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Abstract. Given a smooth morphism of analytic spaces π : X → Y , we
introduce the notion of a relative Lie algebroid (A, ]) over X. By replacing
the relative tangent sheaf TX/Y with the Lie algebroid A, we define the no-
tion of a relative (A, ])-connection on a quasi-coherent OX -module E . Then,
we define the (A, ])-Atiyah class of E as the obstruction to the existence of
a holomorphic (A, ])-connection on E . Many results of the classical theory
of connections can be restated in the more general setting of Lie algebroid
connections. As an application we prove the following result.

Let X be a complex manifold and (A, ]) a Lie algebroid over X. For
any quasi-coherent sheaf of commutative OX -algebras F , let us write gi =
Hi−1(X,A⊗ F). The (A, ])-Atiyah class of A yields maps gi ⊗ gj → gi+j .
These maps define a graded Lie algebra structure on the graded vector space
g• =

⊕
i gi. In a similar way, for any holomorphic vector bundle E over X,

let us write Vj = Hj−1(X,E⊗F). Then, for any i and j, the (A, ])-Atiyah
class of E yields a map gi ⊗ Vj → Vi+j , and these maps define a structure
of graded module on the graded vector space V • =

⊕
j Vj , over the graded

Lie algebra g•. This generalizes a similar result proved by Kapranov in [K].
Similar results have been obtained by Chen, Stiénon and Xu in [CSX], by
using different techniques.

Introduction

The theory of connections is a central topic in differential geometry. A
rather natural generalization of the classical notion of connection on a vector
or principal bundle over a differentiable manifold X is obtained by replacing
the tangent bundle of X with a Lie algebroid (A, ]) over X; this leads to the
notion of a Lie algebroid connection.

Most of the results of the classical theory of connections (e.g., the Chern–
Weil theory of characteristic classes) extend to Lie algebroid connections. We
refer to [M] for an introduction to Lie algebroids and to [LF] for a detailed
account on Lie algebroid connections.

While Lie algebroid connections on a smooth vector bundle over a differ-
entiable manifold X always exist (this is a consequence of the existence of
partitions of unity on X), when X is a complex manifold there is an obstruc-
tion to the existence of a global holomorphic Lie algebroid connection on a
holomorphic vector bundle E over X. This obstruction is given by a coho-
mology class that is the analogue of the Atiyah class of E; we call it the
(A, ])-Atiyah class of E. As a special case, if we take E = A, we may look at
the (A, ])-Atiyah class of A itself.

Key words and phrases. Atiyah classes, connections, differential forms, jets, Lie
algebroids.
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As happens for their classical counterparts, the new Atiyah classes arising
from Lie algebroid connections present very interesting features.

In the classical case, i.e., when the Lie algebroid (A, ]) is the tangent bundle
of a complex manifold X, M. Kapranov [K] (inspired by ideas of M. Kont-
sevich) discovered the fundamental role played by the Atiyah class of TX in
the construction of the topological invariants of 3-dimensional manifolds, pre-
viously introduced by L. Rozansky and E. Witten. One of the main results
contained in Kapranov’s paper may be restated as follows. Let TX [−1] denotes
the shifted tangent sheaf of X, considered as an object in the derived category
D+(X) of bounded below complexes of sheaves of OX-modules with coherent
cohomology. Then the Atiyah class of the tangent bundle of X determines
a map TX [−1] ⊗ TX [−1] → TX [−1], which makes TX [−1] into a Lie algebra
object in D+(X).

As an application of the general theory of Lie algebroid connections, we
prove that similar results hold if we replace the tangent bundle of a complex
manifold X with a Lie algebroid A over X. In this case the role of the Atiyah
class of TX is played by the (A, ])-Atiyah class of A.

More precisely, we prove that, given a Lie algebroid (A, ]) over X and a
quasi-coherent sheaf of commutative OX-algebras F , there is a map

H i(X,A⊗F)⊗Hj(X,A⊗F)→ H i+j+1(X,A⊗F)

obtained by composing the cup-product of two cohomology classes with the
(A, ])-Atiyah class of A. If we set gi = H i−1(X,A⊗F), the collection of maps
gi ⊗ gj → gi+j defines a graded Lie algebra structure on the graded vector
space g• =

⊕
i gi.

In a similar way, for any holomorphic vector bundle E over X, we can define
a map

H i(X,A⊗F)⊗Hj(X,E ⊗F)→ H i+j+1(X,E ⊗F),

by using the (A, ])-Atiyah class of E. If we write Vj = Hj−1(X,E ⊗ F), we
get a collection of maps gi ⊗ Vj → Vi+j, for any i and j, defining a structure
of graded module on the graded vector space V • =

⊕
j Vj, over the graded Lie

algebra g•.
We remark that, in a recent paper, Z. Chen, M. Stiénon and P. Xu [CSX]

developed a general theory of Atiyah classes relative to pairs consisting of
a Lie algebroid A over X and a Lie subalgebroid of A, over the same base
manifold. They also proved a generalization of Kapranov’s results by using
different techniques.

