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Abstract. Let X be a smooth complex projective surface dnan effective divisor onX

such that{9(X, a);(l(—D)) # 0. Let us denote b8 the moduli space of stable parabolic
vector bundles orX with parabolic structure over the divis@ (with fixed weights and

Hilbert polynomials). We prove that the moduli sp&@# is a non-singular quasi-projective
variety naturally endowed with a family of holomorphic Poisson structures parametrized by
the global sections Qﬁ;(l(—D). This resultis the natural generalization to the moduli spaces

of parabolic vector bundles of the results obtained in [B2] for the moduli spaces of stable
sheaves on a Poisson surface. We also give, in some special cases, a detailed description of
the symplectic leaf foliation of the Poisson manifGhs.

1. Introduction

Moduli spaces of sheaves on smooth projective surfaces were studied, from the
point of view of symplectic geometry, by S. Mukai in [Mu]. Mukai discovered that

if a surfaceX has a holomorphic symplectic structure (this means that the canonical
line bundlewy of X is trivial, i.e., X is an abelian or K3 surface) then the moduli
spaceM of stable sheaves axi has a holomorphic symplectic structure too. This
result was generalized to the case of Poisson structures in [B2]. More precisely,
we proved that the moduli spadéel of stable sheaves on a Poisson surfdeas

a family of Poisson structures € HO(M, A2T M) parametrized by the global
sectionss of the anti-canonical line bundka;(l. Since a Poisson structure ¢h

is determined by choosing such a sectigit follows that the choice of a Poisson
structure onX naturally determines the Poisson structure of the moduli spdce
Similar results can be proven also for other kinds of moduli spaces, like Hilbert
schemes of points df [B3], or moduli spaces of framed vector bundles’o{B4].

In this paper we prove that similar results, concerning the existence of Pois-
son structures on moduli spaces, can be obtained for yet another kind of moduli
spaces, namely moduli spaces of parabolic vector bundlas. dm this case too,
we construct a family of holomorphic Poisson structures on the moduli $pace
of parabolic vector bundles aki parametrized by the global sections of a certain
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line bundle onX. By considering parabolic vector bundles with trivial parabolic
structure over the divisor defined by a sectioe H°(X, w;(l), we recover the
results of [B2] as a special case of the general construction proposed in this paper.

This paper is organized as follows. In Sect. 2 we recall some basic definitions
and results on parabolic sheaves and their moduli spaces. Then, in Sect. 3, we recall,
for the convenience of the reader, some results of symplectic geometry that will be
needed in the sequel.

In Sect. 4 we construct the Poisson structéyeon the moduli spac@®B of
parabolic vector bundles axi with parabolic structure over an effective divisor
determined by a global sectignof the line bundlew;l(—D), and in Sect. 5 we
prove thaty; is actually a Poisson structure, i.e., that the Poisson bracket defined
by 6, satisfies the Jacobi identity.

Finally, in Sect. 6 we study, in some particular cases, the symplectic leaf foliation
of the moduli spac@p determined by the Poisson structége

2. Parabolic sheaves

Let X be a non-singular complex projective surface &hdn ample divisor on it.
We shall also fix an effective Cartier divisér on X.

Definition 2.1. Aparabolicstructureover D onacoherent, torsion-freeOx-module
E isthe data of afiltration

Fy: E=F(E)D F2E) D - D F(E) D Fi41(E) = E(—=D),

where E(—D) denotes the image of E ®¢, Ox(—D) — E, together with a
sequence of real numbers a, = (g, ..., o), called weights, such that

O<oyp<azx<---<a <1

A parabolic sheaf is a coherent, torsion-free Ox-module E with a parabolic struc-
ture over D.

Remark 2.2. Some authors (cf., [Bh]) define a parabolic structure @ven a sheaf
E as a sequence of subsheave&

Elp = FH(E) D FA(E) > --- D Fh(E) > FiHY(E) =0,

together with a system of weightsQw1 < a2 < -+ <y < 1.
Our definition is related to this one by setting

F;(E) = kel(E — E|p/Fp(E)).

All definitions related to parabolic sheaves can be stated more efficiently in
terms ofR-filtered sheaves (see [Y2] for the definition).

Given a parabolic sheaf, F, o), we define its associatéHiltered sheaf
E,=(E,),forO<x <1, bysettingEg = E andE, = F;(E) if ¢;_1 < x < «;,
where we have setyp = 0 andw;11 = 1. The definition ofE, can be extended
to all x € R by settingE,+1 = E,(—D). Figure 2.1 illustrates th&-filtered
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Fig. 2.1. TheR-filtered sheaft, associated to a parabolic shéaf, F,, o)
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Fig. 2.2. TheR-filtered sheaff, associated to a parabolic sheéaf, Fy, ay)

sheaf corresponding to a parabolic sh@af F, a,) with weights 0< a1 < a2 <
a3 < 1.

