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Abstract. In this paper we prove that § is a Poisson surface, i.e., a smooth algebraic
surface with a Poisson structure, the Hilbert scheme of point$ leds a natural Pois-

son structure, induced by the one $f This generalizes previous results obtained by

A. Beauville [B1] and S. Mukai [M2] in the symplectic case, i.e., wifeis an abelian or

K3 surface. Finally we apply our results to give some examples of integrable Hamiltonian
systems naturally defined on these Hilbert schemes. In the simpleS cag® we obtain

by this construction a large class of integrable systems, which includes the ones studied
by P. Vanhaecke in [V1] and, more generally, in [V2].

Introduction

Hilbert schemes of points of a smooth projective surf@nd their relations
with the moduli spaces of sheaves §nhave been intensively studied by
many authors (e.g., [F1], [F2], [I], [B1]). In particular, A. Beauville proved
in [B1] that the Hilbert scheme of points of an abelian or K3 surface carries
a natural (holomorphic) symplectic structure, induced by the one present on
the surface, thus giving examples of irreducible symplectic varieties of any
dimension. The same result follows also from a more general fact, proved by
Mukai in [M2], namely the fact that the choice of a symplectic structure on
a surfaceS determines in a natural way a symplectic structure on the moduli
space of simple sheaves Sn

In [Bo] we generalized Mukai’s result to the case of Poisson structures:
we proved that the choice of a Poisson structure on a susfaamonically
determines a Poisson structure on the moduli space of stable vector bundles
on S. It is natural then to ask if the same result holds also for the Hilbert
schemes of points . In this paper we prove that this is actually the case.
Note that we cannotrely on the results proved in [Bo], because of the technical
assumption made there that sheaves are locally free, so we present here amore
direct proof.
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As an application of this result, we describe some naturally defined in-
tegrable Hamiltonian systems on the Hilbert schemes of poings dhese
integrable systems generalize the ones considered by A. Beauville in [B2],
in the case of a symplectic (i.e., abelian or K3) surfac&ven in the sim-
ple caseS = IP?, we find in this way a large class of interesting integrable
systems, which includes the ones constructed by P. Vanhaecke in [V1] and,
more recently and in a more general set-up, in [V2]. We refer to these papers
for a detailed description of these integrable systems and of their relations to
more classical ones.

1. Hilbert schemes

In this section we shall briefly recall some basic results concerning Hilbert
schemes of points.

Let X be a smooth projective variety defined over an algebraically closed
fieldk and letus denote by!¥ = Hilb¢ (X) the Hilbert scheme parametrizing
0-dimensional subschemes ¥fof lengthd. It is well known thatx! is a
projective scheme; it is smoothdf< 3 or dimX < 2.

Let us denote by ¥ thed-fold symmetric power oX, i.e., the geometric
quotient ofX“ by the symmetric grou,, acting by permuting the factors.
We shall denote by : X? — X@ the canonical projection and by c X<
the ‘large diagonal’, i.e., the subset®f of elementgxy, ..., x;) such that
x; = x;, for somei # j. X@ is a projective variety whose singular locus
is the imageA’ = w(A) of A; it parametrizes effective 0-cycles of degree
d on X, i.e., formal linear combinationy_ n;[x;] of points x; in X with
coefficients; € N, such thad_n; = d.

By associating to each 0-dimensional subscheme its support (with mul-
tiplicities), we obtain a natural mapl“l — X@, sending a 0-dimensional
subschem& to ) _, length(@ ,)[x], called the Hilbert-Chow morphism
(see, for instance, [F1], [F2], [1]). Whe&!“! is smooth (e.g., whei is a
smooth projective surface), this map provides a natural desingularisation of
X@,

2. Moduli spaces of sheaves

From now on we shall restrict to the case of a smooth projective sufface
defined overC. We shall denote byM (1, ¢, ¢2) the moduli space of co-
herent rank-1 torsion-free sheaves$with Chern classes; andc,. Since

all torsion-free sheaves of rank 1 are stab¥e(l, c1, ¢2) is a (non-empty)
projective variety. The structure of a coherent rank-1 torsion-free shegf on
is well known:
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Lemma 2.1. Let ¥ be a coherent torsion-free sheaf of rahkn S. Then¥

is isomorphic toI ® L, wherel is a sheaf of ideals of finite colength (i.e.,
the sheaf of ideals of @dimensional scheme of finite lengthYfand L is

a locally free sheaf of rank on S. T and L are uniquely determined, up to
isomorphism, by¥, and we havec1(F) = c1(L), c2(F) = colengti( ).

