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GROUP VARIETIES RELATED TO THE KP HIERARCHY

FRANCESCO BOTTACIN

Abstract. Some remarkable relations between group varieties and the solutions
of a physically important class of differential equations, called KP hierarchy, are
found. In particular, it is proved that to each solution in a certain class, including
a lot of physically important solutions such as the famous n-solitons, there is
associated in a natural way a group variety.

Introduction

The purpose of this paper is to explain the connection existing between a wide class
of group varieties and a physically important class of differential equations called
KP hierarchy. It is a well known result of Mumford [10, vol. 2, Ch. IIIb, §5]
that by using jacobian theta functions one can construct solutions to KP and KdV
hierarchies. More precisely, he showed that starting from the jacobian theta function
of a nonsingular curve one easily constructs special solutions to the KP hierarchy,
and these functions satisfy also KdV hierarchy when the curve is hyperelliptic. Then,
if one takes an algebraic family Ct of smooth hyperelliptic curves of genus n, which
tend to a singular curve C0 as t→ 0, the jacobian varieties JacCt of these curves tend
to a generalized jacobian JacC0, which is no longer an abelian variety but a more
general group variety (it turns out to be a product of multiplicative groups). Under
this deformation the solutions to the KdV hierarchy constructed from Riemann’s
theta function of JacCt tend to another solution, which is just the famous n-soliton
solution.

Conversely, Krichever proved in [9] that quasi-periodic solutions of the KP
hierarchy are essentially Riemann’s theta functions of algebraic curves.

Here we will be interested in a much wider class of solutions of the KP hierarchy:
to each element in this class corresponds a group variety. To show this we’ll prove
that all elements in this class are theta types: these are a generalization of classical
theta functions introduced by Barsotti in [1]. A theta type is essentially a nonzero
element θ(x) ∈ k[[x]] such that θ(x+y) θ(x−y) ∈ k[[x]]⊗kk[[y]], where k is a field of
characteristic zero. This last property implies that the field generated over k by the
logarithmic derivatives of θ(x), from the seconds on, is the function field of a group
variety V over k; moreover θ(x) determines a divisor of V , so that we get in effect
a polarized group variety. A fundamental fact is that almost all group varieties can
be constructed, with the method just described, starting from theta types.
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In conclusion, the solutions of the KP hierarchy we are considering here, being
theta types, are naturally related to group varieties.

This paper is organized as follows: in Sect. 1 we recall how the condition θ(x +
y) θ(x − y) ∈ k[[x]] ⊗k k[[y]], defining theta types, can be translated in differential
terms, in order to obtain the differential equations characterizing theta types. These
are written in terms of certain “universal” polynomials with rational coefficients.
Then we find the fundamental relations that link these polynomials with Hirota’s
differential operators. This is an easy but very important result because it shows
that any differential equation which can be written by using Hirota’s operators can
be translated into a differential equation for theta types. If these equations are
enough (in a sense that we’ll make precise later) then their solutions are actually
theta types. This argument applies not only to the KP hierarchy, as shown in
this paper, but also to many other important classes of differential equations of
mathematical physics, such as KdV hierarchy, Boussinesq hierarchy and so on (in
fact, as already observed, it applies to all equations that admit an expression in
terms of Hirota’s operators).

In Sect. 2, after a brief description of the KP hierarchy, we prove that it is equiv-
alent to a set of differential equations for theta types. Unfortunately, because of
the complicated expression of these equations, we can’t prove directly that their
solutions are theta types, so, in Sect. 3, we develop a different approach to the
problem. We introduce infinite order differential operators, called vertex operators,
and prove firstly that they act infinitesimally on the space of τ -functions, i.e. they
transform a given solution of the KP hierarchy to another solution, and secondly
that they also act on theta types, sending theta types to theta types. This finally
proves that all τ -functions which can be constructed by letting vertex operators act
repeatedly on a τ -function which is already known to be a theta type, are actually
theta types. This is true, in particular, for n-solitons, which are constructed by the
above method, starting from the constant function 1.