From now on arR-filtered sheaf, = (E,).cr associated to a parabolic sheaf
(E, Fy, ay) as above, will be simply called a parabolic sheaf.

Given a parabolic shedf,, we shall define th&-filtered sheafr, by setting,
for anyx € [0, 1],

P E, if x # «;,

x = .
Egyy iFx =a,

and by extending the definition to alle R by setting, as usuak ;1 = E¢(—D).
Figure 2.2 illustrates thR-filtered sheaff, corresponding to the parabolic sheaf

E, of Fig. 2.1.
If E, is anR-filtered sheaf, we shall always write for the sheaf.

Definition 2.3. A homomorphism of R-filtered sheaves ¢ : E, — E/ isa homo-
morphism of Ox-modules¢ : E — E’ suchthat ¢(E,) € E., for any x € R.

We shall denote bf{om(E,, E,) the sheaf of homomorphisms Bffiltered
sheaves fronk, to E; it is a subsheaf oH{om(E, E’).

With these definitions the notion of parabolic homomorphism of two parabolic
sheaves becomes very simple:

Definition 2.4. If E,. and E., aretwo parabolic sheaves, a parabolichomomor phism
¢ : E. — E isahomomorphism of R-filtered sheaves.
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In order to construct moduli spaces of parabolic sheaves we need, as usual, a
suitable notion of stability. This was introduced in [MY], where moduli spaces of
semistable parabolic sheaves were constructed in great generality. We only state
here the results we shall need in the sequel.

Proposition 2.5. Let usfix a sequence of rational numbersa, = (a1, ..., o) with
0< a1 <a2 < -+ < o < 1, and polynomials H, Hy, ..., H;. Then there
exists a quasi-projective moduli space PS parametrizing isomor phism classes of
stable parabolic sheaves E, having «., as system of weights and such that the
Hilbert polynomial of E is H and the Hilbert polynomial of E/F;1(E) is H;, for
i=1,...,1

Remark 2.6. Note that, in general, there does not exist a universal family of parabolic
sheaves on the moduli spa®8, i.e., a parabolic shed, overPS x X, flat over

PS, such that, (g, xx = E,, for any E, € PS. However, universal families
always exist locally, for the complex or étale topology,7as.

In the sequel we shall be particularly interested in a special class of parabolic
sheaves, namely locally free parabolic sheaves (also called parabolic vector bun-
dles).

Definition 2.7. A parabolic sheaf E, issaid to belocally freeif, for any x, E, isa
locally free Ox-module and, for any x, y, withx <y < x + 1, E;/E, isalocally
free Op-module.

We shall denote b3 the open subset of the moduli spgeg parametrizing
isomorphism classes of locally free parabolic sheaves.

Infinitesimal deformation theory for parabolic sheaves (cf. [Y2]) yields the
following result:

Proposition 2.8. The tangent space T, P3 to the moduli space P at a point E.
is canonically identified with the cohomology group HX(X, Hom(E,, E,)) and the
obstruction to the smoothness of P13 at the point E, liesin H2(X, HOm(E,., E)).

By recalling the version of Serre duality for parabolic sheaves [Y2, Proposi-
tion 3.7], we have:

Corollary 2.9. The cotangent space 7y P13 to the moduli space PB at apoint £, is
canonically identified with the cohomology group H1(X, Hom(E,, E)®wx(D)).

Remark 2.10. With the notations of Remark 2.2, if the parabolic structure of a vector
bundleE is given by a filtration

Elp =F5(E) D FA(E) > --- D FL(E) > FIHY(E) =0,

and if E, is the corresponding-filtered sheaf, then a sectignof Hom(E,, E») is
ahomomorphism : £ — E suchtha|p is nilpotent with respect to the filtration
of E[p given above, i.e., such thatp (F},(E)) < fb*l(E), fori=1,...,L
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3. Poisson structures

In this section we recall, for the convenience of the reader, some basic definitions
of symplectic geometry that will be needed in the sequel.

Definition 3.1. A (holomorphic) Poisson structure on a non-singular complex va-
riety X isa Lie algebra structure {-, -} on the sheaf of regular functions Ox which
isaderivation in each entry, i.e., satisfies{ f, gh} = {f, g}h + g{f, h}.

