2)

Then we have:

Proposition 8.7. The cotangent spaceT ∗
(E∗,φ̄)Tpar toTpar at the point(E∗, φ̄)

is canonically isomorphic toH1(C ·
par([φ, ·])).

The isomorphism of complexes(−1, 1) : C ·
par([φ, ·]) ∼→ C ·

par([·, φ]),
determined by plus and minus the identity map respectively onParHom(E∗,
Ê∗)⊗ωX(D) and onParHom(E∗, E∗), determines an isomorphism of co-
homology groups(−1, 1) : H1(C ·

par([φ, ·])) ∼→ H1(C ·
par([·, φ])), hence an

isomorphism(−1, 1) : T ∗
(E∗,φ̄)Tpar

∼→ T(E∗,φ̄)Tpar. This is the Hamiltonian
isomorphism corresponding to the canonical symplectic structure ofTpar.
Precisely, we have the following result, which generalizes to the higher di-
mensional case the result proved in [Bo1, Theorem 5.2.4], and whose proof
is analogous to the proof of Theorem 6.1:

Theorem 8.8. The isomorphisms(−1, 1) : T ∗
(E∗,φ̄)Tpar

∼→ T(E∗,φ̄)Tpar,(E∗, φ̄) ∈
Tpar, define a global isomorphism(−1, 1) : T ∗Tpar

∼→ TTpar, which, in turn,
defines a symplectic structure onTpar. This symplectic structure is precisely
the canonical symplectic structure ofTpar, considered as the cotangent bun-
dle toMsm

par .
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Remark 8.9.The sections ∈ H0(X,ω−1
X ⊗ L) defining the divisorD de-

termines an isomorphisms : OX(D) ∼→ ω−1
X ⊗ L from the sheaf of mero-

morphic functions onX with poles atD toω−1
X ⊗L, given by multiplication

by s. This, in turn, determines the following isomorphisms of sheaves:

s : ParHom(E∗, Ê∗) ⊗ ωX(D) ∼→ ParHom(E∗, Ê∗) ⊗ L

and

s : ParHom(E∗, E∗) ⊗ L−1 ⊗ ωX(D) ∼→ ParHom(E∗, E∗).

By using these isomorphisms, we obtain two isomorphisms of complexes

(1, s) : C ·
par([·, φ]) ∼→ C ·

par,L([·, φ]),

and
(s, 1) : Č ·

par,L([φ, ·]) ∼→ C ·
par([φ, ·]),

whereC ·
par,L([·, φ]) andČ ·

par,L([φ, ·]) are the complexes defined by setting

Ci
par,L([·, φ]) = Ci(ParHom(E∗, E∗))⊕Ci+n−2(ParHom(E∗, Ê∗)⊗L),

and

Či
par,L([φ, ·]) = Ci(ParHom(E∗, E∗) ⊗ L−1 ⊗ ωX(D))

⊕ Ci+n−2(ParHom(E∗, Ê∗) ⊗ ωX(D)),

with the coboundaries defined as in (8.1) and (8.2) respectively.
It follows that we can identity the tangent and cotangent spaces toTpar to

the first cohomology groups ofC ·
par,L([·, φ]) andČ ·

par,L([φ, ·]) respectively:

T(E∗,φ̄)Tpar
∼= H1(C ·

par,L([·, φ])) andT ∗
(E∗,φ̄)Tpar

∼= H1(Č ·
par,L([φ, ·])).

Finally, using these identifications, it is immediate to see that the Hamil-
tonian isomorphism of Theorem 8.8,T ∗Tpar

∼→ TTpar, corresponding to
the canonical symplectic structure ofTpar, coincides with the isomorphism
induced on the cohomology groups by the isomorphism of complexes

(−s, s) : Č ·
par,L([φ, ·]) ∼→ C ·

par,L([·, φ])

given by multiplication by−s ands respectively onParHom(E∗, E∗) ⊗
L−1 ⊗ ωX(D) andParHom(E∗, Ê∗) ⊗ ωX(D).

Let us denote now byT o
par the open subset ofTpar consisting of pairs

(E∗, φ̄) such that the underlying vector bundleE to the parabolic bundleE∗
belongs to the smooth locusM of the moduli space of stable vector bundles
onX.

To a pair(E∗, φ̄) ∈ T o
par we can associate the pair(E, φ̄) ∈ P(L), where,

by a slight abuse of notation, we have denoted by the same symbolφ̄ the
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image ofφ̄ ∈ Hn−1(X,ParHom(E∗, Ê∗) ⊗ωX(D)) in Hn−1(X, End(E)
⊗ L) by the map induced on cohomology by the inclusion

ParHom(E∗, Ê∗) ⊗ ωX(D) ⊂ End(E) ⊗ ωX(D) ∼= End(E) ⊗ L.

In this way we obtain a morphismf : T o
par → P(L). The main result, relating

the canonical symplectic structure ofT o
par to the Poisson structure ofP(L)

corresponding to the sections defining the divisorD, is the following:

Proposition 8.10. The morphismf : T o
par → P(L) is a Poisson morphism

of Poisson varieties, i.e., it is compatible with the Poisson structures ofT o
par

andP(L).

Proof. It is easy to see that, in terms of the identifications of the tangent
spacesT(E∗,φ̄)Tpar

∼= H1(C ·
par,L([·, φ])) andT(E,φ̄)P(L) ∼= H1(C ·([·, φ])),

the tangent map tof at a point(E∗, φ̄),

T(E∗,φ̄)f : T(E∗,φ̄)T o
par → T(E,φ̄)P(L),

is given by the mapH1(C ·
par,L([·, φ])) → H1(C ·([·, φ])) induced by the

map of complexesC ·
par,L([·, φ]) → C ·([·, φ]) determined by the inclusions

ParHom(E∗, E∗) ↪→ End(E) andParHom(E∗, Ê∗) ⊗L ↪→ End(E) ⊗L.
From this, by recalling the explicit description of the canonical symplec-
tic structure ofT o

par given in Remark 8.9 and of the Poisson structure of
P(L) given at the end of Sect. 2, it follows immediately thatf is a Poisson
morphism of Poisson varieties.
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