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Abstract. Let X be a smoothm-dimensional projective variety defined
over C and let L be a line bundle onX. In this paper we shall con-
struct a moduli spac®(L) parametrizingn — 1)-cohomologyL-twisted
Higgs pairs, i.e., pair$E, ¢) whereE is a vector bundle ok and¢ <
H"Y(X,énd(E) ® L). If we takeL = wx, the canonical line bundle on

X, the varietyP (L) is canonically identified with the cotangent bundle of the
smooth locus of the moduli space of stable vector bundles and, as such,

it has a canonical symplectic structure. We prove that, in the general case, in
correspondence to the choice of a non-zero section/®(X,wy' ® L),

one can define, in a natural way, a Poisson struatyen P(L). We also
analyze the relations between this Poisson structuf®(dr) and the canon-

ical symplectic structure of the cotangent bundle to the smooth locus of the
moduli space of parabolic bundles over with parabolic structure over the
divisor D defined by the section. These results generalize to the higher
dimensional case similar results proved in [Bol] in the case of curves.

Mathematics Subject Classification (1991%D20, 14J60, 14B10, 58F05

Introduction

Let C' be a smooth projective curve of genu2 defined over the complex
field C, and let us denote by (r,d) the moduli space of stable vector
bundles of rank and degred overC.

It is well known that the cotangent bundle&f(r, d) can be canonically
identified with the set of isomorphism classes of pafts¢), whereE €

* The author is a member of the VBAC group of Europroj
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M(r,d)and¢ : E — E®wc is ahomomorphism of vector bundles. These
pairs are known abliggs bundlesSince the introduction of these objects
by Hitchin in [Hi], moduli spaces of Higgs bundles have been studied by
various authors, and several generalizations have been proposed.

In this paper we shall consider the general situation in which the curve
C'is replaced by a smootirdimensional projective variet), defined over
C. Let us fix some “moduli data” and denote By* the moduli space of
stable vector bundles oXi. Since, in generall/* is not a smooth variety, we
shall restrict to its smooth locud; ,. By standard infinitesimal deformation
considerations, the cotangent bundle\éf,, can be canonically identified
with the set of isomorphism classes of pdifs, ¢), whereE € M3 = and
¢ € H" (X, End(E)®wy). We are thus naturally led to consider the more
general situation of pairg?, ¢) with ¢ € H"~1(X,End(E) ® L), for some
fixed line bundleL on X. We shall call these objects — 1)-cohomology
L-twisted Higgs pairsor simplypairs, in the sequel.

The main result of this paper is the construction of a canonical family
of (compatible) Poisson structures on the moduli sgace) of (n — 1)-
cohomologyL-twisted Higgs pairs, parametrized by the global sections of
the line bundle.u;(1 ® L. If L = wx there is only one Poisson structure
(up to scalars). This is actually non-degenerate, hence defines a symplectic
structure orP (wx ), which coincides with the canonical symplectic structure
of the cotangent bundle td/? . In the general case, £ = wx (D) for
some effective divisoD, the Poisson structure @(L) corresponding to
the sectiors of wy' ® L defining the divisotD is related to the canonical
symplectic structure of the cotangent bundle to the smooth locus of the
moduli space of parabolic vector bundles with parabolic structure over the
divisor D. These results generalize to the higher dimensional case the results
obtained by Hitchin in [Hi] and by the present author in [Bo1l].

The paper is organized as follows. In Sect. 1, we define the objects of
our study, thén — 1)-cohomologyL-twisted Higgs pairs, and construct the
moduli spacé?(L); this variety has a natural structure of vector bundle over
a suitable open subset 6f°.

In Sect. 2 we use infinitesimal deformation theory to study the tangent
and cotangent bundles @(L). In particular we prove that the tangent
spaces t@ (L) can be naturally identified with the first cohomology groups
of certain complexes and, by means of duality theory, we also obtain an
explicit description of the cotangent spaces. Then we use these results to
define a homomorphis; : 7*P(L) — TP (L), depending on the choice
of anon-zero global sectiorof w;(l ® L. This map defines an antisymmetric
contravarian-tensorf, € H°(P(L), A>*TP(L)), which will turn out to
be a Poisson structure. The mBp will be studied in Sect. 3.
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In Sect. 4 we introduce the main technical tools used in the sequel.
Precisely we show how tangent vector fields@f1.) can be expressed in
terms of certain first order differential operators.

In the following section, Sect. 5, we recall some general results about
symplectic and Poisson structures, and define the canonical Poisson structure
on the dual of a vector bundle endowed with the structure of a locally free
sheaf of Lie algebras. This construction is a generalization of the canonical
symplectic structure of the cotangent bundle of a smooth variety.

In Sect. 6 we use the results obtained in the previous sections to prove
that the antisymmetric contravaria2ytensoréd, actually defines a Poisson
structure orP(L), that coincides with the canonical symplectic structure
onT*M? ,whenL = wx ands is the identity section.

In Sect. 7 we compare our definition @f — 1)-cohomologyL-twisted
Higgs pairs with the usual definition of Higgs bundles on higher dimensional
varieties, as found, e.g., in [S1] or [S2].

Finally, in Sect. 8, we recall the construction of the moduli sp&¢g,
of parabolic vector bundles oK, with parabolic structure over an effective
divisor D (defined by a sectior), and describe the relations between the
Poisson structure d?(L) (corresponding to the sectiehand the canonical
symplectic structure of the cotangent bundle to the smooth locid gf.

1. (n — 1)-cohomology Higgs pairs

Let X be a smoot-dimensional projective variety defined ow@rwith a
very ample invertible she&Px (1). For a coherent torsion-freé@x-module
E, we denote byk(FE) the rank ofE at the generic point, bgleg(F) the
intersection number af; (E) with ¢; (Ox(1))"~! and byPr = Pg(t) the
Hilbert polynomial ofE. Finally, the slope of is defined by setting

_ deg(FE)

u(E) K(E) "

Let M = M, (P) denote the smooth locus of the moduli space of
stable vector bundles ol with fixed Hilbert polynomialP. By abuse of
notation we shall denote h¥ either a vector bundle oX or the point of
M corresponding to the isomorphism classfbf

Remark 1.1.In general, even if a universal famiyy does not exist on any
Zariski open subset ai/*(P), the sheatnd(€) is always defined. This
follows from the construction of the moduli spadé®(P) by Geometric
Invariant Theory, by the same reasoning as in [Bol, Remark 1.1.2]. As for
the universal family, its local existence in thetale (or complex) topology,

will be sufficient for our purposes.
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It is well known that the tangent spade; M to M at a pointE is
canonically identified td* (X, End(E)). By Serre duality, it follows that
the cotangent spad&; M is identified toH" (X, End(E) ® wx), where
wx denotes the canonical line bundle &n From this it follows that the
cotangent bundl@™ M to M can be described set-theoretically as the set
of isomorphism classes of paif&, ¢), consisting of a vector bundI& on
X and an element € H"~1(X, &€nd(F) ® wx). If X is a projective curve
(n = 1), we obtain the classical notion of Higgs bundles, introduced by
Hitchin in [Hi].

Let us fix a line bundlel, on X (in the sequel we shall impose some
conditions onl).

Definition 1.2. A (n — 1)-cohomologyL-twisted Higgs pair (simply called
pair in the sequel) is a palZ, ¢), whereFE is a locally free sheaf oX” and
¢ € H" (X, End(E) ® L).

If \: FF — FEis a homomorphism of vector bundles, composition with
A onthe rightand with @ id, on the leftinduce, respectively, the following
homomorphisms

(1.1) -oX:H"YX,End(E)® L) — H" Y(X,Hom(F,E ® L)),
and

(1.2)
(A®idg)o-: H"HX,End(F) ® L) — H" (X, Hom(F, E ® L)).

Then we have:

Definition 1.3. A homomorphism ofn — 1)-cohomologyL-twisted Higgs
pairs(F,v) and(FE, ¢) is a homomorphism of vector bundlas F — E
such that the image af by the map (1.1) is equal to the imageyoby the
map (1.2). If\ is an isomorphism of vector bundles, then we speak of an
isomorphism of n — 1)-cohomologyL-twisted Higgs pairs.