It is easy to see that to give a Poisson structur&as equivalent to giving an
antisymmetric contravariant 2-tengbe H°(X, A°T X), defined by setting

{f. 8} =1(0.df ndg). G.1)

Given# € HO(X, A°T X), the bracket defined by the formula above satisfies all
the properties required to be a Poisson structure, except for the Jacobi identity

{fi{g. Y} +{g. {h. FI} +{h.{f. g}} =0,

hence we must impose an additional conditior®om order to express this condi-
tion in a suitable way, we have to introduce one more piece of notation: we denote
by By : T*X — TX the homomorphism of vector bundles defined by setting
0, A B) = (Bg(a), B), for 1-formsa and 8. The homomorphisnBy is called
the Hamiltonian morphism. In fact, for any regular functigron X, the vector
field Xy = By(df) is precisely the Hamiltonian vector field of, defined by
Xr(g) = {f, g}, for any regular functiorg.

We can now define an operatbr HO(X, A2T X) — HO(X, A3T X) by setting

do(a, B,y) = Ba(@)0(B, ) — Ba(B)0(ax, ¥) + Ba(y)0(, B)
—([Bo (), Bo(B)], ¥) + ([Bo(@), Bo(¥)], B) — ([Ba(B), Ba(¥)], ), (3.2)

for 1-formsa, B, y, where[-, -] denotes the usual commutator of vector fields. We
have the following result, whose proof consists in a straightforward computation
using local coordinates.

Proposition 3.2. The bracket {-, -} defined by an element ¢ € HO(X, A?TX) asin
(3.1) isa Poisson structure, i.e., satisfies the Jacobi identity, if and only if d6 = 0.

Remark 3.3. The elemendd € HO(X, A3T X) coincides (up to a factor of 2) with
the so-called Schouten bracKeét 6] (see [V] for the definition). However, the
expression given in (3.2) is more convenient for our computations.

Remark 3.4. When# has maximal rank everywhere, i.e., whgn: T*X — T X is

an isomorphism, to give is equivalent to giving its inverse 2-form e Q2 , which
corresponds to the inverse isomorphiﬁgﬁl : TX — T*X. Itis easy to check
that, in this situation, the conditio®¥ = 0 is equivalent talw = 0, i.e., to the
closure of the 2-fornw. In this case we say that defines a symplectic structure

on X, or simply, that the Poisson structure is symplectic. Note that a necessary
condition for the existence of a symplectic structureXois that the dimension of

X be even.
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Remark 3.5. In the case of surfaces, the majis identically 0 (37X = 0, since
dim X = 2), hence a Poisson structure on a smooth sufaisgiven by a section
of A°TX = w;(l, i.e., by a global sectiof of the anti-canonical line bundle.

Let now X be a Poisson variety, ade H%(X, A%T X) its Poisson structure.
Foranyx € X, we setD(x) = Im(Bg(x)) € T X. The collectiorD = (D(x))xrex
of subspaces of the tangent spaceXx a$ called the characteristic distribution of
the Poisson varietyX, 6).

It turns out that, for any Poisson variety, the characteristic distribution is com-
pletely integrable, and the Poisson structur& afetermines a symplectic structure
on the integral leaves of this distribution. These integral leaves are then called the
symplectic leaves of the Poisson vari€®, ). For more details on the structure
of Poisson varieties, we refer to [V].

4. Poisson structures on moduli spaces

From now on we shall assume that the surfacand the divisorD are such that
HO(X, a);l(—D)) # 0, wherewy is the canonical line bundle axi. We shall also
fix a non-zero global section of the line bundlew;(l(—D) and denote by, the
divisor defined by .

Remark 4.1. From the standard exact sequence
0— Ox(-D)—> Ox - Op—0
we obtain, by tensoring witb;l, a canonical injection
HO(X, 031 (—D)) = HO(X, oyh).
It follows that the choice of determines a natural Poisson structureXon

In [B2] we proved that the moduli spadé of stable vector bundles on a Poisson
surface is always non-singular. For the special class of surfaces we are considering
here, the same result holds also for the moduli space of parabolic vector bundles.

Proposition 4.2. Let X be a non-singular projective surface and D an effective
divisor such that HO(X, wy*(~D)) # 0. Then the moduli space PB of stable
parabolic vector bundleson X isa non-singular quasi-projective variety.