1. Preliminaries

In this Section we recall some basic definitions and the construction of differential
equations characterizing theta types. For a detailed treatment of the subject we
refer the reader to [2], [3] and [4] ([3] generalizes the construction of differential
equations to the case of several variables and corrects some errors occuring in [2]).

Let k be an algebraically closed field of characteristic 0 and k[[x]], x = (x1, . . . , xn),
the ring of formal power series in n variables over k. A non-zero element θ(x) ∈ k[[x]]
is a holomorphic theta type if it satisfies the following relation, called holomorphic
prosthaferesis :

(1.1) θ(x+ y) θ(x− y) ∈ k[[x]]⊗k k[[y]].
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If k is the complex field a holomorphic theta type is actually an entire function (this
is proved in [1] only for non degenerate thetas, but the same argument holds also
for theta types).

Now we must introduce some notations. If µ = (µ1, . . . , µn), ν = (ν1, . . . , νn) ∈ Nn

are multiindices and r is a positive integer we let µ + ν = (µ1 + ν1, . . . , µn + νn),
rµ = (rµ1, . . . , rµn), |µ| = µ1 + · · ·+ µn and µ! = µ1! · · · · · µn!; µ ≤ ν means µi ≤ νi
all i, and µ < ν means µi ≤ νi but µj < νj for some j. If x = (x1, . . . , xn), xµ means
xµ1

1 · · · · · xµn
n and Dx, or simply D if no confusion can arise, denotes derivation with

respect to the variables x, more precisely we let:

Dµ
x =

∂|µ|

∂xµ1

1 · · · ∂x
µn
n
.

Moreover, for a power series φ(x) and a multiindex µ > 0, we let φµ(x) =
(µ!)−1Dµ log φ(x). Using these notations we can write the following power series
expansion

(1.2) θ(x+ y) θ(x− y) = 2θ2(x)
∑
µ

Pµ
(
θ(x)

)
yµ,

the sum being over all µ ∈ Nn such that |µ| ≡ 0 mod 2. The Pµ’s are polynomial
functions with rational coefficients in the θν ’s, 0 < ν ≤ µ, whose expressions are
given by the following.

Lemma 1.3. – Let µ ∈ Nn be a multiindex such that |µ| ≡ 0 mod 2, and let
ν1, . . . , νh ∈ Nn be all the multiindices such that |νi| ≡ 0 mod 2 and 0 < νi ≤ µ,
i = 1, . . . , h. Then

Pµ
(
θ(x)

)
=
∑
j

2|j|−1(j!)−1 θj1ν1 · · · · · θ
jh
νh
,

where j ranges over all h-tuples j = (j1, . . . , jh) of non-negative integers which
satisfy j1ν1 + · · ·+ jhνh = µ.

For the proof of this result, see [2, Sect. 5] for functions of one variable, or [5,
Ch. 2, Lemma 1.3] for the general case.

It is well known (cfr. [2] or [4, Theorem 3.2]) that a necessary and sufficient
condition for a power series θ(x) to be a holomorphic theta type is that the Pµ(θ)’s
span a finite dimensional k-vector space; in other words only a finite number of
such polynomials can be linearly independent. Note that a linear relation among
the Pµ(θ)’s is a nonlinear partial differential equation for the function θ(x), so we
can say that holomorphic theta types are the solutions of appropriate systems of
(infinite) nonlinear p.d.e.’s, written in terms of certain “universal” polynomials.

We only mention that this situation becomes much simpler if we consider power
series in one argument; this is not really restrictive, since we know that almost
all group varieties (precisely those whose possibly occuring vector direct factor has
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dimension ≤ 1, hence all abelian varieties) can be “produced” by theta types in one
variable.