This paper is organized as follows. In Section 1 we develop the basic theory of
holomorphic Lie algebroids and Lie algebroid connections in a relative setting.
More precisely, we introduce the notion of a relative Lie algebroid over X,
where π : X → Y is a smooth morphism of analytic spaces. Then we define
relative (A, ])-connections on a quasi-coherent sheaf of OX-modules E and
study their basic properties.
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In Section 2 we introduce the sheaf of first (A, ])-jets of E and define the
(A, ])-Atiyah class of E as the obstruction to the existence of a global holo-
morphic (A, ])-connection on E . We also prove that the (A, ])-Atiyah class of
A is symmetric.

In Sections 3 and 4 we define the sheaves of higher (A, ])-jets and the sheaf
of (A, ])-differential operators. Then, in Section 5, we prove a version of the
so-called ‘cohomological Bianchi identity,’ originally proved in [K] for the usual
Atiyah class of a vector bundle.

Finally, in the last section, we show how Kapranov’s results can be general-
ized to the framework of Lie algebroid connections. The proofs are obtained
by following Kapranov’s original argument, with suitable modifications. Note
that the basic tool needed for proving that the composition with the (A, ])-
Atiyah class of A defines a graded Lie algebra structure on the graded vector
space g• =

⊕
iH

i−1(X,A⊗F) is precisely the cohomological Bianchi identity,
which implies the graded Jacobi identity for the graded Lie bracket.

1. Preliminaries

1.1. (A, ])-connections. Let π : X → Y be a smooth morphism of analytic
spaces (or a smooth morphism of schemes, defined over a field of characteristic
0). We denote by TX/Y = HomOX

(Ω1
X/Y ,OX) the relative tangent sheaf (which

is locally free, since π is smooth).

Definition 1.1. A relative Lie algebroid over X is a locally free sheaf of OX-
modules A, with a π−1OY -linear morphism [·, ·] : A⊗A → A which defines a
Lie algebra structure on the spaces of sections, together with a homomorphism
of OX-modules ] : A → TX/Y , called the anchor map, such that the induced
map on the spaces of sections ] : Γ(A) → Γ(TX/Y ) is a homomorphism of Lie
algebras, and for any sections a1, a2 ∈ Γ(A) and f ∈ Γ(OX), the following
Leibniz identity holds:

(1.1) [a1, fa2] = f [a1, a2] + ]a1(f) a2.

Remark 1.2. Let us denote by Xy the fiber of π : X → Y over a point y ∈ Y . If
(A, ]) is a relative Lie algebroid over X we shall denote by Ay the restriction of
A to Xy and by ]y : Ay → TXy the map induced by ]. The previous definition
implies that, for any y ∈ Y , (Ay, ]y) is a Lie algebroid over Xy. Thus a relative
Lie algebroid over X may be thought as a family of Lie algebroids over the
fibers Xy, parametrized by the points y ∈ Y .

Let [ : Ω1
X/Y → A∗ = HomOX

(A,OX) be the dual of the anchor map, and

let dA : OX → A∗ be the π−1OY -derivation defined by dA = [ ◦ dX/Y

OX
dX/Y //

dA ""

Ω1
X/Y

[
��
A∗

where dX/Y : OX → Ω1
X/Y is the usual relative differential.

Let now E be a quasi-coherent OX-module.
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Definition 1.3. A relative (A, ])-connection on E is a π−1OY -linear morphism

∇ : E → E ⊗A∗

such that
∇(fs) = f∇(s) + s⊗ dA(f),

for any local sections s of E and f of OX .

For any section a ∈ Γ(A), we define

∇a : E → E
by setting ∇a(s) = 〈∇s, a〉. The map ∇a is π−1OY -linear and satisfies the
following identity:

∇a(fs) = f∇a(s) + ]a(f) s.

We also have
∇f1a1+f2a2 = f1∇a1 + f2∇a2 .

Remark 1.4. If ∇ and ∇′ are two relative (A, ])-connections on E , their dif-
ference ∇′ − ∇ is OX-linear, hence ∇′ − ∇ ∈ HomOX

(E , E ⊗ A∗). It follows
that the space Conn(A,])(E) of relative (A, ])-connections on E is an affine space
modeled on the vector space HomOX

(E , E ⊗ A∗).

