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Abstract. In this paper we prove that ifS is a Poisson surface, i.e., a smooth algebraic
surface with a Poisson structure, the Hilbert scheme of points ofS has a natural Pois-
son structure, induced by the one ofS. This generalizes previous results obtained by
A. Beauville [B1] and S. Mukai [M2] in the symplectic case, i.e., whenS is an abelian or
K3 surface. Finally we apply our results to give some examples of integrable Hamiltonian
systems naturally defined on these Hilbert schemes. In the simple caseS = P

2 we obtain
by this construction a large class of integrable systems, which includes the ones studied
by P. Vanhaecke in [V1] and, more generally, in [V2].

Introduction

Hilbert schemes of points of a smooth projective surfaceS, and their relations
with the moduli spaces of sheaves onS, have been intensively studied by
many authors (e.g., [F1], [F2], [I], [B1]). In particular, A. Beauville proved
in [B1] that the Hilbert scheme of points of an abelian or K3 surface carries
a natural (holomorphic) symplectic structure, induced by the one present on
the surface, thus giving examples of irreducible symplectic varieties of any
dimension. The same result follows also from a more general fact, proved by
Mukai in [M2], namely the fact that the choice of a symplectic structure on
a surfaceS determines in a natural way a symplectic structure on the moduli
space of simple sheaves onS.

In [Bo] we generalized Mukai’s result to the case of Poisson structures:
we proved that the choice of a Poisson structure on a surfaceS canonically
determines a Poisson structure on the moduli space of stable vector bundles
on S. It is natural then to ask if the same result holds also for the Hilbert
schemes of points ofS. In this paper we prove that this is actually the case.
Note that we cannot rely on the results proved in [Bo], because of the technical
assumption made there that sheaves are locally free, so we present here a more
direct proof.
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As an application of this result, we describe some naturally defined in-
tegrable Hamiltonian systems on the Hilbert schemes of points ofS. These
integrable systems generalize the ones considered by A. Beauville in [B2],
in the case of a symplectic (i.e., abelian or K3) surfaceS. Even in the sim-
ple caseS = P

2, we find in this way a large class of interesting integrable
systems, which includes the ones constructed by P. Vanhaecke in [V1] and,
more recently and in a more general set-up, in [V2]. We refer to these papers
for a detailed description of these integrable systems and of their relations to
more classical ones.

1. Hilbert schemes

In this section we shall briefly recall some basic results concerning Hilbert
schemes of points.

LetX be a smooth projective variety defined over an algebraically closed
fieldk and let us denote byX[d] = Hilbd(X) the Hilbert scheme parametrizing
0-dimensional subschemes ofX of lengthd. It is well known thatX[d] is a
projective scheme; it is smooth ifd ≤ 3 or dimX ≤ 2.

Let us denote byX(d) thed-fold symmetric power ofX, i.e., the geometric
quotient ofXd by the symmetric groupSd , acting by permuting the factors.
We shall denote byπ : Xd → X(d) the canonical projection and by1 ⊂ Xd

the ‘large diagonal’, i.e., the subset ofXd of elements(x1, . . . , xd) such that
xi = xj , for somei 6= j . X(d) is a projective variety whose singular locus
is the image1′ = π(1) of 1; it parametrizes effective 0-cycles of degree
d on X, i.e., formal linear combinations

∑
ni [xi ] of points xi in X with

coefficientsni ∈ N, such that
∑
ni = d.

By associating to each 0-dimensional subscheme its support (with mul-
tiplicities), we obtain a natural mapX[d] → X(d), sending a 0-dimensional
subschemeZ to

∑
x∈X length(OZ,x)[x], called the Hilbert-Chow morphism

(see, for instance, [F1], [F2], [I]). WhenX[d] is smooth (e.g., whenX is a
smooth projective surface), this map provides a natural desingularisation of
X(d).

2. Moduli spaces of sheaves

From now on we shall restrict to the case of a smooth projective surfaceS

defined overC. We shall denote byM(1, c1, c2) the moduli space of co-
herent rank-1 torsion-free sheaves onS with Chern classesc1 andc2. Since
all torsion-free sheaves of rank 1 are stable,M(1, c1, c2) is a (non-empty)
projective variety. The structure of a coherent rank-1 torsion-free sheaf onS

is well known:
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Lemma 2.1. LetF be a coherent torsion-free sheaf of rank1 onS. ThenF
is isomorphic to4 ⊗ L, where4 is a sheaf of ideals of finite colength (i.e.,
the sheaf of ideals of a0-dimensional scheme of finite length ofS) andL is
a locally free sheaf of rank1 on S. 4 andL are uniquely determined, up to
isomorphism, byF , and we have:c1(F ) = c1(L), c2(F ) = colength(4).