The notion of family of pairs is defined as follows:

Definition 1.4. A family of (n — 1)-cohomologyL-twisted Higgs pairs on
X, parametrized by a noetherian scheshés the data of a vector bundie
on S x X and a global sectio of the sheaf?" !¢, (Hom(&, £ ® p*L)),
wherep : X x S — X andg : X x S — S are the canonical projections.

Let us come now to the definition of stability. We recall that, wiérs
a curve, a Higgs bundlgFZ, ¢) is semistable (resp. stable)if F') < u(E)
(resp.u(F) < p(E)), for everyg-invariant proper subbundIE of E (see
[ND).

There is an obvious generalization of this notion of stability to the case of
(n—1)-cohomologyL-twisted Higgs pairs on a higher dimensional variety;
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we must only be careful to consider the right notion of subobjects of a pair
(E, ). In fact, whendim X > 1, it is not sufficient to consider subpairs
(F,+) with F locally free, but we must allow to be only a torsion-free
sheaf. Correspondingly; should be an element &t (F, F® L). The
definition of a homomorphism of these more general pairs is the obvious
generalization of the one given in Definition 1.3. Hence we define subpairs

as follows:

Definition 1.5. A subpair of a(n — 1)-cohomologyL-twisted Higgs pair
(E,¢) is a pair(F,v), whereF is a coherent torsion-free subsheaffof

andy € Ext" }(F,F ® L), such that the inclusio — E induces a
homomorphism of pairs.

Now we can state the definition of (slope) stability:

Definition 1.6. A (n—1)-cohomologyL-twisted Higgs pai( E, ¢) is semi-
stable (resp. stable) if(F') < u(E) (resp.u(F) < u(E)) for every proper
subpair(F, ).

Remark 1.7.In [BGP] the authors introduced a notion of stability (depend-
ing on parameters) for a more general class of objects caltethomology
triples. It is easy to see that this definition of stability reduces to our def-
inition in the case ofn — 1)-cohomologyL-twisted Higgs pairs (and the
dependence on parameters disappears).

Remark 1.8.As usual, this definition of stability leads to the construction of
moduli spaces of (semi)stable — 1)-cohomologyL-twisted Higgs pairs.

In this paper, however, we shall restrict our attention to p@isp) such
that £ is a stable vector bundle. We note thatFifis stable, thelE, ¢) is

a stable pair for any € H" (X, nd(E) ® L).

Remark 1.9.In the case of surfaces(a— 1)-cohomologyL-twisted Higgs
pair (E, ¢) is actually al-cohomology L-twisted Higgs pair, i.e¢ €
H'(X,énd(E) ® L) = Ext}(E,E ® L), hence it determines an exten-
sionof FEby E® L,

O—>E®L—>E(];—>E—>O.

Extensions of holomorphic vector bundles are studied in [BGP] and, partic-
ularly, in [DUW], where moduli spaces of extensions are constructed. There
is a notion of stability for extensions, depending on a real parame -
fined as follows: for an extensiangiven by an exact sequence of coherent
torsion-free sheaves

e: 086 —>&—&E —0,
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we define thex-slope by setting

rk(&2)
rk(€)

Hale) = n(€) +a

Then we say that an extensiers a-stable (respx-semistable) if, for every
proper subextensio#i, we have

fa(€') < pa(e) (resp.<).

It is easy to prove that this notion of-stability, applied to the extension
corresponding to d-cohomologyL-twisted Higgs pair(E, ) coincides
with the notion of stability for pairs given in Definition 1.6. Again, we note
that the dependence on the real parameteas disappeared.

Let us denote byP(L) the set of isomorphism classes @f — 1)-
cohomologyL-twisted Higgs paird F, ¢) on X such thatE € M (this
means, in particular, thall is stable). There is a natural projection map
7 : P(L) — M, which sends a paifE, ¢) to E and whose fibers are
7 1Y(E)=H"Y(X,énd(E)® L).

As we have previously seen, if we take= wx, P(wx) is canonically
identified with the cotangent bundi&* M of the smooth locus\/ of the
moduli space of stable vector bundles ®nThis means, in particular, that
the dimension of the fibers ! (E) = H" (X, énd(F) ® wx) is constant
asFE varies inM.

Unfortunately, for a generig, the dimension of/" (X, énd(E) ® L)
will not be necessarily constant &svaries inM, hence it is not possible
to regardP (L) as a vector bundle ovéd/. However, by the semicontinuity
theorem, there exists an open subd€t of M such thatdim H"—l(X,
End(E) ® L) is constant agy varies inM’. Now, if we consider pairs
(E, ) with E € M’, and we use the symb@ (L) to denote the set of
isomorphism classes of such pairs, it is easy to proveRfiA) can be given
the structure of a vector bundle ovif'.

In the language of algebraic geometry, this can be done as follows. Let
us consider the universal sheafd(E) on M’ x X defined in Remark 1.1,
and denote by : M’ x X — X andq : M’ x X — M’ the canonical
projections. From the fact that the dimension/f—! (X, Eénd(E) ® L) is
constant ag” varies inM’, it follows that the sheaf

H = R"'¢.(End(€) ® p*L)

is a vector bundle on/’, whose fibers aré{ry = H" (X, End(E) ® L).
We may then define the variey(L) as follows:

P(L) = Spec(Sym(H")),
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where Sym(H*) denotes the symmetric algebra of the dual shedafiof
ThusP(L) has a natural structure of vector bundle owéf, with fibers
isomorphic toH" (X, énd(E) ® L), for E € M'.

On the varietyP (L) there does not exist, in general, a “universal pair”
(€,®), since there does not even exist a universal vector bundie M/’
We can however prove the following result:

Proposition 1.10. If there exists a universal vector bundieon M’, then
there exists a universgh — 1)-cohomologyL-twisted Higgs pair orP(L).

Proof. Let us consider the following commutative diagram:

PL)x X — M x X

q\

P(L) - M,

wherer’ = 7 x idx.

To construct a universal pair 0A(L) x X, we first consider the vector
bundleg’ = n’*(£), obtained by pulling-back the universal vector bundle
on M’ x X. Then we observe that the vector bundié?) onP(L) has a
canonical sectio. By using the flatness of and the fact thaf is locally
free of finite rank, we have:

™ (H) = 7*(R" q.(End(£) @ p*L))
= R" g, a"*(End(€) @ p*L)
= R" ¢, (&nd(&) @ p'* L),

wherep’ : P(L) x X — X denotes the canonical projection.

It follows that® can be considered as a section8f !¢, (End(&') ®
p'*L). The pair(£’, ) has the property that, for evet¥, ¢) € P(L), its
restriction to{ (E, ¢)} x X is isomorphic to the paifE, ). Now, by using
the fact that¢ is a universal vector bundle al’, it is easy to prove that

(&', ) is a universal pair.

Remark 1.11.As we have already observed in Remark 1.1, even when there
is no universal vector bundi&on M, the sheaEnd(€) is always defined.
It follows that, even if the universal she&f on’P(L) x X may not exist,
the sheafnd(&’) is always defined. By adapting the proof of the preceding
proposition, it follows that the universal sectidnof R"~1¢.(End(£') ®

p'* L) is always defined.
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2. Infinitesimal study of P (L)

In this section we study infinitesimal deformations of Higgs pairs. Let
Cle]/(¢?) be the ring of dual numbers ov€r in the sequel it will be denoted
simply by C[e].

Definition 2.1. An infinitesimal deformation of & — 1)-cohomologyL-
twisted Higgs pair(E, ¢) is a family (E., ¢.) of pairs parametrized by
Spec(Cle]), together with an isomorphism 6F, ¢) with the specialization
of (E., ¢.) (we shall say for short thdtZ, , ¢.) restricts to( E, ¢)).

Two infinitesimal deformation&=!, ¢.) and(E”, ¢”) of apair(E, ¢) are
isomorphic if there exists an isomorphism of pairs (EZ, ¢.) — (E”, ¢")
which restricts to the identity ovéi, ¢).

Let (F, 432 be a(n — 1)-cohomologyL-twisted Higgs pair ifP(L). We
shall use th€ech complexe§” (U, End(E)) andC" (U, End(E) ® L), with
respect to a suitable affine open coveriig= (U;);cr of X, to compute
the cohomology of these sheaves (in the sequel, to simplify the notation, the
indication of the open covering will be omitted). The cohomology class
¢ € H"1(X,&nd(E) ® L) can thus be represented byCach(n — 1)-
cocycle{i,.. i, ,}in C" 1(End(E) ® L).