1.2. Extension of a relative (A, ])-connection. We can extend the π−1OY -
derivation dA : OX → A∗ to an operator

dA : ∧p A∗ → ∧p+1A∗

by setting, for any section α of ∧pA∗,

(dAα)(a1, . . . , ap+1) =

p+1∑
i=1

(−1)i+1]ai α(a1, . . . , âi, . . . , ap+1)

+
∑
i<j

(−1)i+jα([ai, aj], a1, . . . , âi, . . . , âj, . . . , ap+1)

where [·, ·] : A⊗A → A is the Lie bracket of the relative Lie algebroid A (the
Leibniz identity (1.1) implies that dA(α) is actually a section of ∧p+1A∗).

The fact that ] : A → TX/Y induces a homomorphism of Lie algebras, to-
gether with the Jacobi identity for the Lie bracket onA, imply that dA◦dA = 0,
hence we have a complex

(1.2) 0 −→ OX
dA−→ A∗ dA−→ ∧2A∗ dA−→ · · ·

called the (A, ])-de Rham complex.
Let now ∇ : E → E ⊗ A∗ be a (A, ])-connection on E . As in the classical

case, we shall extend ∇ to an operator

∇ : E ⊗ ∧pA∗ → E ⊗ ∧p+1A∗

by requiring that

∇(s⊗ α) = (∇s) ∧ α + s⊗ dA(α),

for any sections s of E and α of ∧pA∗.
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Then we can define the (A, ])-curvature of ∇ by setting

R = ∇ ◦∇ : E → E ⊗ ∧2A∗.
It is immediate to check that R is OX-linear, hence it is a section of End(E)⊗
∧2A∗. A (A, ])-connection is called flat if its (A, ])-curvature vanishes. The
(A, ])-curvature R satisfies an analogue of the classical Bianchi identity.

2. (A, ])-jets and Atiyah classes.

For a quasi-coherent OX-module E let us consider the standard 1-jet exact
sequence (also called Atiyah sequence)

(2.1) 0 −→ E ⊗ Ω1
X/Y −→ J1

X/Y (E) −→ E −→ 0

(which is split as a sequence of π−1OY -modules but not, in general, as a se-
quence of OX-modules).

We can define the sheaf of first (A, ])-jets of E by pushing forward the
previous exact sequence via the map idE ⊗[ : E ⊗ Ω1

X/Y → E ⊗A∗. Hence, by

definition, we have a commutative diagram (morphism of extensions)

(2.2) 0 // E ⊗ Ω1
X/Y

//

��

J1
X/Y (E) //

��

E // 0

0 // E ⊗ A∗ // J1
(A,])(E) // E // 0

Note that the exact sequence

(2.3) 0 −→ E ⊗A∗ −→ J1
(A,])(E) −→ E −→ 0

is split as a sequence of π−1OY -modules but not, in general, as a sequence of
OX-modules.

Remark 2.1. As sheaves of π−1OY -modules, we have

J1
(A,])(E) = E ⊕ (E ⊗ A∗).

Note that J1
(A,])(E) has two structures of OX-module: one is given by

f · (s, σ) = (fs, fσ),

for sections f ∈ Γ(OX), s ∈ Γ(E) and σ ∈ Γ(E ⊗A∗); we shall call this the left
OX-module structure.

The other one is defined by setting

(s, σ) · f = (fs, fσ + s⊗ dAf),

and is called the right OX-module structure.
Unless otherwise stated, we shall always consider J1

(A,])(E) as an OX-module
with its right module structure.

It is well known that the data of a relative connection on E is equivalent
to a splitting of the exact sequence (2.1). A similar result holds for relative
(A, ])-connections:
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Lemma 2.2. A splitting of the sequence (2.3) is equivalent to a relative (A, ])-
connection on E.

Proof. As sheaves of π−1OY -modules, we have

J1
(A,])(E) = E ⊕ (E ⊗ A∗),

hence a splitting of (2.3) is given by a homomorphism of OX-modules

φ : E → J1
(A,])(E), s 7→ φ(s) =

(
s,∇(s)

)
,

for some map ∇ : E → E ⊗ A∗. Since φ is OX-linear, we have φ(fs) = φ(s)f ,
for sections f ∈ Γ(OX) and s ∈ Γ(E). But φ(fs) =

(
fs,∇(fs)

)
and φ(s)f =(

s,∇(s)
)
f = (fs, f∇(s) + s ⊗ dA(f)), hence the map ∇ must satisfy the

identity
∇(fs) = f∇(s) + s⊗ dA(f).

So, requiring that φ be a homomorphism of OX-modules is equivalent to re-
quiring that ∇ be a (A, ])-connection on E . �

Definition 2.3. The (A, ])-Atiyah class of E is the class

a(A,])(E) ∈ Ext1(E , E ⊗ A∗)
corresponding to the extension (2.3).