Proof. The obstruction to the smoothness of the moduli sgjageat a pointE,

lies in H2(X, Hom(E,, E,)). By the Serre duality theorem for parabolic bundles
(cf. [Y2, Proposition 3.7]), the dual of this vector space is canonically identified
with HO(X, ’Hom(E*, E.) ® wx(D)). Finally, the existence of a non-zero global
section ofa)X (—D), together with the hypothesis of stability &f,, implies that

HO(X, HOm(E,., E,) ® ox(D)) =0. O
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By recalling the identifications of the tangent and cotangent spaces to the moduli
spacePl3 described above, we can define a map
B (E.) : Tz, PB — T, PB
as follows:
Be(E,) : HX(X, HOM(E,, E,) ® wx (D)) —> HY(X, HoM(E,. E»)), (4.1)

where this is the map induced on the cohomology groups by the following map of
sheaves (wherg denotes multiplication by the sectign:

HOM(E,, E,) @ wx (D) <> HOM(E,., E,) <> HOM(E,, E.,).

From the smoothness of the moduli sp&g, it follows that the family of maps
B;(E,), asE, varies inPB3, defines a global homomorphism

B, : T*PB — TPB.
From this we obtain a global sectiop € HO(PB, ®*TPB) defined by setting

O0; (a, B) = (B¢ (), B),

for any two 1-formsy, 8 onPB.
By recalling the expression of the Serre duality and the definitioB.0fit is
not difficult to see that, for an¥, € PB, the map

0 (Es) : Tp, PB x T, PB — C
is identified to the map

0c(Ey) - HY(X, HOM(E,, E) ® wx (D)) x HY(X, HOM(E,, E,) ® wx (D))
— H?(X,wyx) =C,

given by the composition of the following maps: first we take the cup-product of

two cohomology classes followed by the composition of the homomorphisms of
filtered sheaves, then we compose with the map induced by the multiplication by
¢z, and finally we apply the trace map

tr: H2(X, HOm(E,, E,) ® wx (D)) — H?*(X, wx).

From this explicit description @f; it follows, by recalling the graded commutativity

property of the cup-product, that is skew-symmetric, hence we have actually
defined a bivector field, < HO(PB, A2TPB). This is our candidate to define a

Poisson structure on the moduli sp&ee.

Remark 4.3. If the divisorD is non-singular, the definition of the bivector figldon

the moduli spac@®l5 can be extended to the moduli sp&gof torsion-free coher-

ent parabolic sheaves. In order to do that it is enough to modify the construction of
0, given above by simply replacing the cohomology groHgg X, Hom(E,, E.,))
andHY(X, Hom(E,, E.) ® wx (D)) with appropriate “parabolic Ext"-groups (de-
fined in [Y2]), that are canonically identified with the tangent and cotangent spaces
to the moduli spacéS at the point corresponding to a parabolic sheaf The
assumption of non-singularity @ is needed in order to be able to apply the Serre
duality theorem for non-locally free parabolic sheaves (cf. [Y2, Proposition 3.7]).
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5. Theclosureof 6,

In this section we shall prove tha satisfies the closure conditiai, = 0, i.e.,
it defines a Poisson structure on the moduli sga8eThe proof of this resultis a
generalization to the case of parabolic bundles of the proof of the analogous result
for the moduli space of vector bundles given in [B2]. We shall describe only the
relevant modifications.

First of all let us recall some preliminary results. et X — Y be a morphism
(locally of finite presentation) of schemes, afidF two locally free sheaves axi.
We denote b)Diff}(/Y(E, F) the sheaf of relative differential operators frdirto
F of order< 1. We have the following short exact sequence

0 — Homy (E, F) — Diff},y(E, F) > Dery(Ox) ® Homx (E, F) — 0,

whereo is the symbol morphism. From this,if = F and we restrict to differential
operators with scalar symbol, writtéh}( /Y(E), we obtain the exact sequence

0— éndy (E) — D,y (E) > Dery(Ox) — 0.

Now, if E, andF, are two parabolic bundles o, we denote byDiff }(/Y(E*, F,)

the subsheaf oDiff }(/Y(E, F) of differential operatorD : E — F such that
D(E,) C Fy, foranyx € R. We call it the sheaf of relative parabolic differential
operators fronE, to F, of order< 1. Analogously, ifE, = F, we can define the
sheafD} /v (E) of relative parabolic differential operators with scalar symbol. We
have the following exact sequence:

0 — Homy (E,, E,) — D,y (Ex) > Dery(Ox) — 0.

Letusdenote by : PBx X — PBandg : PB3x X — X the canonical projections.