For{aj,...j,} € CP(End(E)), we define
{le, Blig,...ipsn_r} € CPT*1(EN(E) ® L)
by setting
[e ¢]i0 ----- lpfn—1 [aio ::::: ip> ¢ip ----- ip+n—1]
= (047,0 77777 'Lp ® idL) (@] ¢7:p ..... ip+’n,71 — ¢1p 77777 'ip+n71
O Wig,....ip-

It is easy to check that the maps
(2.1) [, ¢] : CY(End(E)) — " 1 (End(E) ® L)

define a homomorphism (of degree- 1) of Cech complexes.
We now define a new compleX (-, ¢]) by setting

C'([-,¢]) = C*(End(E)) ® C*"2(¢nd(E) @ L),
with coboundary?® : C*([-, ¢]) — C*T1([-, ¢]) given by

L 0
d' = <[7¢} _5i+n—2> .

It is straightforward to verify that([-, ¢]) is actually a complex and
that its first cohomology groug'(C ([, ¢])) is the set of equivalence
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classes of pairéo, 1) = ({evi....in_ }+ {1 }) € C" 1 (End(B) ® L) @
C'(End(E)) such thatsn = 0 andda = [n, ], modulo the equivalence
relation defined bya, n) ~ (o/,7) if there exist3 € C"2(End(E) ® L)
and¢ € C°(End(E)) such thaty’ = o — 63 + [¢, ¢] andn’ = n + 6¢.

Let us fix our notation here. In terms @fech cocycles, the equality
da = [n, ¢] means precisely

(5a)i07---,in = [nio,ip ¢i1 ..... in]a
anda’ = o — 66 + [(, ¢] means

ago,...,in_l = Wig,eryin_1 — (56>i0 ,,,,, ino1 T [C’ioa ¢io ,,,,, infl]'

Remark 2.2.The complexC"([-, ¢]) is essentially the “mapping cone” of
the homomorphism aEech complexes defined by (2.1), with a shift-ef

in the degrees, if we take as definition of the mapping cone the one given in
[KS].

The complexC" ([, ¢]) actually depends on the representativef the
cohomology clas®. The following lemma shows that, on the other hand,
the cohomology of this complex depends only on the cohomology ¢lass

Lemma 2.3. Let ¢ and ¢’ be two(n — 1)-cocycles which represent the
same cohomology clags € H" !(X,&nd(E) ® L), and letC ([, ¢])

andC ([, ¢']) denote the corresponding complexes. Then the cohomology
groupsH(C ([-,¢])) and H(C([-, ¢'])) are canonically isomorphic.

Proof. We shall prove the result only far= 1, the proof in the general
case being similar. Let us writ§ = ¢ + v, for¢ € C"2(End(E) ® L).
Using the explicit description of the first cohomology graip(C ([, 4]))
given before, it is straightforward to prove that the nfap(C([-, ¢'])) —
HY(C ([, ¢])), which sends the elemeft, n) to (a + [n, ], 1) is well-
defined and is an isomorphism of cohomology groups.

Now, by an infinitesimal deformation computation similar to the one
used in [Bol] in the proof of Proposition 3.1.2, we can prove the following
result:

Theorem 2.4. The set ofisomorphism classes of infinitesimal deformations
of a pair (E, ¢) is canonically identified with the first cohomology group

HY(C ([ ¢]))-

From the existence of a local universal family(af — 1)-cohomology
L-twisted Higgs pairs, we obtain:
Corollary 2.5. The tangent spacg 5P (L) to P(L) at the point(E, ¢)
is canonically isomorphic té7 (C ([-, ¢])).
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Remark 2.6.We remark, without giving any details, that the methods used to
study infinitesimal deformations @¢f. — 1)-cohomologyL-twisted Higgs
pairs can be applied, with only minor modifications, to the study of the
infinitesimal deformations gf-cohomology triples, defined in [BGP].

Now we turn to the study of the cotangent spﬁgg@P(L). For this we

have to “dualize” all the constructions we have previously done. We begin
by constructing the “dual complexC([¢, -]) of C*([, ¢]). This is defined
as follows:

C(j¢, ) = CU(End(B) @ L7 @ wy) ® CTH2(End(E) © wx),
with coboundary given by

A 0

Remark 2.7.The reason for considering the maf -] instead off-, ¢] in

the dual complex is the following: when we dualize, we obtain sheaves
(End(E))* @ L~ ® wx and(End(E))* ® wy. Now, there is a canonical
identification betweeriénd(E))* and&End(E) given by the pairing trace.
Under this identification, the transpose of the miap] coincides precisely
with the map[¢, -].

The following result follows now from the general theory of duality (but
can also be proved directly):

Proposition 2.8. The dual of the-th cohomology groug’(C"([-, ¢])) is
canonically identified wit#72—(C" ([, -])). In particular, we have a canon-
ical isomorphism

HY(C ([ o))" = HY(C([6,]))-
We can now state the following result:
Corollary 2.9. The cotangent spa@E@P(L) is canonically isomorphic
to the first conomology grou ! (C-([¢, ])).

Remark 2.10.An analogue of Lemma 2.3 holds for the compi&x|[o, -|),

i.e., its cohomology groups actually depend only on the cohomology class
o.

Remark 2.11.In terms ofCech cocycles, the groufi’ (C' ([, ])) may be
described in a way perfectly similar to the grofifd (C*([-, ¢])): it is the

set of equivalence classes (modulo an obvious equivalence relation, that

we do not write explicitly) of paird3,¢{) = ({Big,....in_1 }>{Co.jr }) €
C"Hénd(E) ® wx) & CH(End(E) ® L™! ® wy) such thati¢ = 0 and
03 = [, ¢], where this equality means precisely

(5/8)i07~--7in = [¢i07~--,in—l ’ Cin—hin]'
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Remark 2.12 By using the description of the cohomology groups in terms
of Cech cocycles, it is possible to give an explicit description of the duality
pairing

(22)  HY(C([¢]) x H(C(l¢,])) » H"(X,wx) = C.

If (a,n) € HY(C([-,¢])) and(B,¢) € H'(C([¢,-])) are represented by

COCyCIes({ai07--.,in—1 }> {njo,jl }) and ({ﬂi()y---,in—l }7 {ijjl })v respeCtiVEva
it is easy to verify that

{tr(i,...in—1Cin_1yin + Mioyis Biroviin) Yiosooosin

defines an-cocycle with values invx, hence determines an element of
H™(X,wx) = C. It follows that the duality pairing (2.2) may be written
explicitly as follows:

<(aa 77)7 (ﬁa C)> = {tr(aio,m,in—lCin—hin + ni07i16i17---7in)}
=tr(aU(+nUp),

where we denote by the “cup product”.

Remark 2.13We can also globalize the preceding constructions to the
whole tangent and cotangent bundle$t@.).

For simplicity, let us denote bgnd(&) the sheaf orP(L) x X which
was previously denoted i#nd(€£’), in Remark 1.11. Leb be the canonical
section of R"1¢.(End(€) ® p* L), where we now denote by : P(L) x
X — X andg : P(L) x X — P(L) the canonical projections. The section
@ can be represented b@ch(n —1)-cocycle with values ignd(£) @ p* L,
with respect to a suitable affine open covering¢f.) x X. Let us consider
the resolutions of the sheavésd(£) andénd(€) @ p* L given by theCech
complexes of sheaves(End(€)) andC (End(€) @ p*L).

We are now in a position to define a sheafified version of the complex
C([-, 9]). We set

C'([-,?]) = CH(End(E)) @ CT™2(End(&) ® p* L),

with coboundaryl’ given by

A 0
d' = <[,§Z§] _6i+n—2> .

Note that this is a complex of sheaves BL) x X; its restriction to
{(E,¢)} x X gives a sheafified version of the compléx([-, ¢]) on X.

From what we have previously seen, it follows that we have a canonical
identification

(2.3) TP(L) = R'q.(C ([ 2])).
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In a similar way, we can define the global dual comglg¥®, -]), and obtain
a global isomorphism

(2.4) T*P(L) = R'q.(C ([,])).

There is also an obvious global analogue of the explicit expression of the
duality pairing given in Remark 2.12.