From Lemma 2.2 we obtain the following result:

Corollary 2.4. A relative (A, ])-connection on E exists if and only if the
(A, ])-Atiyah class of E vanishes.

Let us now compare the (A, ])-Atiyah class of E with its usual Atiyah class.
The usual Atiyah class of E is the class a(E) ∈ Ext1(E , E⊗Ω1

X/Y ) corresponding

to the extension (2.1). The morphism of extensions (2.2) induces a morphism

Ext1(E , E ⊗ Ω1
X/Y )→ Ext1(E , E ⊗ A∗).

It is now immediate to verify that the (A, ])-Atiyah class of E is the image of
the usual Atiyah class a(E) under the previous map.

Remark 2.5. Exactly as the usual Atiyah class can be used to define the Chern
classes of E , we could use the (A, ])-Atiyah class to define what we may call
(A, ])-Chern classes.

If we consider the morphism Ext1(E , E ⊗ Ω1
X/Y ) → Ext1(E , E ⊗ A∗), in-

duced by the map [ : Ω1
X/Y → A∗, and we apply the trace maps, we obtain a

commutative diagram

Ext1(E , E ⊗ Ω1
X/Y )

idE ⊗[ //

tr

��

Ext1(E , E ⊗ A∗)

tr

��
H1(X,Ω1

X/Y )
[

// H1(X,A∗)

Since the first Chern class of E is given by c1(E) = tr(a(E)), we find that
[(c1(E)) = tr(a(A,])(E)) (and a similar statement holds for all higher Chern
classes). It follows that the (A, ])-Chern classes that we could define using
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a (A, ])-connection on E are not particularly interesting because they are
the image of the usual Chern classes of E under the maps H i(X,Ωi

X/Y ) →
H i(X,∧iA∗) induced by the morphism [ : Ω1

X/Y → A∗.

2.1. (A, ])-connections on A. Let us consider now the special case E = A.
Let ∇ : A → A⊗A∗ be a (A, ])-connection on A.

For any section a ∈ Γ(A) we define the derivation ∇a : A → A by setting

∇a(b) = 〈∇b, a〉.
Then we define the (A, ])-torsion of ∇ by setting

T (a, b) = ∇a(b)−∇b(a)− [a, b],

for sections a, b of A. It is easy to see that T ∈ HomOX
(∧2A,A). A (A, ])-

connection on A is said to be torsion-free if its (A, ])-torsion vanishes.
The following result, proved in [K], carries over into this more general setting

(with a similar proof).

Theorem 2.6. Let (A, ]) be a relative Lie algebroid over X and let

a(A,])(A) ∈ Ext1(A,A⊗A∗) = Ext1(A⊗A,A)

be its (A, ])-Atiyah class. Then a(A,])(A) is symmetric, i.e., it belongs to

Ext1(S2A,A).

Proof. Let Conn(A,])(A) be the sheaf whose sections over U ⊂ X are the holo-
morphic (A, ])-connections defined on A|U . As seen in Remark 1.4, this is an
affine space over Γ(U, End(A) ⊗ A∗). Then Conn(A,])(A) is a sheaf of torsors
over End(A) ⊗ A∗. Sheaves of torsors over End(A) ⊗ A∗ are classified by el-
ements of H1(X, End(A)⊗A∗) = Ext1(A,A⊗A∗), and a(A,])(A) is precisely
the element that classifies Conn(A,])(A).

Similarly, let Conntf(A,])(A) be the sheaf whose sections over U ⊂ X are the

torsion free (A, ])-connections on A|U . Then Conntf(A,])(A) is a sheaf of torsors

over S2(A∗) ⊗ A. Since the sheaf of torsors Conn(A,])(A) is obtained from

Conntf(A,])(A) by “change of scalars” (i.e., from S2(A∗)⊗A to A∗⊗A∗⊗A), it

follows that the classifying element a(A,])(A) ∈ H1(X,A∗ ⊗ A∗ ⊗ A) actually

belongs to the summand H1(X, S2(A∗)⊗A) = Ext1(S2A,A). �

3. Higher (A, ])-jets.

In this section we shall briefly describe how it is possible to define sheaves
of higher order (A, ])-jets.

For a quasi-coherent OX-module E we have already seen that J1
(A,])(E) =

E ⊕ (E ⊗ A∗), with the structure of OX-module (on the right) given by

(s, σ) · f = (fs, fσ + s⊗ dAf).