Now we recall the definition of Hirota’s bilinear differential operators. Let
P (Y1, . . . , Yn) ∈ k[Y1, . . . , Yn] be a polynomial and φ(x), ψ(x) functions. We de-
fine a differential operator as follows:

P (D)φ · ψ = P (∂/∂y1, . . . , ∂/∂yn)[φ(x+ y)ψ(x− y)]|y=0.

P (D) is called Hirota’s bilinear differential operator, and P (D)φ · ψ = ζ are Hi-
rota’s bilinear differential equations. See [8] for basic properties and applications of
Hirota’s operators.

In particular, for a power series θ(x) ∈ k[[x]] and a multiindex µ ∈ Nn, we have

(Dµθ · θ)(x) = Dµ
y [θ(x+ y) θ(x− y)]|y=0,

thus we can write the following Taylor expansion:

(1.4) θ(x+ y) θ(x− y) =
∑
µ

(µ!)−1(Dµθ · θ)(x) yµ,

where the sum is over all µ ∈ Nn, such that |µ| ≡ 0 mod 2 (it follows immediately
from the definition that Dµθ · θ is identically zero if |µ| is odd).

Comparing (1.4) with (1.2), we find that

(1.5) (Dµθ · θ)(x) = 2µ! θ2(x)Pµ
(
θ(x)

)
, |µ| ≡ 0 mod 2.

This is the fundamental relation that links Hirota’s operators with the universal
polynomials, and it shows that all differential equations for theta types can also be
written in the bilinear form of Hirota.

2. The KP hierarchy and its connections with theta types

Let us denote by x the infinite set of variables (x1, x2, . . . , xn, . . . ) and by ∂ the
derivation ∂/∂x1. A formal pseudodifferential operator P is a formal Laurent series
in ∂−1 with coefficients in k[[x]]:

P =
m∑

j=−∞

aj(x) ∂j, m ∈ Z, aj(x) ∈ k[[x]].

If am(x) 6= 0, m will be called the order of P , in symbols m = ordP .
If we define the product of two pseudodifferential operators by the following gen-

eralization of the Leibniz rule(∑
i

ai(x) ∂i
)(∑

j

bj(x) ∂j
)

=
∑
i,j
h≥0

(
j

h

)
ai(x)(∂hbj)(x) ∂i+j−h,

it follows that the set of all formal pseudodifferential operators Ψ = k[[x]]((∂−1)) is
a non-commutative k-algebra and is a Lie algebra under commutation of operators.
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We denote by Ψ− and Ψ+ the Lie subalgebras of Ψ consisting of operators of order
≤ −1 and of ordinary differential operators respectively. We have Ψ = Ψ− ⊕ Ψ+

as a k-vector space, and for P ∈ Ψ, we denote the corresponding decomposition by
P = P− + P+. We also introduce the space of formal oscillating functions{

f(x, λ) exp ξ(x, λ) | f(x, λ) ∈ k[[x]]((λ−1))
}
,

where λ is a formal parameter and ξ(x, λ) =
∑∞

i=1 xi λ
i.

The k-algebra Ψ acts in an obvious way on this space of functions.
Now we consider the following isospectral deformation problem (see [7, Sect. 1]):

(2.1)

Lw = λw,
∂w

∂xn
= Bnw, n = 1, 2, . . . ,

where L is a pseudodifferential operator of the form L = L(x) = ∂ + u−1(x) ∂−1 +
u−2(x) ∂−2 + . . . , Bn = (Ln)+ and w is a formal oscillating function

w(x, λ) =
( ∞∑
i=0

wi(x)λ−i
)

exp ξ(x, λ),

normalized by letting w0(x) = 1. Such a function w(x, λ), satisfying (2.1), is called
a wave function for the operator L.

The integrability conditions of (2.1) constitute an infinite system of differential
equations for the operator L, called the KP hierarchy :

(2.2)
∂L

∂xn
= [Bn, L], n = 1, 2, . . . .