Proof. Since¥ is coherent and torsion-free, its double d&&l* is locally
free of rank 1. We sek = #**, and consider the natural exact sequence

0O—->F >L—>7 —0, (2.1)

whereJ = L /¥ is a torsion sheaf, supported at a finite number of points.

By tensoring (2.1) withL =, we find that¥ ® L~ is isomorphic to
the ideal sheafl of a 0-dimensional subscheme ®fof finite length. The
uniqueness of andL is now obvious. Finally, the expressions for the Chern
classes off in terms of L and I follow from basic properties of Chern
classes. O

Remark 2.2.We recall that, in the case of ramkstable sheaves, there is a
map

det : M (7, c1, c2) — Pict(S), (2.2)

which associates to a stable sheaf of rarils determinant line bundle. For
r = 1 this map is the obvious one, which sends a sl#aE T ® L to
L. Its fibers are canonically identified with the moduli space parametrizing

isomorphism classes of ideal®f colengthes, i.e., with the Hilbert scheme
Sleal

In what follows we shall regard a point 6! as being given either by a
sheaf of ideald of colengthd, or by a O-dimensional subscheifef length
d of S.If Tis an ideal sheaf, we denote Ey the corresponding subscheme
(viceversa,lz will denote the ideal sheaf of the subsche#)e From what
we have seen we derive the following well known result:

Corollary 2.3. There is a natural isomorphism
M(1, c1, cp) = Sl x PicL(S),
given by associatingt® € M (1, c1, c2) the pair(Z, L) suchthatF = IQL.

To simplify the notation, we shall denote 5% (resp.1) either a rank-1
sheaf (resp. a sheaf of ideals) ®or the corresponding point ot (1, ¢y, ¢2)
(resp. ofsle2). From deformation theory it follows that the tangent spaces to
the moduli spaceM (1, c1, ¢») and to the Hilbert schemsi<?l are given by

Tr M(L, 1, c2) = ExtY(F, F), TS = Hom(Z, 9s/1).
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As a consequence of Corollary 2.3, we obtain a decomposition of tangent
spaces

Ext'(F, F) = Hom(Z, Os/1) ® H(S, Oy),

wheref# = I'® L. Itis not difficult to give a direct proof of this fact.
Now we shall derive some useful isomorphisms. Let SI“! and denote
by Z the corresponding closed subschemd& diNe set®; = O/ 1.

Lemma 2.4. There are canonical isomorphisms
Hom(Z, 9z) = Ext}(0z, 9z) = Ext®*(Oz, 1).

Proof. First of all we note that Hog0s, @,) = Hom(Oz, @), because
every Os-linear homomorphism fron® to O vanishes onl. Hence, by
applying the functor Horf, @) to the exact sequence

0->1—-05s—>0;—0, (2.3)
we obtain a long exact sequence

0 — Hom(Z, 9,) — ExtY(0, ©,) — ExtY(Og, O2).

Since Ext(0s, 07) = HY(S,0z) = 0, it follows that Hom(Z, ©;) =
Ext}(02, 02).

To obtain the second isomorphism, we apply the functor kom ) to
(2.3) obtaining the following long exact sequence

o> ExtY 0y, O5) > ExtH (02, 0) — Ext?(Oz, 1)
— Ext?’(Oyz, O5) — Ext?(Oz, Oy).