Proof. SinceF is coherent and torsion-free, its double dualF ∗∗ is locally
free of rank 1. We setL = F ∗∗, and consider the natural exact sequence

0 → F → L → T → 0, (2.1)

whereT = L/F is a torsion sheaf, supported at a finite number of points.
By tensoring (2.1) withL−1, we find thatF ⊗ L−1 is isomorphic to

the ideal sheaf4 of a 0-dimensional subscheme ofS of finite length. The
uniqueness of4 andL is now obvious. Finally, the expressions for the Chern
classes ofF in terms ofL and 4 follow from basic properties of Chern
classes. ut
Remark 2.2.We recall that, in the case of rank-r stable sheaves, there is a
map

det :M(r, c1, c2) → Picc1(S), (2.2)

which associates to a stable sheaf of rankr its determinant line bundle. For
r = 1 this map is the obvious one, which sends a sheafF ∼= 4 ⊗ L to
L. Its fibers are canonically identified with the moduli space parametrizing
isomorphism classes of ideals4 of colengthc2, i.e., with the Hilbert scheme
S [c2] .

In what follows we shall regard a point ofS [d] as being given either by a
sheaf of ideals4 of colengthd, or by a 0-dimensional subschemeZ of length
d of S. If 4 is an ideal sheaf, we denote byZ4 the corresponding subscheme
(viceversa,4Z will denote the ideal sheaf of the subschemeZ). From what
we have seen we derive the following well known result:

Corollary 2.3. There is a natural isomorphism

M(1, c1, c2) ∼= S [c2] × Picc1(S),

given by associating toF ∈ M(1, c1, c2) the pair(4, L)such thatF ∼= 4⊗L.

To simplify the notation, we shall denote byF (resp.4) either a rank-1
sheaf (resp. a sheaf of ideals) onS or the corresponding point ofM(1, c1, c2)

(resp. ofS [c2]). From deformation theory it follows that the tangent spaces to
the moduli spaceM(1, c1, c2) and to the Hilbert schemeS [c2] are given by

TF M(1, c1, c2) = Ext1(F ,F ), T4S
[c2] = Hom(4,OS/4).
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As a consequence of Corollary 2.3, we obtain a decomposition of tangent
spaces

Ext1(F ,F ) ∼= Hom(4,OS/4)⊕H 1(S,OS),

whereF ∼= 4 ⊗ L. It is not difficult to give a direct proof of this fact.
Now we shall derive some useful isomorphisms. Let4 ∈ S [d] and denote

byZ the corresponding closed subscheme ofS. We setOZ = OS/4.

Lemma 2.4. There are canonical isomorphisms

Hom(4,OZ) ∼= Ext1(OZ,OZ) ∼= Ext2(OZ,4).

Proof. First of all we note that Hom(OS,OZ) = Hom(OZ,OZ), because
everyOS-linear homomorphism fromOS to OZ vanishes on4. Hence, by
applying the functor Hom(·,OZ) to the exact sequence

0 → 4 → OS → OZ → 0, (2.3)

we obtain a long exact sequence

0 → Hom(4,OZ) → Ext1(OZ,OZ) → Ext1(OS,OZ).

Since Ext1(OS,OZ) = H 1(S,OZ) = 0, it follows that Hom(4,OZ) ∼=
Ext1(OZ,OZ).

To obtain the second isomorphism, we apply the functor Hom(OZ, ·) to
(2.3) obtaining the following long exact sequence

· · · → Ext1(OZ,OS) → Ext1(OZ,OZ) → Ext2(OZ,4)

→ Ext2(OZ,OS) → Ext2(OZ,OZ).

Now, by Grothendieck–Serre duality, we have

Ext1(OZ,OS) ∼= H 1(S,OZ ⊗ ωS)
∗ = 0,

Ext2(OZ,OS) ∼= H 0(S,OZ ⊗ ωS)
∗

and

Ext2(OZ,OZ) ∼= Hom(OZ,OZ ⊗ ωS)
∗ ∼= H 0(S,OZ ⊗ ωS)

∗.

The last map is then an isomorphism, and it follows that

Ext1(OZ,OZ) ∼= Ext2(OZ,4). ut
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Remark 2.5.For any coherent torsion-free sheafF and anyi ≥ 0 there is a
trace map (cf. [A2])

tri : Exti(F ,F ) → Hi(S,OS).