We can now define the sheaf of 2nd (A, ])-jets of E by setting

J2
(A,])(E) = J1

(A,])(E)⊕ (E ⊗ S2A∗) = E ⊕ (E ⊗ A∗)⊕ (E ⊗ S2A∗),

as π−1OY -modules, where S2A∗ denotes the symmetric square of A∗.
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Let d
(2)
X/Y : OX → S2 Ω1

X/Y be the quadratic differential expressed, in suitable

local coordinates zi, by

d
(2)
X/Y f =

1

2!

∑
i,j

∂2f

∂zi∂zj
dzi � dzj,

where � denotes the symmetric product.

Let us define the quadratic derivation d
(2)
A : OX → S2A∗ as the composition

d
(2)
A = ([� [) ◦ d(2)X/Y

OX
d
(2)
X/Y//

d
(2)
A ##

S2 Ω1
X/Y

[�[
��

S2A∗

The structure of (right) OX-module on J2
(A,])(E) is defined by setting

(s, σ, τ) · f = (fs, fσ + s⊗ dAf, fτ + σ ⊗ dAf + s⊗ d(2)A f),

for sections f ∈ Γ(OX), s ∈ Γ(E), σ ∈ Γ(E ⊗ A∗) and τ ∈ Γ(E ⊗ S2A∗) (here,
by σ ⊗ dAf we mean the image of σ ⊗ dAf ∈ E ⊗A∗ ⊗A∗ in E ⊗ S2A∗ under
the symmetrisation map E ⊗ A∗ ⊗A∗ → E ⊗ S2A∗).

There is an exact sequence of OX-modules

(3.1) 0→ E ⊗ S2A∗ → J2
(A,])(E)→ J1

(A,])(E)→ 0

(which is split as a sequence of π−1OY -modules but not, in general, as a se-
quence of OX-modules).

More generally, for any r ≥ 1 we can define inductively the sheaf of r-th
(A, ])-jets of E by setting

Jr(A,])(E) = Jr−1(A,])(E)⊕ (E ⊗ SrA∗) =
r⊕
i=0

(E ⊗ SiA∗),

as π−1OY -modules, where SiA∗ denotes the i-th symmetric power of A∗. The
(right) OX-module structure of Jr(A,])(E) is defined as follows. For any j ≥ 0,

let d
(j)
A : OX → Sj A∗ be the composition d

(j)
A = (Sj [) ◦ d(j)X/Y

OX
d
(j)
X/Y//

d
(j)
A ##

Sj Ω1
X/Y

Sj [
��

Sj A∗

where d
(j)
X/Y : OX → Sj Ω1

X/Y is given locally by

d
(j)
X/Y f =

1

j!

∑
i1,...,ij

∂jf

∂zi1 · · · ∂zij
dzi1 � · · · � dzij .
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Let (s0, s1, . . . , sr) be a section of Jr(A,])(E), with si ∈ Γ(E ⊗ SiA∗). Then,

for any f ∈ Γ(OX), we set (s0, s1, . . . , sr) · f = (t0, t1, . . . , tr) where, for each
h = 0, . . . , r, the section th ∈ Γ(E ⊗ShA∗) is given by the following expression:

th =
h∑
j=0

sj ⊗ d(h−j)A f.

There is an exact sequence

(3.2) 0→ E ⊗ SrA∗ → Jr(A,])(E)→ Jr−1(A,])(E)→ 0

(which is split as a sequence of π−1OY -modules but not, in general, as a se-
quence of OX-modules).

Finally, note that, for any r, there is a homomorphism of sheaves of abelian
groups

dr(A,]),E : E → Jr(A,])(E)

that is OX-linear for the right OX-module structure of Jr(A,])(E). All the veri-
fications are left as exercises.

4. (A, ])-differential operators.

Let us recall that D = DX/Y , the sheaf of rings of finite-order (holomorphic)
differential operators on X over Y , is generated, as an algebra, by OX and by
TX/Y .

In a similar way, we define D(A,]) to be the algebra generated by OX and A,
with the commutation relations given by

(4.1) af = ](a)(f) + fa and a1a2 = a2a1 + [a1, a2],

where a, a1, a2 are sections of A and f is a section of OX .
The sheaf of non-commutative rings D(A,]) is endowed with a filtration

0 ⊂ OX = D≤0(A,]) ⊂ D
≤1
(A,]) ⊂ · · · ⊂ D

≤r
(A,]) ⊂ · · · ⊂ D(A,])

such that

D(A,]) =
⋃
r≥0

D≤r(A,]),

where, for each r, the OX-module D≤r(A,]) is the dual of the sheaf of r-th (A, ])-
jets Jr(A,])(OX),

D≤r(A,]) = HomOX
(Jr(A,])(OX),OX).

If D is the usual ring of differential operators on X over Y , the anchor map
] : A → TX/Y induces a homomorphism of filtered rings

] : D(A,]) → D.