Now, by Grothendieck—Serre duality, we have

Ext'(0z, O5) = HY(S, 07 ® ws)* =0,
Ext?(07, O5) = HY(S, 97 ® ws)*

and
Ext*(Oz, O7) = Hom(Oz, 07 ® ws)* = HO(S, 07 ® ws)*.
The last map is then an isomorphism, and it follows that

Ext} (02, O7) = Ext? (04, 1). o
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Remark 2.5.For any coherent torsion-free sheffand anyi > 0 there is a
trace map (cf. [A2])

tr' : Ext(F, F) — H (S, Oy).

We shall denote by E4F, F) the trace-free part of EXtF, ¥), i.e., the

kernel of tf. From deformation theory it follows that EXtF, ) is canoni-

cally identified with the tangent space to the fiberdé}) of the determinant
map (2.2) at the poinF . Actually the map

trl : Ext}(F, F) — H(S, Oy)

coincides with the tangent map, at the pagitof the determinant map (2.2).
From this it follows that the tangent spa€gsl4! is canonically isomorphic
to EX%(I, 1), i.e., there is a canonical isomorphism

Hom(Z, 0) = Ext5(Z, D).
This last result may be proved directly as in [A2, Corollary 6.4].
By what we have seen, applying Grothendieck—Serre duality, we obtain:
Corollary 2.6. For I e Si there are canonical isomorphisms
TS = Hom(Z, 07) = Ext}(, 1) = Ext (07, 02) = Ext*(0y, D),
and

T3S = Ext?(07, I ® ws) = EXE (I, I ® wy)
= Ext' (02, 07 ® ws) = Hom(Z, 07 ® wy).

3. Poisson structures ors!9]

Let us suppose now that is a Poisson surface, i.e., a smooth algebraic
surface such tha°(S, wg*) # 0 (cf. [Bo]), and let us fix a Poisson structure
s € HO(S, a)gl). By recalling Corollary 2.6, we may define a map

By(D) : T} S — 1,81
by considering the map
B, (1) : Hom(Z, Oz ® ws) — HoM(I, Oz)

induced by the multiplication by. The mapsB,(1) actually determine a
global map
B, : T*S — 15l

which is equivalent to giving a sectigly € HO(S!, @27 sl4),
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By recalling the isomorphisms
Hom(Z, 07) = Ext3(Z, I)

and
Hom(Z, O, ® ws) = EX(I, I ® ws),

we see that the map, coincides with the analogous map defined in [Bo]
for the moduli space of stable sheaves$rt was then proved thas, is
antisymmetric, hence, is actually a global section of?7 sl

To prove tha®, defines a Poisson structure §! it remains to prove that
the bracket defined byf, g}, = 6,(df A dg) satisfies the Jacobi identity. We
note that in [Bo] this result was proved under the hypothesis that the sheaves
involved are locally free, hence it is not directly applicable here. For this
reason we shall use a different approach to the problem.

Proposition 3.1. The bivector field, defines a Poisson structure ¢,

Proof. By what we have previously seen, we have only to prove that the
Poisson bracket defined By satisfies the Jacobi identity

{f. {8 hisks +{g. {h, flshs +{h. (S, 8)s)s = 0.
In [Bo] we have defined an operator
d: HO(SW W, A1 sty - HO(SI AST sl

and we have proved that the Jacobi identity for}, is equivalent to the
vanishing ofZ6, (which, in turn, is equivalent to the vanishing of the classical
Schouten brackeb], 6;]).

If we denote byS? the d-fold product of S, the Poisson structure :
T*S — TS of S determines a Poisson structufe: T*5¢ = @, T*S —
TS5 = @"_, TS, which is invariant for the action of the symmetric group
&4, hence descends to the quotigitt’. The Hilbert-Chow morphisnr :

Sl . §@ is an isomorphism on the inverse image of the complement of
A’in @ and the Poisson structure 8ff \ A’ induced by coincides with

the restriction of, onz~1(S@ \ A’), hencedb|,-1swn a1, = 0. Since this

is an open dense subset $f!, it follows thatd6, vanishes identically on
skl o

We can now investigate the rank of the Poisson strucBytd.e., the
dimension of the symplectic leaves §}1.