We shall denote by Exti0(F ,F ) the trace-free part of Exti (F ,F ), i.e., the
kernel of tri . From deformation theory it follows that Ext1

0(F ,F ) is canoni-
cally identified with the tangent space to the fiber det−1(ξ) of the determinant
map (2.2) at the pointF . Actually the map

tr1 : Ext1(F ,F ) → H 1(S,OS)

coincides with the tangent map, at the pointF , of the determinant map (2.2).
From this it follows that the tangent spaceT4S

[d] is canonically isomorphic
to Ext10(4,4), i.e., there is a canonical isomorphism

Hom(4,OZ) ∼= Ext10(4,4).

This last result may be proved directly as in [A2, Corollary 6.4].

By what we have seen, applying Grothendieck–Serre duality, we obtain:

Corollary 2.6. For 4 ∈ S [d] there are canonical isomorphisms

T4S
[d] ∼= Hom(4,OZ) ∼= Ext10(4,4) ∼= Ext1(OZ,OZ) ∼= Ext2(OZ,4),

and

T ∗
4 S

[d] ∼= Ext2(OZ,4 ⊗ ωS) ∼= Ext10(4,4 ⊗ ωS)

∼= Ext1(OZ,OZ ⊗ ωS) ∼= Hom(4,OZ ⊗ ωS).

3. Poisson structures onS[d]

Let us suppose now thatS is a Poisson surface, i.e., a smooth algebraic
surface such thatH 0(S, ω−1

S ) 6= 0 (cf. [Bo]), and let us fix a Poisson structure
s ∈ H 0(S, ω−1

S ). By recalling Corollary 2.6, we may define a map

Bs(4) : T ∗
4 S

[d] → T4S
[d]

by considering the map

Bs(4) : Hom(4,OZ ⊗ ωS) → Hom(4,OZ)

induced by the multiplication bys. The mapsBs(4) actually determine a
global map

Bs : T ∗S [d] → T S [d],

which is equivalent to giving a sectionθs ∈ H 0(S [d],⊗2T S [d]).
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By recalling the isomorphisms

Hom(4,OZ) ∼= Ext10(4,4)

and
Hom(4,OZ ⊗ ωS) ∼= Ext10(4,4 ⊗ ωS),

we see that the mapBs coincides with the analogous map defined in [Bo]
for the moduli space of stable sheaves onS. It was then proved thatBs is
antisymmetric, henceθs is actually a global section of∧2T S [d] .

To prove thatθs defines a Poisson structure onS [d] it remains to prove that
the bracket defined by{f, g}s = θs(df ∧dg) satisfies the Jacobi identity. We
note that in [Bo] this result was proved under the hypothesis that the sheaves
involved are locally free, hence it is not directly applicable here. For this
reason we shall use a different approach to the problem.

Proposition 3.1. The bivector fieldθs defines a Poisson structure onS [d] .

Proof. By what we have previously seen, we have only to prove that the
Poisson bracket defined byθs satisfies the Jacobi identity

{f, {g, h}s}s + {g, {h, f }s}s + {h, {f, g}s}s = 0.

In [Bo] we have defined an operator

d̃ : H 0(S [d],∧2T S [d]) → H 0(S [d],∧3T S [d]),

and we have proved that the Jacobi identity for{·, ·}s is equivalent to the
vanishing ofd̃θs (which, in turn, is equivalent to the vanishing of the classical
Schouten bracket [θs, θs ]).

If we denote bySd the d-fold product ofS, the Poisson structures :
T ∗S → T S of S determines a Poisson structuresd : T ∗Sd = ⊕d

i=1 T
∗S →

T Sd = ⊕d
i=1 T S, which is invariant for the action of the symmetric group

Sd , hence descends to the quotientS(d). The Hilbert-Chow morphismπ :
S [d] → S(d) is an isomorphism on the inverse image of the complement of
1′ in S(d), and the Poisson structure onS(d) \1′ induced bys coincides with
the restriction ofθs onπ−1(S(d) \1′), henced̃θs |π−1(S(d)\1′) = 0. Since this
is an open dense subset ofS [d] , it follows that d̃θs vanishes identically on
S [d] . ut

We can now investigate the rank of the Poisson structureBs , i.e., the
dimension of the symplectic leaves ofS [d] .

Lemma 3.2. Let4 ∈ S [d] . We have

kerBs(4) = Hom(4,TorOS
1 (OZ,OD)),

whereZ = Z4 is the0-dimensional subscheme defined by4 andD is the
divisor ofs.
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Proof. By tensoring byOZ = OS/4 the exact sequence

0 → ωS
s→ OS → OD → 0,

we obtain the following exact sequence:

0 → TorOS
1 (OZ,OD) → ωS ⊗ OZ

s→ OZ → OD ⊗ OZ → 0.