It can be shown (see, for example, [11, Sect. 1.2]) that the system (2.1) has a solution
w if and only if L satisfies the KP hierarchy (2.2), in which case the solution is unique
up to multiplication by elements of 1 + k[[λ−1]]λ−1.

Let then w(x, λ) be a wave function for the operator L. It is shown in [7, Sect. 1]
that there exists a power series τ(x) ∈ k[[x]], called the τ -function associated to L,
such that

(2.3) w(x, λ) =
τ(x1 − 1/λ, x2 − 1/2λ2, x3 − 1/3λ3, . . . )

τ(x)
exp ξ(x, λ).

Moreover the KP hierarchy can be written in terms of τ -functions as an infinite set
of Hirota’s bilinear differential equations, given by the following generating function
expansion:

(2.4)
∞∑
i=0

pi(−2y) pi+1(D̃) exp
( ∞∑
j=1

yj Dj

)
τ · τ = 0,
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where pn(x) are Schur polynomials, defined by

exp
( ∞∑
j=1

xj q
j
)

=
∞∑
n=0

pn(x) qn,

and D̃ = (D1, 2
−1D2, 3

−1D3, . . . ) with the Dj’s being Hirota’s symbols, so that
for each multiindex µ, the coefficient of yµ in (2.4) gives Hirota’s equation for a
τ -function.

In the preceding section we have found the relations (1.5) between Hirota’s bilinear
differential operators and Barsotti’s universal polynomials, so it is now immediate
to see that the KP hierarchy, written in terms of τ -functions, is equivalent to an
infinite set of linear relations for polynomials Pµ

(
τ(x)

)
. The calculations can be

effectively worked out, as shown in the author’s thesis [5], by finding an explicit
expression for the equations of the KP hierarchy (2.4) and then by replacing each
Dµτ · τ with the corresponding expression given by (1.5). This leads to a rather
complicated but explicit formulation of the linear relations among the universal
polynomials. Precisely, for every multiindex β ∈ N∞, we have the following linear
relation [5, Ch. 2, 4.7]:

(2.5)
∑
α∈N∞

|α|∗=|β|∗+1
|α|≡0 mod 2

α!

1α

( ∑
µ∈N∞

β−α≤µ≤β

(−2)|µ|

1µ µ! (α + µ− β)! (β − µ)!

)
Pα
(
τ(x)

)
= 0,

where |µ|∗ = µ1 + 2µ2 + 3µ3 + · · · , and 1µ = 1µ1 · 2µ2 · 3µ3 · · · · .
As an example, the choices β = (3, 0, 0, . . . ), β = (1, 1, 0, 0, . . . ) or β =

(0, 0, 1, 0, . . . ) all give

12P(4,0,0) + 3P(0,2,0) − 2P(1,0,1) = 0,

which is the first nontrivial relation among the Pµ’s (cited also in [4, Theorem 3.5])
and which corresponds to the first equation of the KP hierarchy, namely the classical
KP equation in Hirota’s form:

(D4
1 + 3D2

2 − 4D1D3) τ · τ = 0.

Unfortunately it is still unknown whether the relations given by (2.5) are enough
to ensure that the k-vector space spanned by the Pµ’s has finite dimension. If this
is the case then this argument proves that all KP τ -functions are theta types (for
the sake of definiteness when we speak of theta types we have to consider power
series in a finite number of variables, hence we must consider τ -functions for the KP
hierarchy which satisfy the extra condition of depending on finitely many variables).

In the particular case of functions of one variable, (2.5) reduces to

(2.6)
( n∑
i=0

(−2)i

i! (i+ 1)! (n− i)!

)
Pn+1

(
τ(x)

)
= 0, ∀n ∈ N, n ≡ 1 mod 2.
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Since it is not difficult to prove that the coefficient of Pn+1 in (2.6) is 6= 0 for every
integer n > 1 (see [5, Ch. 2, Lemma 4.9]), this shows that the polynomials Pn

(
τ(x)

)
span a vector space of dimension 1, hence all τ -functions of one variable are actually
theta types.