The map σ : D≤r(A,]) → SrA, that associates to a (A, ])-differential operator its

highest order term, is well defined and is called the principal symbol map. For
every r > 0, there is an exact sequence

0→ D≤r−1(A,]) → D
≤r
(A,]) → SrA → 0
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which is the dual of

0→ SrA∗ → Jr(A,])(OX)→ Jr−1(A,])(OX)→ 0.

The associated graded ring of the filtered ring D(A,]) is isomorphic to the
symmetric algebra over A

gr
(
D(A,])

) ∼= S·(A).

Let us recall that a relative flat connection on a coherent sheaf of OX-modules
E is equivalent to a structure of D-module on E . In a similar way it is easy to
prove that a relative flat (A, ])-connection on E is equivalent to a structure of
D(A,])-module on E .

5. Kapranov’s ‘cohomological Bianchi identity.’

In this section we shall generalize the so-called ‘cohomological Bianchi iden-
tity,’ proved by Kapranov in [K], to the setting of Lie algebroid connections.

Let X be a complex manifold, (A, ]) a Lie algebroid over X, and D(A,]) the
sheaf of rings of (A, ])-differential operators.

Remark 5.1. Let E be a vector bundle over X and E∗ its dual bundle. The
exact sequence

0 −→ E∗ ⊗ A∗ −→ J1
(A,])(E

∗) −→ E∗ −→ 0

computes the (A, ])-Atiyah class of E∗, a(A,])(E
∗) = −a(A,])(E).

By dualizing, we obtain the exact sequence

(5.1) 0 −→ E −→ D≤1(A,])(E) −→ E ⊗ A −→ 0,

where D≤1(A,])(E) = D≤1(A,]) ⊗OX
E, that also computes the class

−a(A,])(E) ∈ Ext1(E ⊗ A,E) = Ext1(E,E ⊗ A∗).

Let M be a locally free left D(A,])-module, endowed with a good filtration Mi

by vector bundles. The D(A,])-module structure on M is equivalent to a flat
(A, ])-connection ∇ : M → M ⊗ A∗. It follows that, for any j, we have an
induced map ∇j : Mj →Mj+1 ⊗ A∗.

The following result is a generalization of a similar statement, proved in
[AL]:

Lemma 5.2 ([AL], n. (4.1.2.3)). Let M be as before. Then:
(a) The class −a(A,])(Mi) is given by the following composition of maps

Mi
πi−→Mi/Mi−1

∇i−→ (Mi+1/Mi)⊗ A∗
αi⊗1A∗−−−−→Mi ⊗ A∗[1],

where πi : Mi →Mi/Mi−1 is the projection, ∇i : Mi/Mi−1 → (Mi+1/Mi)⊗A∗ is
induced by the (A, ])-connection ∇, and αi is the element of Ext1(Mi+1/Mi,Mi)
that corresponds to the exact sequence

0 −→Mi −→Mi+1 −→Mi+1/Mi −→ 0.
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(b) The class −a(A,])(Mi/Mi−1) is equal to the difference between the com-
position of morphisms

Mi/Mi−1
∇i−→ (Mi+1/Mi)⊗ A∗

αi⊗1A∗−−−−→Mi ⊗ A∗[1]
πi[1]−−→ (Mi/Mi−1)⊗ A∗[1],

and the composition

Mi/Mi−1
αi−1−−→Mi−1[1]

πi−1[1]−−−−→ (Mi−1/Mi−2)[1]
∇i−1[1]−−−−→ (Mi/Mi−1)⊗ A∗[1].

Proof. The proof is the same as in [AL], since it follows from purely formal
properties of extension classes. �

Remark 5.3. The map ∇j : Mj/Mj−1 →Mj+1/Mj ⊗A∗ induced by the (A, ])-
connection ∇ on M , corresponds to the so-called “symbol multiplication map”

µj : A⊗Mj/Mj−1 →Mj+1/Mj.

If we denote by fi ∈ Ext1(Mi+1/Mi,Mi/Mi−1) the composition

Mi+1/Mi
αi−→Mi[1]

πi[1]−−→ (Mi/Mi−1)[1],

then part (b) of the previous lemma can be restated by saying that the class
−a(A,])(Mi/Mi−1) is given by the difference between the following two compo-
sitions of morphisms:

A⊗Mi/Mi−1
µi−→Mi+1/Mi

fi−→ (Mi/Mi−1)[1],

and

A⊗Mi/Mi−1
1A⊗fi−1−−−−−→ A⊗ (Mi−1/Mi−2)[1]

µi−1[1]−−−−→ (Mi/Mi−1)[1],

i.e., we can write

(5.2) −a(A,])(Mi/Mi−1) = fi ◦ µi − µi−1[1] ◦ (1A ⊗ fi−1).