Let us now choose a non-zero sectios H°(X,wy' ® L). Multipli-
cation bys and—s respectively, induces homomorphisms of complexes

C'(ENd(E) ® pwyx) - C'(End(€) @ p*L)

and
C(End(&) @ p* (L' @wy)) —> C'(End(E)).

From these maps we obtain a homomorphism of complexes
(2.5) By:C([,]) = C([-,9)),
which, in turn, induces a homomorphism

By : R'q.(C([2,])) = R'q.(C ([, ?])).

By recalling the natural identifications (2.3) and (2.4), we can define a con-
travariant2-tensord;, € H°(P(L), ®*TP(L)) by setting

0s(w1,w2) = (w1, Bs(w2)),

for 1-formsw; andw, considered as sections &f' ¢, (C ([®,])), where
(-, ) denotes the duality pairing betwe@#P (L) andT*P(L).

For any(E,¢) € P(L), we obtain from (2.5) a homomorphism of
complexes

By : C([0,7]) = C ([ ),

which determines a homomorphism

By recalling the description of the cohomology groups in term&€eéh
cocycles, the map (2.6) can be written as follows(far) = ({,.....i,,_, }

{Njo.jr }) € HY(C([4,])), we have
Bs(a,n) = ({5,...in_1}> {—snjo’jl}) IS HI(C'(['@])).

Itis now immediate to prove thd, is skew-symmetric, hendg is actually
an antisymmetric contravariaditensor, i.e.f, € HO(P(L), A>’TP(L)).
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Remark 2.14.1f we suppose thateg(L) < deg(wx) and that there exists
anon-zero global sectionof wx ® L1, we are in a situation similar to the
one just described, but with all the arrows reversed.

Precisely, by multiplying by and —s respectively, we obtain two ho-
momorphisms of complexes

C(End(E) ® p*L) - C'(End(E) @ p*wx)
and
C(End(€)) == ¢ (End(€) @ p* (L7 @ wx)),
hence a homomorphism
This, in turn, determines a homomorphism
By : R'q:(C([-,9])) = R'a.(C ([, ])),

whichis equivalentto giving 2-formw, € H(P(L), A2T*P(L)), defined
by setting
ws(€1,82) = (&1, Bs(£2)),

for two vector fieldst; andés, considered as sections Bf ¢..(C ([, 9])).

Remark 2.15As a final remark we point out that all the constructions car-
ried out in this section could be done, in a more intrinsic way, using the
language of derived categories.

3. The mapB;

Let us study more closely the morphism
By: HY(C([9,])) = H'(C ([, ¢]))-

The sections € H°(X,wy' ® L) defines an effective divisaP; on X,

such thaOy (D;) = wy' ® L. For any sheaf” on X let us denote by,
the sheafF’ ® Op,.
From the exact sequences

(31) 0—£&nd(E)®wx = End(E)® L — End(E) ® Lp, — 0
and
(32 0—=&ndE)® L 'owy —> End(E) — End(E)p, — 0,

we obtain an exact sequence of complexes

33)  0-C (o) 25 C(¢]) = C ([ dlp,) =0,
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whereC ([, ¢|p, ) is defined similarly t&”" ([-, ¢]), by replacing the sheaves
End(E) and End(E) ® L with their restrictions toDs, End(E)p, and
End(FE) ® Lp,, respectively.

From the exact sequence (3.3) we obtain a long exact sequence of coho-
mology groups
(3.4)

0— H(C(l¢, ) = HY(C([-,¢]) = H(C([-,¢]p.))

= HY(C([9,])) = HN(C'([-,9]) = H'(C' (1 ¢]p.) = -+

The stability of £ implies that

HY(C([-,¢]) 2 H"*(X,End(E) ® L) ® C,

and
H(C ([¢,]))
L JCeH"*(X,énd(E) ®wx) if Dy=0,ie.L=uwy,
| H2(X, End(F) ® wy) if Dg # 0.

Analogously, if we suppose that the restrictionfofo Dy is again stable, it
follows that

H°(C ([, ¢lp,)) = H"*(Ds,End(E) ® Lp,) & C.
From the long exact sequence (3.4) it follows that
ker(Bs : H'(C'([¢,])) — H'(C ([ ¢])))

 H" %Dy, énd(E) @ Lp,)
T OH" (X, End(E)® L)

which, in turn, is isomorphic to

ker(H" (X, End(E) ® wy) - H" (X, &nd(E) ® L)),

as follows at once from the exact sequence (3.1).
Note that, if L = wy, we obtainker(B;) = 0, which corresponds to the
fact (obvious, from the very definition d$,) that B is an isomorphism.

Remark 3.1.The situation is more complicated if we suppose tH&t X,
wx ® L~1) # 0. In this case, in correspondence to the choice of a non-zero
sections € H(X,wx ® L~!), we get two exact sequences

0—=&nd(E)® L - &nd(E) @ wy — End(E) ® wx ® Op, — 0
and

0 — End(E) = End(B)® L '@wy — End(E)® L '@wx®0Op, — 0,
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whereD; denotes the effective divisor defined hy
These sequences determine an exact sequence of complexes

0= C ([, e]) 25 C ([, ]) = C ([, ]p,) = O,

whereC"([¢, | p.) is the complex obtained from*([¢, -]) by replacing the
sheave€nd(E) ® wx andénd(E) ® L' @ wy with their restrictions to
Ds.

The corresponding long exact cohomology sequence

0 — H(C([-,¢])) = H(C"([¢,])) = H*(C ([, ]p.))
= H'(C' ([ ¢]) 2 HY(C ([¢, ) —» H'(C (9, ]p,)) >

may be used to study the kernel of the niapi.e., the degeneracy locus of
the corresponding-form w;.

4. Vector fields onP(L)

In this section we extend to the-dimensional case the results proved in
[Bol, Sect. 3.3]. The following, somewhat technical, results are needed
for our subsequent computations. Since most of what follows is a rather
straightforward generalization of what we provedan. cit., the proofs of
the following results are only sketched.

Let us start by recalling some general factd! lis ak-scheme, a tangent
vector field onY” may be thought of as an automorphism ovpec(k|e])

Y x Spec(k[e]) D Y x Spec(k[e])

\ /

Spec(kle]),

that restricts to the identity morphism Bfwhen one looks at the fibers over
Spec(k).

Let now D be a tangent vector field gR(L). If we denote by(€, )
the local universal family oP(L) x X, and by(E[e], @[e]) its pull-back
to P(L) x Spec(k[e]) x X, the vector fieldD may be described, locally,
by giving the infinitesimal deformatio(€,, ¢.) = (D x idx)*(£[e], P[e])
of the local universal family&, ). At a point(E, ¢) € P(L), the corre-
sponding tangent vector is given B, ¢.) = (86,45 )\{ (B,6)}xx» Which
is an infinitesimal deformation of the pdiF, ¢).

From what we have seenin Sect. 2, the tangent field givé&ibp. ) cor-
responds to a global section, 1) = ({vig....in 1 }» {Mjo.jr 1) Of R1q.(C ([,
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®])). We shall see in the sequel how this section can be expressed in terms
of first order differential operators.

First we need another general fact. et X — Y be a morphism (lo-
cally of finite presentation) of schemes, angd two locally free sheaves on
X. We denote byDiff ﬁ(/Y(F, G) the sheaf of relative differential operators
from F to G of order< 1. There is an exact sequence (cf. [EGA, Ch. IV,
§16.8])

0 — Hom(F, G) — Diff .y (F, G) = Dery (Ox) @ Hom(F, G) — 0,

whereo is the “symbol” morphism. Then, if’ = G and we restrict to
differential operators with scalar symbol, which we denoteZij/Y(F),
we get the exact sequence

(4.1) 0 = End(F) = Dy (F) % Dery(Ox) — 0.

Now we shall apply these results to the morphistP(L) x X — X. The
idea is to take ag’ the universal family¢ on P(L) x X; actually it may
not exist but, as already remarked, the si&maf(€) is always defined. By a
similar argument, it follows that also the she@{.(£) = Dp, ), x/x (€),

of first order differential operators with scalar symbol which gif@0 x )-
linear, is always defined. From (4.1) we thus obtain the exact sequence

(4.2) 0 — &nd(&) — DY (E) = ¢*TP(L) — 0,

whereq : P(L) x X — P(L) is the canonical projection.