We only mention here that, by the analysis of some numerical computations, we
are led to believe that the same conclusion holds also for KP τ -functions depending
on finitely many variables (see [5, Ch. 2, Sect. 4]).

3. Soliton solutions of the KP hierarchy

In this section we will prove that a particular class of solutions of the KP hierarchy,
namely the soliton solutions, are theta types. This result will be achieved by using
a quite different approach to the problem from the one developed in the preceding
section.

First we start with an observation. Let f(t) be a function of a single variable
t and d/dt the usual derivation. By considering the formal Taylor expansion of
exp(λd/dt), it is easy to see that this operator acts by translation on t:

exp
(
λ
d

dt

)
f(t) = f(t+ λ).

Now we introduce the following infinite order differential operator, called a vertex
operator :

(3.1) Xx(λ) = exp
(
ξ(x, λ)

)
exp

(
−ξ(∂̃, λ−1)

)
,

where ∂̃ = (∂/∂x1, 2
−1∂/∂x2, 3

−1∂/∂x3, . . . ).
Since two operators of the type exp(ai∂/∂xi) and exp(aj∂/∂xj) commute, we have

exp
(
−ξ(∂̃, λ−1)

)
=
∞∏
i=1

exp
(
− 1

iλi
∂

∂xi

)
,

hence

exp
(
−ξ(∂̃, λ−1)

)
f(x1, x2, . . . ) = f

(
x1 −

1

λ
, x2 −

1

2λ2
, x3 −

1

3λ3
, . . .

)
.

In view of this last relation, (3.1) and (2.3), we deduce that

(3.2) w(x, λ) =
Xx(λ) τ(x)

τ(x)
,

where w is the wave function associated to the τ -function τ(x).
Analogously, if we consider the operator

(3.3) X∗x(λ) = exp
(
−ξ(x, λ)

)
exp

(
ξ(∂̃, λ−1)

)
,

we have

(3.4) w∗(x, λ) =
τ(x1 + 1/λ, x2 + 1/2λ2, . . . )

τ(x)
exp

(
−ξ(x, λ)

)
=
X∗x(λ) τ(x)

τ(x)
.
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w∗(x, λ) is called the adjoint wave function for the KP hierarchy.
A fundamental result, proved in [7, Sect. 1], states that the wave function and

the adjoint wave function for the KP hierarchy are characterized by the following
bilinear identity:

(3.5) Resλ=∞w(x, λ)w∗(y, λ) dλ = 0, ∀x, y.
For the sake of simplicity we introduce here the following notations:

(3.6)
Gx(λ) τ(x) = τ

(
x1 −

1

λ
, x2 −

1

2λ2
, . . .

)
,

G∗x(λ) τ(x) = τ
(
x1 +

1

λ
, x2 +

1

2λ2
, . . .

)
,

so that we have

(3.7)
Xx(λ) τ(x) = exp

(
ξ(x, λ)

)
Gx(λ) τ(x),

X∗x(λ) τ(x) = exp
(
−ξ(x, λ)

)
G∗x(λ) τ(x).

Now, using (3.2), (3.4) and (3.7), we can rewrite the bilinear identity (3.5) for τ -
functions as follows:

(3.8) Resλ=∞
(
Gx(λ) τ(x)

)(
G∗y(λ) τ(y)

)
exp

(
ξ(x− y, λ)

)
dλ = 0, ∀x, y.

This last relation is completely equivalent to the KP hierarchy (2.4).
Now we introduce another vertex operator, depending on two formal parameters

p and q:

(3.9) Xx(p, q) = exp
(
ξ(x, p)− ξ(x, q)

)
exp

(
−ξ(∂̃, p−1) + ξ(∂̃, q−1)

)
.

We claim that this operator acts infinitesimally on the space of τ -functions of the
KP hierarchy:

Proposition 3.10. – If τ(x) satisfies (3.8), the same holds also for Xx(p, q) τ(x).