The result follows now by applying to this sequence the functor Hom(4, ·).
ut

Remark 3.3.The sheafTorOS
1 (OZ,OD) is supported atZ∩D. It follows that,

if Z∩D = ∅, the mapBs(4) is injective (hence bijective). This means that the
Poisson structureθs is nondegenerate, hence induces a symplectic structure,
on the open subset ofS [d] consisting of points4 such thatZ4 ∩D = ∅.

If the subschemeZ4 of S [d] consists ofd distinct pointsP1, . . . , Pd , we
have

T4S
[d] ∼= TP1S ⊕ · · · ⊕ TPdS.

In this case the mapBs(4) : T ∗
4 S

[d] → T4S
[d] is simply the direct sum of

the mapss(Pi) : T ∗
Pi
S → TPiS defined by the sections. The maps(Pi) :

T ∗
Pi
S → TPiS is obviously a bijection ifPi 6∈ supp(D), otherwise it is the

zero map. This implies thatBs(4) is a bijection ifZ4 ∩ D = ∅, as we have
seen in the preceding remark. This also shows that the rank ofBs is given by

rk(Bs(4)) = 2d − 2 · #(Z4 ∩D),

i.e., the rank ofBs decreases by 2 for each point ofZ4 which happens to
belong to the support ofD.

If we set

Hl = {4 ∈ S [d] | rk(Bs(4)) = 2d − 2l },
we obtain a stratification ofS [d] by closed subsets:

∅ ⊂ Hd ⊂ Hd−1 ⊂ · · · ⊂ H1 ⊂ H0 = S [d] .

The generic point ofHl is given by a 0-dimensional subschemeZ of S
consisting ofd distinct points such thatl of them belong to the support ofD.

As previously seen, the Poisson structureθs induces a symplectic structure
on the open subsetS [d] \H1.
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4. Integrable systems

In this section we give some examples of integrable Hamiltonian systems
defined on a dense open subset of the Hilbert scheme of points ofS. For the
definition and basic properties of integrable systems in the algebraic set-up
we refer, for instance, to [V1].

Let S be a Poisson surface, with Poisson structure given by a section
s ∈ H 0(S, ω−1

S ), and letL be a line bundle onS. If L is sufficiently ample,
we haveg ≤ dim |L|, whereg = 1+ 1

2(L.L+L.ωS) is the genus of a curve
C ∈ |L|.

Let us choose a linear systemV ⊂ |L| of dimensiong and let us denote
by U the open subset ofV consisting of integral curves. We also assume
that, for any curveC ∈ U ,C is not contained in the divisorD defined by the
sections.

For any integral curveC ∈ U and any integerd, the varietyJ d(C),
parametrizing invertible sheaves of degreed on C, has a natural compact-
ification J d(C), parametrizing torsion-free sheaves of rank 1 and degreed

on C. The family (J d(C))|C∈U is organized in a fibrationH : Jd → U ,
called the “relative compactified Jacobian”, whose fiber over a curveC ∈ U
isH−1(C) = J d(C) (the relative compactified JacobianJd was constructed
in great generality by Altman and Kleiman in [AK]).

If d = g, there is a birational map

S [g] Jgp p p p p p p-ψ

defined as follows: ifZ is a subscheme of lengthg ofS, consisting ofg distinct
points, such that there exists a unique curveC ∈ U containing it,ψ(Z) is
the divisor onC determined byZ (note that this map may be extended also
to some subschemesZ which do not consist of distinct points). If we denote
by

S [g] Up p p p p p p-H ′
(4.1)

the rational map which associates to a subschemeZ ofS the curveC described
above, we get a commutative diagram

S [g] Jg

U.

p p p p p p p p p p p p p-ψ

p

p

p

p

pRH ′
�

��	 H
(4.2)

Now we need the following result:

Lemma 4.1. The relative compactified JacobianJg is a smooth subscheme
of the moduli space of simple sheaves onS.
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Proof. LetF ∈ Jg. F is a simple sheaf onS, supported on a curveC ∈ U . It
is known (cf. [A1]) that the obstruction to the smoothness of the moduli space
of simple sheaves onS at the pointF lies in Ext20(F ,F ), which denotes the
trace-free part of Ext2(F ,F ). By Grothendieck–Serre duality, we have

Ext20(F ,F ) ∼= Hom0(F ,F ⊗ ωS)
∗.