Exactly as in Sect. 2, we can consider the resolutions of the sheaves
£nd(&£) andD (€) given by theCech complexed (End(£)) andC (DL (€)).
In this case too there is a well-defined map

[, @] : CY (DX (E)) — Cc™™ 1 (End(&) @ p*L).

(To this respect, note thati? is a first order differential operator, th{aﬁ, D]
is a differential operator of ord€x, hence a homomorphism of sheaves.)
It follows that we can define a new compl®X([-, #]) by setting

D'([-, @) = C'(Dx(€)) ® C™"*(€nd(€) @ p”L),

with coboundary given by

A 0
d' = <[’@] _6i+n—2> .

Now, from the exact sequence (4.2), we deduce that there is an exact se-
guence of complexes

0—=C([,?]) = D((,P]) = C(¢"TP(L)) =0,
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whereC (¢*TP(L)) is a suitableCech resolution of the sheaf TP(L)
(this result could be better stated in the derived cate@dyP (L) x X); in
this case we actually have an exact sequence of complexes

0—=C([2]) —D((,?]) = ¢TP(L)— 0,

whereq*T"P(L) is regarded as a complex concentrated in de@yee
By applying the functoy,., and noting thai..q*TP(L) = T'P(L), since
q is a proper morphism, we get a long exact sequence, a piece of which is

43) - = TP(L) = R'q.(C ([ D)) = R'qu(D ([ D) = -~ .

Itis evident that the mapP (L) — R'q.(C (|-, ®])) coincides with the iso-
morphism (2.3), hence the image Btq. (C'([-,®])) in R'q.(D ([, 9])) is
zero. This means that for each secti®a;, ;. ,}, {njo.x }) of R*q.(C ([,
@1)), there exist differential operato#s; and homomorphisms;, . ;. .,
determining sections @ (D% (£)) andC™~2(End(€) @ p* L) respectively,
such that

Mjo.j1 = Djl - Djo
and
Qig,.oyin—1 — [Di07¢i07-~~7in71] - (56)107“.,%71'

Finally, by observing that the cocyclés, n) and(a — 63, n) represent the
same section oR'q.(C ([, ?])), we obtain a proof of the following result:

Proposition 4.1. For any tangent vector field on P(L), corresponding
to an infinitesimal deformatiofé,, ®.) of (£, ®), described by a global
section(a, n) of R'¢,(C ([, #])), there exist a suitable open affine covering
U = (U)ier of P(L) x X and first order differential operatord); €
I'(U;, D (£)) such that the sectiofw, ) is represented by @ech cocycle

({aiow-,inﬂ }7 {njo,ﬁ }>’ with

a’io,...,in_l = [DiO’QiOw-win—l]

and

Mjo.j1 = Djl - Djo-

To end this section, let us remark that all the considerations made in
[Bol, Remark 3.3.4], concerning a different proof of the analogue of Propo-
sition 4.1, and also those expressed in Remark 3.3lbmfcit, can be
generalized to the present situation. We leave the details to the reader.
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5. Symplectic and Poisson structures

We recall here some definitions and results of symplectic geometry that will
be used in the sequel.

Let Y be a smooth algebraic variety over the complex fiéldA sym-
plectic structure oY is a closed nondegeneratdform w € HO(Y, 2%).
Given a symplectic structute, the Hamiltonian vector field/ ; of a regular
function f is defined by requiring thai(H ¢, v) = (df, v), for every tangent
vector fieldv. Then we define the Poisson bracket of two regular functions
fandgonY by setting

{fi9} = (Hf,dg) = w(Hg, Hy).

The pairing{-, -} on Oy is a bilinear antisymmetric map that is a derivation
in each entry and satisfies the Jacobi identity

(5.1) {f?{gvh}}+{g){hvf}}+{h7{f’g}}:07

forany f,g,h € I'(U, Oy). This implies tha{H, H,| = Hy; ,, where
[u, v] = uv — vu is the commutator of the vector fieldsandv.

Example 5.1.The cotangent bundIE*Y of a smooth variety” has a canon-
ical symplectic structure, defined as follows. let. 7*Y — Y be the
structure morphism. By restricting the cotangent morphism,to

T . 7*T*Y =TY xy T*Y — T*T*Y,

to the diagonal of *Y xy T*Y, we geta ma@™Y — T*T*Y, which is
a section of the bundlE*T*Y — T*Y, i.e., a differential form of degreke
onT*Y . This is the canonical-form onT*Y", denoted byyy. The closed
2-formw = —day is the canonical symplectic form &Y.

A natural generalization of symplectic structures is given by the notion
of a Poisson structure.

A Poisson structure oYl is a Lie algebra structure, - } on Oy satisfying
the identity{ f, gh} = {f,g}h + g{f, h}. Equivalently, this is given by an
antisymmetric contravariattensord € H°(Y, A2TY), where we set

{f, 9} = (0,df Ndg).

Then# is a Poisson structure if the bracket it defines satisfies the Jacobi
identity (5.1). Wher has maximal rank everywhere, we say that the Poisson
structure is symplectic. In fact, in this case, to gMe equivalent to giving
its inverse2-formw € HO(Y, 2%), i.e., a symplectic structure dn.

The following construction generalizes to the Poisson case the canonical
symplectic structure of the cotangent bundle of a smooth variety.
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Let Y be a smooth variety ané a locally freeOy-module endowed
with a structure of a locally free sheaf of Lie algebras ofletWe shall
regard® as a vector bundle ovéf. Letu : & — TY be a homomorphism
for the structures of)y--modules and of sheaves of Lie algebras, satisfying
the following compatibility condition between the two structures:

(5.2) &, f ¢l = fl&c+u€)(f)C,

forany f € I'(U,Oy) and any¢, ¢ € I'(U, ®), where[-, -] denotes the Lie
bracket operation oé. Let &* be the dual of5.

In this situation there is a canonical Poisson structurétrconsidered
as a variety ovel’. First we note thaOg- = Symg,, (&), the symmetric
algebra of®& over Oy. Then, for any open subsét C Y and sections
&Cel'(U®)andf,g € I'(U,Oy), we set

{& ¢ =1£d,
(5.3) {& 11 =u(©)(f),
{f,9} =0,

and extend -, -} to all of Og~ by linearity and by using Leibnitz rule for
the product of two elements.
The following result follows easily:

Proposition 5.2. The brackef-, -} on &* is a Poisson bracket.

The corresponding Poisson structure on the vector butillis called
the canonical Poisson structure associated to the sheaf of Lie alggbras
and the homomorphism: & — TY .

For further details on this construction, we refer to [Bol]. To end this
section we note that, if we take &sthe tangent bundI&Y” and asu the
identity morphism, the canonical Poisson structure®én= 7*Y defined
above coincides with the canonical symplectic structure on the cotangent
bundle ofY.

6. Poisson structures orP (L)

In Sect. 2 we used the map
By : R'q.(C([2,])) = R'a.(C'([-,2]))
to define an antisymmetric contravari@atensor
0s € H'(P(L), N*TP(L)).

By what we have previously seen, to prove thats a Poisson structure it
remains to prove that the corresponding bracket satisfies the Jacobi identity
(5.12).
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Let us begin by considering the case= wx. In this case the vari-
ety P(L) = P(wx) coincides with the cotangent bundle df’. As we
have seen, the choice of the identity sectios 1 of H(X,wy' ® wy)
determines an isomorphism

By : T*P(WX) — TP(wx).
As in the case of curves we have the following result:

Theorem 6.1. The antisymmetric contravariagttensorf; onP(wy ) de-
fines a Poisson structure, that is symplectic and coincides with the canonical
symplectic structure off™*M’, under the natural identificatiof(wx ) =
T*M'.
Proof. The proofis an adaptation to the higher dimensional case of the proof
of Theorem 4.5.1 of [Bol]. We only sketch here the relevant modifications.