Lemma 3.2. Let I € S, We have
ker B, (1) = Hom(Z, Tor{*(9z, Op)),

whereZ = Z; is the0-dimensional subscheme defineddbgnd D is the
divisor ofs.
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Proof. By tensoring by9; = @/ the exact sequence
0— ws — Os — Op — 0,
we obtain the following exact sequence:
0— J0r¥5 (07, 0p) = s ® 07 > Oz — Op @ O7 — 0.

The result follows now by applying to this sequence the functor HHm.
O

Remark 3.3.The sheaﬁ‘orfs (Oz, Op)issupported aZ N D. It follows that,

if ZND = ¢, the mapB, (1) is injective (hence bijective). This means that the
Poisson structure, is nondegenerate, hence induces a symplectic structure,
on the open subset 6f4 consisting of pointd such thatz; N D = @.

If the subschem&; of Sl consists off distinct pointsps, ..., Py, we
have

TS =TpS®-- & Tp,S.

In this case the map, (1) : T; S — 7,5 is simply the direct sum of
the mapss(P;) : T3S — TpS defined by the section. The maps(P;) :

T5S — TpS is obviously a bijection ifP; ¢ supp D), otherwise it is the
zero map. This implies tha, (1) is a bijection ifZ; N D = @, as we have
seen in the preceding remark. This also shows that the raBkisfgiven by

rk(Bs(1)) =2d —2-#(Z; N D),

i.e., the rank ofB; decreases by 2 for each point 8f which happens to
belong to the support ab.
If we set

H ={Ie S rk(B,(I) =2d -2},

we obtain a stratification of(“! by closed subsets:
¥ CHyCHy1C---C HyC Hy= S,

The generic point off; is given by a 0-dimensional subscherfieof S
consisting of/ distinct points such thatof them belong to the support &f.

As previously seen, the Poisson structjrieduces a symplectic structure
on the open subsét?! \ H;.



524 F. Bottacin

4. Integrable systems

In this section we give some examples of integrable Hamiltonian systems
defined on a dense open subset of the Hilbert scheme of poistdof the
definition and basic properties of integrable systems in the algebraic set-up
we refer, for instance, to [V1].

Let S be a Poisson surface, with Poisson structure given by a section
s € HO(S, wgl), and letL be a line bundle o. If L is sufficiently ample,
we haveg < dim|L|, whereg = 1+ 3(L.L + L.wy) is the genus of a curve
Ce|L|.

Let us choose a linear systehc |L| of dimensiong and let us denote
by U the open subset df consisting of integral curves. We also assume
that, for any curve” € U, C is not contained in the divisdp defined by the
sections.

For any integral curveC e U and any integet/, the varietyJ¢(C),
parametrizing invertible sheaves of degreen C, has a natural compact-
ification J4(C), parametrizing torsion-free sheaves of rank 1 and degree
on C. The family (J4(C))|cey is organized in a fibratio : §¢ — U,
called the “relative compactified Jacobian”, whose fiber over a oreel/
is H~1(C) = J4(C) (the relative compactified Jacobigf was constructed
in great generality by Altman and Kleiman in [AK]).

If d = g, there is a birational map

defined as follows: i¥ is a subscheme of leng#iof S, consisting of distinct
points, such that there exists a unique cutve U containing it,/(Z) is
the divisor onC determined byZ (note that this map may be extended also
to some subscheméswhich do not consist of distinct points). If we denote

by
glel ey (4.1)

the rational map which associates to a subsch#ofes the curveC described
above, we get a commutative diagram

Now we need the following result:

Lemma 4.1. The relative compactified Jacobigff is a smooth subscheme
of the moduli space of simple sheavesSon
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Proof. Let ¥ € ¢8. ¥ is asimple sheaf ofi, supportedonacurné € U. It

is known (cf. [A1]) that the obstruction to the smoothness of the moduli space
of simple sheaves ofiat the point# lies in Exg(¥, ), which denotes the
trace-free part of EX(#, ¥). By Grothendieck—Serre duality, we have

EXG(F, F) = Homo(F, F ® ws)*.
Tensoring byF the exact sequence
O—>wsi>(95—>(9D—>O
and applying the functor HogdF , -), we get an injection
0 — Homp(F, ¥ ® ws) — Homp(F, F).