Tensoring byF the exact sequence

0 → ωS
s→ OS → OD → 0

and applying the functor Hom0(F , ·), we get an injection

0 → Hom0(F ,F ⊗ ωS) → Hom0(F ,F ).

(Note that in order for this last map to be injective, we need the hypothesis
that the support ofF and the divisorD have no common component, which
is true by our assumptions on the curves inU .)

Now, by recalling thatF is a simple sheaf, it follows that Hom0(F ,F ⊗
ωS) = 0, hence deformations ofF are unobstructed.ut

By an easy generalization of the results of [M2] (cf. also [Bo]), and by the
result proved in the above lemma, it follows that there is a natural bivector
field θs ∈ H 0(Jg,∧2TJg) onJg, induced by the Poisson structure ofS (this
actually holds for the smooth part of the moduli space of simple sheaves on
S). It is now immediate to recognize that the natural Poisson structure ofS [g]

corresponds, via the birational isomorphismψ , to this bivector fieldθs onJg,
henceθs too is a Poisson structure. Now the proof of [B2, Proposition 2] can
be easily adapted to prove thatH : Jg → U is a Lagrangian fibration. From
the commutativity of the diagram (4.2), it follows that the map (4.1) defines
an integrable Hamiltonian system on a dense open subset ofS [g] whose fibers
are birationally isomorphic to the Jacobians of the curvesC ∈ U .

Remark 4.2.If d 6= g, and if we choose ad-dimensional linear system
V ⊂ |L| and denote, as before, byU the open subset ofV consisting of
integral curves, we may still define the rational map

S [g] U.p p p p p p p-H ′

In this situation the fibers ofH ′ are no longer birationally isomorphic to the
Jacobians of the curves inU but, nevertheless, the component functions of
H ′ are in involution with respect to the natural Poisson structure ofS [d] .

Remark 4.3.Note that these results do not depend on the choice of the Pois-
son structure onS, i.e., the mapH ′ defines an integrable Hamiltonian system
on a dense open subset ofS [d] for any Poisson structures ∈ H 0(S, ω−1

S ).
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As an example, we consider now the caseS = P
2. If we take as the

anticanonical divisorD a triple line, we may choose homogeneous coordi-
nates(x0 : x1 : x2) such that the sections definingD is given bys = x3

0.
The Poisson structure defined bys on P

2 induces a symplectic structure on
C

2 = P
2\D. If we consider the coordinates(X, Y )onC

2 given byX = x1/x0

andY = x2/x0, it is immediate to see that this symplectic structure is the
usual one, given by the 2-formdX ∧ dY .

Now, for any integersn andd, with n ≥ 1 andd ≤ 1
2(n

2 + 3n), let us
choose ad-dimensional familyC(h1, . . . , hd) of plane curves of degreen,
depending linearly ond parametersh1, . . . , hd , i.e., let us suppose that the
equation of this family of curves has the form

C(h1, . . . , hd) :
d∑

i=1

hipi(X, Y ) = q(X, Y ),

wherepi andq are polynomials of degree≤ n (but such thatC(h1, . . . , hd)

has degreen).
We may define a rational map

(C2)(d) C
dp p p p p p p-H (4.3)

by sendingP1 + · · · + Pd to the d-tuple (h1, . . . , hd) which determines
the unique curve of the familyC(h1, . . . , hd) passing through the points
P1, . . . , Pd (this rational map can be defined also on the Hilbert scheme
(C2)[d] ).

As a corollary of the preceding results, we have:

Proposition 4.4. The component functionsh1, . . . , hd of the rational map
H in (4.3) are in involution with respect to the natural symplectic structure
induced on(C2)(d) by the usual symplectic structure onC

2, hence define an
integrable Hamiltonian system on an open subset of(C2)(d). Moreover, if the
general curveC of the family is smooth then, if we denote byg the genus of
the smooth completion ofC, and suppose thatg 6= 0 and taked = g, the
fiber ofH over a generic curveC is birationally isomorphic to the Jacobian
variety ofC.

Remark 4.5.As previously remarked (cf. Remark 4.3), the results stated in
the preceding proposition hold true for any Poisson structure onC

2, more
precisely, even if the Hamiltonian vector fields of the functionsh1, . . . , hd
actually depend on the Poisson structure, we always obtain an integrable
Hamiltonian system on an open subset of(C2)(d).

Remark 4.6.We remark here that similar integrable systems onC
2d have

been constructed, in a different context, by P. Vanhaecke. For a detailed
description of these integrable systems we refer to [V1, Chapter III] and
[V2].
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