The canonical-formap, ) : P(wx) — T*P(wx) coincides with the
global section(®,0) of R'q.(C ([®,-])), defined as the image @f by the
natural map )

T (H) = Rlq.(C([2,]))-

In terms ofCech cocycles, we can write, for afff, ¢) € P(wx),

aP(wX) (E7 (?ZE) = ({¢i0,--.,in_1 }a 0)7
where{¢;,....i,_, } is a(n — 1)-cocycle representing the cohomology class

@.
The canonical symplectic form g(wx ) isthen givenby = —dap(,, , )-
Let D! and D? be two tangent vector fields dA(wx ), represented re-
spectively by the global sectiorfa!, n') and(a?,7?) of Rlq.(C ([-, ®])).
From Proposition 4.1, it follows that there exist first order differential oper-
atorsD} andD? such that
h DI @

aio,...,in,1 = [ 07 iOv"win—l:I

and
h _ pHh _ ph
Mjo.jv = Djl B Djo’
where({al .}, {n% ;}),for h = 1,2, are cocycles representing the
global sectionga”, n").

Exactly as in the case of curves, it follows that the second order differ-
ential operatorD! D? is described by giving gluing isomorphisms of the
form

1 2 1 2 2 51
L+ enjy gy + €y + €€ (D35 51— Mo ja Do)
in terms of which the infinitesimal deformation @fis locally written as

1 /2 1l 2
QZO:-uyzn—l + eaio,.‘.,infl te aio,...,in,1 + €€ [Di07 aio,...,infl]‘
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It follows that the “infinitesimal deformation of the pdi?, ?) along the
vector fieldD'” is given by the pair

2 S1 2 2 ~1 2 2 1
({aiov---,ina + 6[Di0’ Oéi07"'77;n—1]}7 {nj07j1 + E(Dhnjom B njoylejo)})'

Analogous considerations hold for the second order differential operator
D2D!.
Finally, the vector field D!, D?] corresponds to the cocycle given by

({[[D17D2}i0a¢ ]}7{[D17D2]j1 _[DlvDQ]jo})'

105w esbn—1

Using these expressions we are now able to compute explicitly the differ-
ential dap(, ), evaluated against the two vector field and D?. The
computations are similar to those carried out in the proof of Theorem 4.5.1
of [Bol]. We obtain:

(6.1) dap(wx)(Dlv D2) = {tr(mzo,ilazll in T 772‘10,1'1%21,‘..,2‘”)},

.....

where this is regarded asracocycle determining a cohomology class in
H"(X,wx). If we denote byJ the cup product, (6.1) can be written simply
as follows:

dap(wX)(Dl, D?) =tr(n*Ua —ntua?).

Now we recall that, by the choice of the identity sectior 1 of HY(X,

w;(l ®wy ), we have defined an antisymmetric contravariatensord; on

P(wx). Its inverse-formwy is defined by, (D', D?) = (D', By *(D?)).
Using the preceding notations, we have:

wi (D', D?) = (o', n"), B{H (o®n?))
= <(Oé1, 771)’ (CMQ, _772)>
= tr(—a! Un? +n' Ua?),
hencev; = —dap(, ). This shows thab, is precisely the canonical sym-
plectic structure ofP(wx) = T*M'.

Remark 6.2.We have already seenin Remark 2.14 thalig#f( L) < deg(wx)
ands is a section ofuy ® L1, there is a natural-form w, € H°(P(L),
A2T*P(L)) defined by setting

ws(D', D?) = (D', By(D?)),
whereD'! and D? are two tangent vector fields Gn(L).

Let us consider thé-form ap () : P(L) — T*P(L) determined by the
global sectior(s®, 0) of Rlq.(C ([®,])). This is thel-form that associates
to a point(E, ¢) € P(L) the cohomology class df{s¢i,....i, ,},0) in
H'(C (9, ).
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The computations carried outin the proof of Theorem 6.1 can be repeated,
almost unchanged, to prove that = —dap(r,. It follows, in particular,
thatw, is aclosed2-form on’P(L). However, it is not a symplectic form, in
general, because it may be degenerate.

Now we come to the general case. Let us supposelthatwx (Ds),
whereD; is an effective divisor defined by the non-zero sectidrhe variety
P(L) is the total space of the vector bundle= R" !¢, (End(€) ® p* L),
whose (relative) dual i#(* = R'q.(End(€) @ p*(L~' ® wy)), which, by
abuse of notation, we shall denote simply®Yq..(End(£) ® Ox (—Ds)).

From the discussion made at the end of Sect. 5, it follows that the
data of a structure of sheaf of Lie algebrash plus a homomorphism
u : H* — TM' satisfying the compatibility condition (5.2), determine a
Poisson structure oR(L).

If L = wx this is easy to define. In fact, in this case we haie =
Rlq.(End(£)), and we have seen that for every sectiomof;, (End(£)),
represented by a cocyc{e;, ;, }, there exist differential operatof3; such
thatnjmh = Dj1 - Djo-

By recalling the canonical isomorphisk* = R'q.(End(£)) = TM’,
which we shall take as the homomorphismthe Lie algebra structure

of TM' can be transferred t&*. It follows that, if n} ; = Djl.1 — Djl.0

2 _ hd 2 hd 2 . - . .
andnj ; = Dj — Dj represent two sections 8t*, their Lie bracket is
expressed by

[{77]1'0,]'1}7 {77]2'0,j1 }] = {[D17D2]j1 - [D17D2]j0}
(6.2) = {[njl'o,jl’Djz'J + [Djl'o’njzoyjl]}’

Needless to say, the Poisson structure we obtain in this waR (anx)
is precisely the canonical symplectic structure on the cotangent bundle
T*M' = P(wx), hence coincides with the one defined by the antisym-
metric contravariar@-tensord; (cf. Theorem 6.1).
In the general casé = wx (Ds), the Lie algebra structure cH* can
be defined exactly as in [Bo1l]. Let us recall briefly this construction here.
From the exact sequences

0 — &nd(&) — DY (E) = ¢*TM' -0

and

0— Ox(—D,) > 0x — Op, — 0,
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where the first one is the analogue of (4.2) for the moduli spgdéewe
obtain a commutative diagram

™' @ Ox<—Ds) _— qu*(é‘nd(cf) ® Ox(—Ds))

1%

TM' ~ R'q.(End(E)).

If »' andn? are two global sections of*, represented by the cocycles
{n]O iy and{n3 ;1 with values leq*(é‘nd(é‘) ® Ox(—Dys)), we have
577]0,31 — D1 D1 , andsns o = D2 . for some differential operators
D} ande.

By recalling the formula (6.2), we are led to consider the COCMGI%lO’jl ,

hd 2 1 2 . . 1 . . .
D]+ [DJO, s15,.4,) 1> With values iniz* ¢, (End(&)). Since the differential

operators ar@ x-linear, it follows that{[sn} ; , D? ]+ [D} ,sn? . ]} =
s{[n}, ;,» D3]+ [D},n3 5 1}, for a well-defined cocyclé[n} ;. D? ]+

(D} .2 .1} with values inR'q.(End(€) ® Ox (—Ds)). We thus deflne

the Lie bracket ofnj, ; } and{n7 ; } by setting

[771’772] = {[njlo,jl’Djzl] + [Djo’njo JJ}

a formula which is formally analogous to (6.2). Since the multiplication by
sisinjective at the level of cocycles, it follows that this defines a Lie algebra
structure or{*. Finally, we take as, : H* — T'M' the composition of
s: H* — Rlq.(End(€)) with the canonical isomorphisi! ¢, (End(€)) =
TM'. It is trivial to verify thatu is a homomorphism of sheaves of Lie
algebras and satisfies the compatibility condition (5.2).

From this construction we thus obtain a Poisson strudturé onP(L).
If we denote by{-, -} the bracket defined, at the end of Sect. 2, by the
antisymmetric contravariattensom,, we have the following result, whose
proof is similar to the proof of Theorem 4.6.3 of [Bo1]:

Theorem 6.3. The brackef-, - }s coincides with the bracket, -}, hence it
defines a Poisson structure @ L).

Remark 6.4.The family of Poisson structures, -} 5, parametrized by the
global sections ab;(l ® L, is compatible, in the sense that the sum of two
Poisson structures in this family is again a Poisson structure. Precisely, we

have{'? '}81 + {'7 '}52 = {'7 '}81+32'
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7. Higgs bundles and(n — 1)-cohomology Higgs pairs

As we have already remarked, X is a curve and, = wy, the definition
of a(n — 1)-cohomologyL-twisted Higgs pair coincides with the definition
of a Higgs bundle, introduced by Hitchin in [Hi]. For higher dimensional
varieties, however, this is not the case. In this section we shall analyze the
relationships between the usual definition of Higgs bundles, as given for
example in [S1], and our definition ¢f — 1)-cohomology pairs.