If E is a vector bundle over X, we can consider the D(A,])-module M =

D(A,]) ⊗OX
E, with the filtration given by Mi = D≤i(A,]) ⊗ E. The exact se-

quence

0 −→ M1

M0

−→ M2

M0

−→ M2

M1

−→ 0

becomes

0 −→ A⊗ E −→
D≤2(A,]) ⊗ E

E
−→ S2(A)⊗ E −→ 0.

Let us denote by ξ ∈ Ext1(S2(A) ⊗ E,A ⊗ E) the corresponding extension
class. Let σ : A ⊗ A → S2(A) be the symmetrization map. From Lemma 5.2
and the subsequent remark, it follows that:

Lemma 5.4. With the above notations, we have

a(A,])(A⊗ E) = −ξ ◦ (σ ⊗ 1)− 1⊗ a(A,])(E).
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Proof. Since Mi = D≤i(A,]) ⊗ E, we have M1/M0 = A ⊗ E and M2/M1 =

S2(A) ⊗ E. From (5.2) we know that −a(A,])(M1/M0) = −a(A,])(A ⊗ E) is
the difference between the following composition of morphisms:

A⊗ A⊗ E σ⊗1E−−−→ S2(A)⊗ E ξ−→ A⊗ E[1]

and

A⊗ A⊗ E
1⊗a(A,])(E)
−−−−−−−→ A⊗ E[1]

− id−−→ A⊗ E[1].

Hence −a(A,])(A⊗ E) = ξ ◦ (σ ⊗ 1) + 1⊗ a(A,])(E). �

Now we introduce some notation in order to state the main result.
Let a, b ∈ H1(X, End(E)⊗ A∗). Their cup-product is

a ` b ∈ H2(X, End(E)⊗ End(E)⊗ A∗ ⊗ A∗).
Consider the map

End(E)⊗ End(E)⊗ A∗ ⊗ A∗ → End(E)⊗ S2(A∗)

φ⊗ ψ ⊗ α⊗ β 7→ [φ, ψ]⊗ (α� β)

We denote by [a ` b] ∈ H2(X, End(E)⊗ S2(A∗)) the image of a ` b under the
induced map in cohomology.

Let a ∈ H1(X, End(E)⊗A∗) = Ext1(E,E ⊗A∗) = Ext1(A⊗E,E), and let
c ∈ Ext1(A⊗ A,A). Let us consider the composition

S2(A)⊗ E ↪→ A⊗ A⊗ E c⊗1−→ A⊗ E[1]
a−→ E[2]

We denote by

a ∗ c ∈ Hom(S2(A)⊗ E,E[2]) = Ext2(S2(A)⊗ E,E)

= H2(X, End(E)⊗ S2(A∗))

the corresponding element.

Theorem 5.5 (Cohomological Bianchi identity). Let a(A,])(E) ∈ Ext1(E,E⊗
A∗) = H1(X, End(E) ⊗ A∗) be the (A, ])-Atiyah class of a vector bundle E.
Let a(A,])(A) ∈ Ext1(A,A ⊗ A∗) = H1(X, End(A) ⊗ A∗) be the (A, ])-Atiyah
class of A. Then we have the identity

2 [a(A,])(E) ` a(A,])(E)] + a(A,])(E) ∗ a(A,])(A) = 0

in H2(X, End(E)⊗ S2(A∗)).

Proof. Let M = D(A,]) ⊗ E, with the filtration

0 ⊂M0 = E ⊂M1 = D≤1(A,]) ⊗ E ⊂M2 = D≤2(A,]) ⊗ E ⊂ · · ·

The exact sequence 0→M0 →M1 →M1/M0 → 0 is

0→ E → D≤1(A,]) ⊗ E → A⊗ E → 0,

whose extension class is −a(A,])(E) ∈ Ext1(A⊗E,A). The next exact sequence
0→M1/M0 →M2/M0 →M2/M1 → 0 is

0→ A⊗ E →M2/M0 → S2(A)⊗ E → 0,

whose extension class we have denoted by ξ.
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Standard results (cf., for instance, [BB]) tell us that the composition (Yoneda
product) of these two extensions is zero: a(A,])(E) ◦ ξ = 0

S2(A)⊗ E ξ−→ A⊗ E[1]
a(A,])(E)
−−−−−→ E[2].

From Lemma 5.4 we have

a(A,])(A⊗ E) = −ξ ◦ (σ ⊗ 1)− 1⊗ a(A,])(E).