Proof. – With the preceding notations, we have

Xx(p, q) τ(x) = exp
(
ξ(x, p)− ξ(x, q)

)
Gx(p)G

∗
x(q) τ(x).

So let us start with a τ -function τ(x). First we compute

Gx(λ)Xx(p, q) τ(x) = Gx(λ)
[

exp
(
ξ(x, p)− ξ(x, q)

)
Gx(p)G

∗
x(q) τ(x)

]
=

= exp
( ∞∑
i=1

(xi − 1/iλi) pi −
∞∑
i=1

(xi − 1/iλi) qi
)
Gx(λ)Gx(p)G

∗
x(q) τ(x),

and

G∗y(λ)Xy(p, q) τ(y) = G∗y(λ)
[

exp
(
ξ(y, p)− ξ(y, q)

)
Gy(p)G

∗
y(q) τ(y)

]
=

= exp
( ∞∑
i=1

(yi + 1/iλi) pi −
∞∑
i=1

(yi + 1/iλi) qi
)
G∗y(λ)Gy(p)G

∗
y(q) τ(y).
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From these we derive:

Resλ=∞
(
Gx(λ)Xx(p, q) τ(x)

)(
G∗y(λ)Xy(p, q) τ(y)

)
exp

(
ξ(x− y, λ)

)
dλ =

= Resλ=∞ exp
(
ξ(x, p)− ξ(x, q) + ξ(y, p)− ξ(y, q)

)(
Gx(λ)Gx(p)G

∗
x(q) τ(x)

)
·

·
(
G∗y(λ)Gy(p)G

∗
y(q) τ(y)

)
exp

(
ξ(x− y, λ)

)
dλ =

= exp
(
ξ(x, p)− ξ(x, q) + ξ(y, p)− ξ(y, q)

)
Gx(p)G

∗
x(q)Gy(p)G

∗
y(q)·

· Resλ=∞
(
Gx(λ) τ(x)

)(
G∗y(λ) τ(y)

)
exp

(
ξ(x− y, λ)

)
dλ = 0.

This is what we wished to prove. Q.E.D.

This result provides a good method for constructing τ -functions. To obtain a large
class of solutions we just let the operators X(p, q)’s act repeatedly on the constant
function 1, which obviously solves the KP hierarchy. Among the τ -functions so
constructed there are some of particular interest, namely the so-called n-solitons,
defined as follows:

(3.11) τ(x; a1, p1, q1; . . . ; an, pn, qn) = exp
( n∑
j=1

ajXx(pj, qj)
)

1.

For a detailed description of the full power of this approach to the study of τ -
functions of the KP hierarchy we refer the reader to [7] and, in particular, to [6].

From now on we let x denote finitely many variables (x1, . . . , xn) (we make this
restriction because we want to speak of theta types, but analogous results also
hold for infinitely many variables). If f(x) ∈ k[[x]], it follows immediately from
standard arguments on formal power series that Gx(λ) f(x) and G∗x(λ) f(x) be-
long to k[[λ−1]][[x]]. Having this result in hand, we now claim that Xx(λ) f(x) ∈
k((λ−1))[[x]], where k((λ−1)) denotes the ring of formal Laurent series in λ−1. To
prove this we need the following

Lemma 3.12. – Let ξ(x, λ) =
∑n

i=1 xiλ
i. Then we have the following expansion:

exp
(
ξ(x, λ)

)
=
∑
µ∈Nn

xµ

µ!
λ|µ|

∗
,

where |µ|∗ = µ1 + 2µ2 + · · ·+ nµn.

We omit the proof of this fact since it is straightforward.
Now we can prove the assertion preceding Lemma 3.12:

Proposition 3.13. – If f(x) ∈ k[[x]], then Xx(λ) f(x) ∈ k((λ−1))[[x]].