Let us begin by recalling the definition of Higgs bundles on higher di-
mensional varieties.

Definition 7.1. A Higgs bundle on am-dimensional varietyX is a pair
(E, 0) consisting of a vector bundlg and a homomorphism of vector bun-
dlesd : E — E® 2%, suchthat A§ = 0, considered as a homomorphism
from Eto B ® 2%

The integrability conditiord A 8 = 0 implies that to a Higgs bundle
(E, 0) there is associated the followir@plbeault complex

0—E% Eent M Ee2 — ..

whose hypercohomology is called tB®lbeault cohomologwith coeffi-
cients inE, denoted by} (X, E).

There is an obvious notion of stability for Higgs bundles, obtained by
considering, in the usual definition of stability, only subsheakesf E
that are fixed by the Higgs field, i.e. such that(F) Cc F ® £2%. In
particular, this implies that i is a stable vector bundle, thé#, 0) is a
stable Higgs bundle, for any Higgs fiedd This definition of stability leads
to the construction of moduli spaces of (semi)stable Higgs bundleX on
(see [S2)).

Let us now fix some “moduli data” and denote ¢ the moduli space
of Higgs bundles E, §) with E stable. If we drop the integrability condition
0 A 8 = 0 in the definition of a Higgs bundle, we may construct another
moduli spaceV, parametrizing all pair$E, ) with E stable and without
any condition or9, containingM as a closed subset.

Let us consider the following complexes:

Cy: 0— end(B) 2% end(B) @ 04 14 end(B) @ 02 B4
and
Dy: 0— end(E) "4 end(E) ® 2% — 0.

By standard infinitesimal deformation computations, analogous to the ones
carried out in [Bo1l], we can prove that there are canonical identifications

(7.1) T(p,pM = H'(Cp)
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and
(7.2) TN = H' (Dy).
Moreover, the morphism of complexé$ — D, defined by

[’76]

-0 -0
0 — &End(E) —— &nd(E) ® 2% Sl End(E) ® 2% S

~

1R

0
0 — énd(E) s end(B) @ 2L - 0 .

induces a homomorphism on the hypercohomology groups
H'(Cy) — H'(Dyp),

which, under the identifications (7.1) and (7.2), coincides with the differen-
tial of the natural inclusioo\t — N.

Let us now come to the relationships between the moduli spcasd
P(wx). The fundamental result is contained in the following proposition:

Proposition 7.2. Let X be ann-dimensional variety and let us fix an ample
classt € H(X, 2%).If Eisapolystable vector bundle otiwith ¢, (E) =
c2(E) = 0, then, for everyi, ;7 > 0 with ¢ + 7 < n, the cup-product with
¢n—(i+J) determines an isomorphism

H{(X,E® %) S H (X, E® 2%,

Proof. This result follows easily from the Lemma 2.6 of [S1]. The vector
bundleF is, in fact, a harmonic bundle, since it is polystable (i.e. a direct
sum of stable bundles of the same slope) and has vanishing first and second
Chern classes. Hence we may apply Simpson’s lemma to the Higgs bundle
(E,0), obtaining isomorphisms

(7.3) Hb (X, E) S HY P (X, E)

giving by cupping withs™—P,
Since the Higgs field is zero, the Dolbeault cohomology decomposes
as follows:
HY (X, E)= P H'(X,E®2),

0<3,j<n

i+j=p
forp =0, ..., 2n. By combining this decomposition with the isomorphisms
(7.3), we conclude our proof.
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We recall now that a stable vector bundieon X admits a Hermitian-
Einstein metric. The metricinduced énd(E) is again Hermitian-Einstein,
hence the vector bundind(F) is polystable, obviously with vanishing first
Chern class. From now on we shall also supposedi{@nd(£)) = 0, in
order to be able to apply Proposition 7.2 to this vector bundle. We thus obtain
an isomorphism

(7.4)  HX,&nd(E)® 2%) 5 H" X, End(E) ® wx),

given by cupping withé” 1. This, in turn, determines an isomorphism of
moduli spaces

(7.5) N = Pwx),

defined by sending a pait, #) to the (n — 1)-cohomology Higgs pair
(E,0uent).

On the moduli spacé\/ there is a symplectic structure, depending on
the choice of the ample clagse H!(X, 2}): this is constructed in [Bi]
only for the moduli spacé of Higgs bundles, but it is easy to see that an
analogous symplectic structure can be definedvotneedless to say, the
symplectic structure constructed by Biswas/his then the restriction of
the analogous one defined &f). It is now easy to see that this symplectic
structure on\ coincides, under the isomorphism (7.5), with the canoni-
cal symplectic structure previously constructed®fwx ), which, in turn,
coincides with the canonical symplectic structure on the cotangent bundle
T*M’' (see Theorem 6.1).

8. Parabolic bundles

In this section we discuss the relations between the moduli spate,
where L = wx (D) for an effective divisorD, and the moduli space of
parabolic vector bundles, with parabolic structure aver

Let X be, as usual, a smootirdimensional projective variety defined
overC, with avery ample invertible sheéfy (1), andletD C X be an effec-
tive divisor. LetL = wy (D) be aninvertible sheafande H°(X,wy' ®L)
a section defining the divisdp.

We briefly recall here the definition of a parabolic sheaf, as given in
[MY]:

Definition 8.1. A parabolic structure oveb on a coherent, torsion-free,
Ox-moduleF is the data of a filtration

F.: E=F(E)>F(E)>- -2 F(E) D F1(E) = E(-D),
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whereE(—D) is the image off ®p, Ox(—D) — E, and a sequence of
real numbersv, = (a1, ..., q;), called weights, such that

<oy <ag < - <<l

A parabolic sheafis a coherent, torsion-fr&g;-moduleE with a parabolic
structure oveD.

Given a parabolic shedf, F, a..), we define a filtered shedf,, for
0 <z <1,bysettingty = FandE, = F;(F) if a;—1 < x < oy, Where
we have setyy = 0 anda;; = 1. The definition ofE,, can also be extended
to allz € R by settingE,+1 = E.(—D).

The filtered sheaft, = (E,).cr contains all the data necessary to
recover the original parabolic shedf, Fi, o), hence, in the sequel, it will
be convenientto denote a parabolic sheaf simplihbyr his notation will be
particularly useful in the definition of homomorphisms of parabolic sheaves.

Remark 8.2.Some authors (cf. [B]) define a parabolic structure dvesn
a sheafF’ as a sequence of subsheave£of

Blp = Fp(E) > FH(E) 2 -+ 5 Fp(B) > Ff (B) = 0,

together with a system of weighiis< oy < ap < --- < oy < 1.
Our definition is related to this one by setting

Fy(E) = ker(E — E|p/Fh(E)).
We come now to the definition of homomorphisms of parabolic sheaves.

Definition 8.3. A homomorphism of parabolic sheaves E, — F; is a
homomorphism 0O x-modulesp : £ — F suchthaw(E,) C F,, forany
z € [0,1].

We shall denote byParHom(E., F.) the sheaf of homomorphisms of
parabolic sheaves frof, to F; it is a subsheaf oHom(E, F).

In order to construct moduli spaces of parabolic sheaves we need, as
usual, a suitable notion of stability. This was introduced in [MY], where
moduli spaces of semistable parabolic sheaves were constructed in great
generality. We only state here the result we shall need in the sequel.

Proposition 8.4. Let us fix a sequence of real numbets= (a1, ..., q)
with0 < oy < as < -+ < oy < 1, and polynomiald?, Hy, ..., H;. Then
there exists a quasi-projective moduli spat¢,,, parametrizing isomor-
phism classes of stable parabolic vector bundigshavinga, as system
of weights and such that the Hilbert polynomialiéfis 4 and the Hilbert
polynomial ofE'/F; 1 (F) is H;, fori =1,... L.
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By infinitesimal deformation theory (cf. [Y]), it follows that the tangent
space to the moduli spagé ., at a pointE, is canonically isomorphic to the
first cohomology grougf ! (X, ParHom(E,, E,)). From this, by applying
the version of Serre duality for parabolic vector bundles, proved in [Y,
Proposition 3.7], it follows that the cotangent space to the moduli spgge
at a pointE, is canonically isomorphic tdf"~! (X, ParHom(E,, E,) ®
wx (D)), whereE, is the filtered sheaf defined by setting, for ang [0, 1],

b {Ex if & £ o,

E if z = qy.