The (A, ])-Atiyah class of a tensor product of vector bundles is given by

a(A,])(A⊗ E) = a(A,])(A)⊗ 1 + 1⊗ a(A,])(E),

hence

2
(
1⊗ a(A,])(E)

)
+ a(A,])(A)⊗ 1 = −ξ ◦ (σ ⊗ 1).

Now we take the Yoneda product of the previous expression with a(A,])(E) (on
the left), and we recall that a(A,])(E) ◦ ξ = 0.

We get

2 [a(A,])(E) ` a(A,])(E)] + a(A,])(E) ∗ a(A,])(A) = 0.

�

6. The Lie algebra structure

Let X and (A, ]) be as before, and let F be a quasi-coherent sheaf of com-
mutative OX-algebras. We consider the composition of the following maps:
first we take the cup-product

H i(X,A⊗F)⊗Hj(X,A⊗F)→ H i+j(X,A⊗ A⊗F ⊗F)

followed by the map

H i+j(X,A⊗ A⊗F ⊗F)→ H i+j(X,A⊗ A⊗F)

induced by the commutative multiplication F ⊗ F → F .
Then we take the Yoneda product with a(A,])(A) ∈ H1(X,Hom(S2(A), A)):

H i+j(X,A⊗ A⊗F)→ H i+j+1(X,A⊗F).

So, for any i and j, we obtain maps

H i(X,A⊗F)⊗Hj(X,A⊗F)→ H i+j+1(X,A⊗F).

Let us set gi = H i−1(X,A ⊗ F). Then we can rewrite the previous maps as
follows:

gi ⊗ gj → gi+j.

Theorem 6.1. The maps above define a graded Lie algebra structure on the
graded vector space g• =

⊕
i gi.

Proof. Let αi ∈ gi, αj ∈ gj, and let us denote the bracket by [αi, αj] ∈ gi+j.
The bilinearity of the bracket is obvious. The (graded) antisymmetry is given
by the following expression:

[αj, αi] = −(−1)ij[αi, αj].
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This follows immediately from the graded commutativity of the cup-product.
It remains only to prove the (graded) Jacobi identity:

(−1)ik[αi, [αj, αk]] + (−1)ij[αj, [αk, αi]] + (−1)jk[αk, [αi, αj]] = 0.

Let us denote the left-hand side by θ(αi, αj, αk). This defines an element
θ ∈ Hom(∧3g•, g•), and we can check that θ(αi, αj, αk) is obtained by taking
the cup-product

αi ` αj ` αk ∈ H i+j+k−3(X,A⊗ A⊗ A⊗F)

followed by the Yoneda composition with an element ofH2(X,Hom(S3(A), A)).
This element turns out to be the symmetrization of

[a(A,])(A) ` a(A,])(A)] ∈ H2(X,Hom(A⊗ S2(A), A)).

Now we use the cohomological Bianchi identity (for E = A):

2[a(A,])(A) ` a(A,])(A)] + a(A,])(A) ∗ a(A,])(A) = 0.

From the definition, it follows that the symmetrization of a(A,])(A) ∗ a(A,])(A)
is 0, hence the same is true for the symmetrization of [a(A,])(A) ` a(A,])(A)].
This finally means that θ = 0, which proves the Jacobi identity. �

Let X, (A, ]), F be as before, and let E be a holomorphic vector bundle
over X. We consider now the composition of the following maps: first we take
the cup-product

H i(X,A⊗F)⊗Hj(X,E ⊗F)→ H i+j(X,A⊗ E ⊗F)

(where we have used the multiplication F ⊗F → F , as before). Then we take
the Yoneda product with a(A,])(E) ∈ H1(X,Hom(A⊗ E,E)):

H i+j(X,A⊗ E ⊗F)→ H i+j+1(X,E ⊗F).

If we set gi = H i−1(X,A⊗F) and Vj = Hj−1(X,E ⊗F), for any i and j, we
have maps gi ⊗ Vj → Vi+j. We can now prove the following result:

Theorem 6.2. The maps above define a structure of graded module on the
graded vector space V • =

⊕
j Vj, over the graded Lie algebra g•.

Proof. Let αi ∈ gi, αj ∈ gj and vk ∈ Vk. We must prove that

[αi, αj]vk − αi(αjvk) + (−1)ijαj(αivk) = 0.

The left-hand side defines an element φ ∈ Hom(∧2g• ⊗ V •, V •), and we can
check that φ is obtained by taking the cup-product

αi ` αj ` vk ∈ H i+j+k−3(X,A⊗ A⊗ E ⊗F)

followed by the Yoneda composition with an element of H2(X,Hom(S2(A) ⊗
E,E)). This element is precisely

2[a(A,])(E) ` a(A,])(E)] + a(A,])(E) ∗ a(A,])(A),

which vanishes by the cohomological Bianchi identity. �
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