(Note that in order for this last map to be injective, we need the hypothesis
that the support of” and the divisoD have no common component, which
is true by our assumptions on the curvegin)
Now, by recalling thatF is a simple sheaf, it follows that HoyF , ¥ ®
ws) = 0, hence deformations &f are unobstructed. o

By an easy generalization of the results of [M2] (cf. also [B0]), and by the
result proved in the above lemma, it follows that there is a natural bivector
fieldg, € H°(g¢, A°T g¢) on g¢, induced by the Poisson structureSfthis
actually holds for the smooth part of the moduli space of simple sheaves on
S). Itis now immediate to recognize that the natural Poisson structufiélof
corresponds, via the birational isomorphignto this bivector field, on g4,
hencey, too is a Poisson structure. Now the proof of [B2, Proposition 2] can
be easily adapted to prove thdt: g8 — U is a Lagrangian fibration. From
the commutativity of the diagram (4.2), it follows that the map (4.1) defines
an integrable Hamiltonian system on a dense open subskt efhose fibers
are birationally isomorphic to the Jacobians of the cu@es U.

Remark 4.2.I1f d # g, and if we choose @-dimensional linear system
V C |L| and denote, as before, iy the open subset of consisting of
integral curves, we may still define the rational map

In this situation the fibers aff’ are no longer birationally isomorphic to the
Jacobians of the curves i but, nevertheless, the component functions of
H' are in involution with respect to the natural Poisson structurg‘df

Remark 4.3.Note that these results do not depend on the choice of the Pois-
son structure o8, i.e., the mag’ defines an integrable Hamiltonian system
on a dense open subset$f! for any Poisson structutee HO(S, a)gl).
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As an example, we consider now the case= P2, If we take as the
anticanonical divisoiD a triple line, we may choose homogeneous coordi-
nates(xop : x1 : x2) such that the sectiosndefining D is given bys = xg.
The Poisson structure defined byn P? induces a symplectic structure on
C? = P?\ D. Ifwe consider the coordinaté€X, ¥) onC? given byX = x1/xgo
andY = xu/xo, it is immediate to see that this symplectic structure is the
usual one, given by the 2-forehX A dY.

Now, for any integera andd, withn > 1 andd < %(n2 + 3n), let us
choose al-dimensional familyC(k;, ..., hy) of plane curves of degreeg
depending linearly od@ parameter4y, ..., hy, i.€., let us suppose that the
equation of this family of curves has the form

d
Clha, ... ha) Y hipi(X,Y) =q(X,Y),
i=1
wherep; andg are polynomials of degree n (but such thaC (4, ..., hy)
has degree).
We may define a rational map

@@ . (4.3)

by sendingP; + --- + P, to thed-tuple (hy, ..., h;) which determines
the unique curve of the familg (h4, ..., hy) passing through the points
P, ..., P; (this rational map can be defined also on the Hilbert scheme
(CH),

As a corollary of the preceding results, we have:
Proposition 4.4. The component functions, . .., h, of the rational map
H in (4.3) are in involution with respect to the natural symplectic structure
induced on(C?)“) by the usual symplectic structure @1, hence define an
integrable Hamiltonian system on an open subs¢tséj@. Moreover, if the
general curveC of the family is smooth then, if we denotedothe genus of
the smooth completion @f, and suppose that # 0 and taked = g, the
fiber of H over a generic curve€ is birationally isomorphic to the Jacobian
variety ofC.

Remark 4.5.As previously remarked (cf. Remark 4.3), the results stated in
the preceding proposition hold true for any Poisson structur€gmore
precisely, even if the Hamiltonian vector fields of the functiéns.. ., hy
actually depend on the Poisson structure, we always obtain an integrable
Hamiltonian system on an open subse{©f)@.

Remark 4.6.We remark here that similar integrable systems@3f have

been constructed, in a different context, by P. Vanhaecke. For a detailed
description of these integrable systems we refer to [V1, Chapter Ill] and
[vV2].
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