Qit1

Remark 8.5.With the notations of Remark 8.2, if the parabolic structure of
a vector bundl€ is given by a filtration

Elp = FL(E) 2 FB(E) 5 -+ 2 FL(E) > F'(B) =0,
andif £, is the corresponding filtered sheaf, then a sectiofiParHom( .,

E*) is a homomorphism : 2 — E such thaip|p is nilpotent with respect
to the filtration ofE’|  given above, i.e., such thalp (F5 (E)) C Fi ' (E),

fori=1,...,L.

Unfortunately, the moduli spac#1,, is, in general, not smooth hence
we shall restrict to consider its smooth locug " Let us denote by, the
cotangent bundle to the smooth locus\dt,,: Tpar = T* Moar - By what we
have previously seeff,, can be described as the set of isomorphism classes
of pairs(E., ¢), whereE, € M7 and¢ € H"~'(X, ParHom(E,, E, )
®wx(D)).

Being the cotangent bundle to a smooth varigfy, has a canonical
symplectic structure (cf. Example 5.1). This can be described explicitly in
a way very similar to the description of the Poisson structur@(@f) (we
refer to [Bol, Sect. 5] for the study of the symplectic structurggfwhen
X isacurve).

Let (E., ) € Tpar- As in Sect. 2, we shall use infinitesimal deformation
theory to describe the tangent spacéjg at (E., ¢).

Lettd = (U;)icr be asuitable affine open coveringoandlet{¢;, ;. .}
be aCech(n — 1)-cocycle inC" (U, ParHom(E., E.) ® wx (D)) repre-
senting the cohomology clagsWe define a complex’ ..([-, #]) by setting

par
Czi)ar([" 9]) = Ci(ParHom(E*v E.))
eC"2(ParHom(E,, E,) ® wx (D)),
with coboundaryl’ : C},...([-, ¢]) — Citl ([, ¢]) given by

i (5 0
(81) d' = <[’¢] _5i+n—2> )
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where
[, 4] : C'(ParHom(E,, E,)) — C*T"~Y(Pariom(E,, E,) ® wx (D))

is defined as in (2.1).
Now we can state the following result, whose proof is analogous to the
proof of Corollary 2.5:

Proposition 8.6. The tangent spac| ;) Tpar to Tpar at the point(E,, ¢)
is canonically isomorphic té7 1 (C:,,..([-, ¢])).

par

In order to describe the cotangent space$tpwe have to “dualize”
the preceding construction. The foundamental tool is the version of Serre
duality for parabolic bundles, proved in [Y, Proposition 3.7]. From this it
follows that the “dual complex” o€,,,,.([-, #]) is the complexC,,,,.([¢, -])
defined by setting

Cphar([9,]) = C'(ParHom(E., E..))
eC 2 (ParHom(E,, E,) ® wx (D)),

with coboundaryl?’ : C?,,.([6,]) — C:t1([¢,-]) given by (cf. Remark 2.7)

par par

8.2) i — ([qu-} - 5£H> .

Then we have:

Proposition 8.7. The cotangentspad?—{*E (5)7,‘,61r t0 Tpar atthe point E., ¢)
is canonically isomorphic téf! (C: var ([95°]))-

The isomorphism of complexds-1,1) : C,,.,.([¢,]) = Cpq. ([, 0]),
determined by plus and minus the identity map respectiveart{om( .,
E,)®wx(D)and orfParHom(E*,E ), determines an isomorphism of co-

homology groupg—1. 1> H(Cpar([9:1)) = H'(Cpan ([, 0))), hence an
isomorphism(—1,1) : (E*,¢> 7,'Jar 5 T(E*,q;)ﬁ,ar. This is the Hamiltonian
isomorphism corresponding to the canonical symplectic structufg.of
Precisely, we have the following result, which generalizes to the higher di-
mensional case the result proved in [Bol, Theorem 5.2.4], and whose proof
is analogous to the proof of Theorem 6.1

Theorem 8.8. Theisomorphismis-1,1) : T(;, 5 Toar ~ Tz, 3) Tpar: (B P) €

Tpar, define a global isomorphista-1, 1) : T*Tpar — T'Tpar, Which, in turn,
defines a symplectic structure @py.. This symplectic structure is precisely
the canonical symplectic structure gf,, considered as the cotangent bun-
dle to M.
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Remark 8.9.The sectiors € H°(X,wy' ® L) defining the divisoD de-
termines an isomorphism: Ox (D) = wy!' ® L from the sheaf of mero-
morphic functions o with poles atD to w;(l ® L, given by multiplication
by s. This, in turn, determines the following isomorphisms of sheaves:

s : ParHom(E,, E,) ® wx (D) = ParHom(E., E.) ® L
and
s : ParHom(E,, E,) ® L' ® wx (D) = ParHom(E,, E.).
By using these isomorphisms, we obtain two isomorphisms of complexes

(173> : Cé)ar(['v(b]) :> C].aar,L([W(b])a

and

(87 1) : Cg.)ar,L([qsv ]) :> Cg.mr([gbﬂ ])7
whereC; . ([-,¢]) andC;,,, ; ([, ]) are the complexes defined by setting

4 s ([ 8]) = C'(ParHom(E,, E.)) & C*"~%(ParHom(E,, E,) ® L),
and
a2 ([6,]) = C(ParHom(E., E,) @ L' @ wx(D))
@® C =2 (ParHom(E,, E,) ® wx (D)),

with the coboundaries defined as in (8.1) and (8.2) respectively.
It follows that we can identity the tangent and cotangent spacksto
the first conomology groups 6t .., ([, ¢]) andC:;,, , ([¢, -]) respectively:

T, ) Toar = H' (Cpor (1 8))) ATy 5 Toar = HY(Cy 1 (161])).

Finally, using these identifications, it is immediate to see that the Hamil-
tonian isomorphism of Theorem 8.8} T,ar — T'7par, COrresponding to
the canonical symplectic structure B, coincides with the isomorphism

induced on the cohomology groups by the isomorphism of complexes

(_87 S) : ébar,L([¢7 ]) :> Cz.)ar,L(['v ¢])
given by multiplication by—s angs respectively orParHom(E,, E,) ®
L' ® wx (D) andParHom(E,, E.) @ wx (D).

Let us denote now by the open subset df,, consisting of pairs
(E., ¢) such that the underlying vector bundlgo the parabolic bundI&,
belongs to the smooth locud of the moduli space of stable vector bundles
onX.

Toapair(E,, ¢) € T2 we can associate the pait, ¢) € P(L), where,
by a slight abuse of notation, we have denoted by the same sysribel
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image ofp € H" (X, ParHom(E,, E,) ® wx (D)) in H"1(X, End(E)
® L) by the map induced on cohomology by the inclusion

ParHom(E,, E,) ® wx (D) C End(E) ® wx (D) = End(E) ® L.

In this way we obtain a morphish: 72, — P(L). The mainresult, relating
the canonical symplectic structure gf, to the Poisson structure &f(L)
corresponding to the sectierdefining the divisorD, is the following:

Proposition 8.10. The morphisny : 73, — P(L) is a Poisson morphism
of Poisson varieties, i.e., it is compatible with the Poisson structurgg,pf
andP(L).

Proof. It is easy to see that, in terms of the identifications of the tangent
Spaceg(E*,@%ar = Hl(C}‘?ar,L(['? ng)) andT(E,Qg)’P(L) = Hl(C([a ¢]))’
the tangent map té at a point(E,, ¢),

Te.5f  Te.s T = TpsPL),

is given by the mag'(C, ., ([-,¢])) — H'(C"([-,¢])) induced by the
map of complexes§’, . ; ([, ¢]) — C*([-, ¢]) determined by the inclusions
ParHom(E,, E.) — End(E) andParHom(E,, E.) ® L — End(E) ® L.
From this, by recalling the explicit description of the canonical symplec-
tic structure of7., given in Remark 8.9 and of the Poisson structure of
P(L) given at the end of Sect. 2, it follows immediately tifas a Poisson
morphism of Poisson varieties.
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