Proof. – We have already observed that Gx(λ) f(x) ∈ k[[λ−1]][[x]], so let

Gx(λ) f(x) =
∑
ν∈Nn

aν(λ
−1)xν ,

where aν(λ
−1) ∈ k[[λ−1]].
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Now, by the preceding Lemma, we have:

Xx(λ) f(x) = exp
(
ξ(x, λ)

)
Gx(λ) f(x) =

( ∑
µ∈Nn

xµ

µ!
λ|µ|

∗
)( ∑

ν∈Nn

aν(λ
−1)xν

)
=

=
∑
µ,ν

aν(λ
−1)λ|µ|

∗

µ!
xµ+ν .

If we set α = µ+ ν, we can rewrite the last expression as follows:∑
α∈Nn

( ∑
0≤µ≤α

aα−µ(λ−1)λ|µ|
∗

µ!

)
xα.

This is what we sought to prove, since the coefficient of xα is expressed as a finite
sum of elements in k((λ−1)). Q.E.D.

Let us consider the quotient field K = Q
(
k((λ−1))

)
: in view of the preceding

Proposition we have a function Xx(λ) : k[[x]] → K[[x]]. The fundamental fact is
that this vertex operator sends theta types to theta types. More precisely we have:

Theorem 3.14. – Let θ(x) ∈ k[[x]] be a holomorphic theta type. Then Xx(λ) θ(x)
is a holomorphic theta type defined over the field K = Q

(
k((λ−1))

)
.

Proof. – By definition θ(x) satisfies the holomorphic prosthaferesis

θ(x+ y) θ(x− y) ∈ k[[x]]⊗k k[[y]].

If we apply Gx(λ) to this relation, we get:(
Gx(λ) θ

)
(x+ y)

(
Gx(λ) θ

)
(x− y) ∈ Gx(λ)k[[x]]⊗k k[[y]] ↪→

↪→ K[[x]]⊗k k[[y]] ↪→ K[[x]]⊗K K[[y]].

Moreover we note that exp
(
ξ(x, λ)

)
∈ K[[x]], so that finally we have:(

Xx(λ) θ
)
(x+ y)

(
Xx(λ) θ

)
(x− y) =

= exp
(
ξ(x+ y, λ)

)(
Gx(λ) θ

)
(x+ y) exp

(
ξ(x− y, λ)

)(
Gx(λ) θ

)
(x− y) =

= exp
(
2ξ(x, λ)

)(
Gx(λ) θ

)
(x+ y)

(
Gx(λ) θ

)
(x− y) ∈ K[[x]]⊗K K[[y]]. Q.E.D.

It is now immediate to see that the same conclusion also holds for vertex operators
of the form X(p, q), after setting K = Q

(
k((p−1, q−1))

)
.

This finally proves that all τ -functions of the KP hierarchy (with the restriction
on the number of variables stated before) which can be obtained by the action of
vertex operators on the constant function 1, for instance, or, more generally, on τ -
functions which are already known to be theta types (polynomial or quasi-periodic
τ -functions, for example), are actually holomorphic theta types. In particular this
is true for soliton solutions of the KP hierarchy, as claimed before.

To end this Section we mention that the situation described above gets better if
we take k to be the complex field. In fact, holomorphic theta types on the complex
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field are actually entire functions, hence Gx(λ) θ(x) is a convergent power series for
every x ∈ C and λ ∈ C − {0}. This proves that Xx(λ) θ(x) ∈ C[[x]] for every
λ ∈ C − {0}, hence we can again take the complex field as the field K. So vertex
operators send theta types defined over the complex field to theta types over the
complex field.

Note added.

The result we have proved in Sect. 3 does not apply immediately to the special case
of solitons, since this requires the use of differential operators of the form exp

(
aX(p, q)

)
,

instead of the simpler X(p, q)’s. However it is true that the n-soliton τ -functions are theta
types, as may be shown in a direct way, using an explicit expression for these functions
and the prosthaferesis formula. We shall come on this in a forthcoming paper.
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