We would like to apply the preceding results to the mgapP x X — X and to

the ‘universal parabolic bundl€, on P x X, but unfortunately such a universal
parabolic bundle does not exist in general (cf. Remark 2.6). So let us consider an
open subsel/ (for the complex or étale topology, not for the Zariski topology) of
the moduli spacéB3 such that there exists a universal parabolic faréily= &Y

onU x X.We still denote byp andg the restrictions of the canonical projections

to U x X. By applying the preceding results to the map U x X — X and to

the (local) universal parabolic bundfe, we obtain the following exact sequence

0 — Hom(&y, &) — D (&) — p*TU — 0,

whereD} (&,) = Dlljxx/x(&k) denotes the sheaf of first-order parabolic differen-
tial operators o€, with scalar symbol, that arg* Ox-linear.

By applying p., and noting thap.p*TU = TU sincep : U x X — U is a
proper morphism, we get a long exact sequence, a piece of which is

co+ = TU = RYp(HOM(E,, £,)) — R'pu(Dx () — -+ . (5.1)
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It is not difficult to see that the map
TU — Rp.(Hom(E,, £.))

is the global version of the canonical isomorphism
Tp. PB — HY(X, Hom(Ex, &),

for E, € U, hence it is an isomorphism.
From the exact sequence (5.1) it follows that the map

Rp.(Hom(E,, £)) — R p.(D}(£)

factors through 0, i.e., the image of a global secfign} of Rlp* (Hom(&y, Ey)) is
Zero Ianp*(D (£,)). This means that there exist sectidnsof Rlp*(D (&)
over suitable open subséfs, such that, orV; N V;, we have

nij = Dj — Di.

Note that this equation is formally the same as equation (5.2) of [B2]. From now
on all the subsequent discussion carried out in [B2, Sect. 5] can be repeated, almost
literally, for the moduli spac@®B. The proof of the closure conditiaﬁﬂ; =0is
now practically identical to the proof of [B2, Theorem 5.1]. Finally, note that the
preceding discussion applies to any open subset of a suitable open covering of the
moduli spacePs.

We have thus proved the following result:

Theorem 5.1. For any non-zero section ¢ € HO(X, oy Y-Dy), the antisymmetric
contravariant 2-tensor 6, € H O(PB, A2TPB) deflnes a Poisson structure on the
moduli space PB.

Remark 5.2. Let X, D and¢ € HO(X, w;(l(—D)) be as above. We have already
observed (cf. Remark 4.1) thatletermines a Poisson structureXrhence, by the
results of [B2], it also defines a Poisson structure on the moduli spacéstable
vector bundles oX . If we restrict to the open subschefB’ of P parametrizing
parabolic bundles, such that the vector bundié = Ej is stable, and consider
the natural projection map : PB° — M sending a parabolic bundl, to E, itis
easy to prove that is a Poisson morphism, i.e., it is compatible with the Poisson
structures ofP3° and M determined by;.

Remark 5.3. Let X be a Poisson surface, with Poisson structure given by a non-
zero sectios € HO(X, w;(l) (cf. [B2]) and letD be the divisor defined by. In

this situation it is natural to consider parabolic vector bundleX avith parabolic
structure oveD. Let us denote b the corresponding moduli space.

According to Theorem 5 1, to define a Poisson structur@[o’)we need a non-
zero global sectiory of wy 1(—D), but in this case we havey Y—D) = 0y,
hence there is a canonlcal choice for the sectionamely; = 1 e HO(X, Oy).

The corresponding Hamiltonian morphism

B=B1:T"PB— PB
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is given, at any poinE, € PI3, by the map
HY(X, HOM(E., E)) — H'(X, HOM(E., E.))
induced by the natural injection of sheaves
HOM(E,, E,) < HOM(E,, E,).

Note that this Hamiltonian morphism is not an isomorphism, in general, hence the
Poisson structure oRB corresponding to the choige = 1 is, in general, not a
symplectic structure.

For instance, if we consider parabolic vector bundles with trivial parabolic
structure ove, i.e., vector bundle& with parabolic structure given by

E = F1(E) D F2(E) = E(=D)

(and weighte; = 0), then the moduli spacgB coincides with the moduli space
M of stable vector bundles axi. We also have the following identifications:

HOM(E,, Ey) = HOM(E, E)

and
HOM(E,, E,) = HOM(E, E) ® Ox(—D) = HOM(E, E) ® wx.

From this it follows that the Hamiltonian map
B:T"M —> TM
is given, at any poinE € M, by the map
HY(X, Hom(E, E) ® wx) — H*(X, HOM(E, E))
induced on the cohomology groups by the map of sheaves
HOM(E, E) ® wx —> HOm(E, E)

given by the multiplication by the sectiene HO(X, w}l). Butthis is precisely the
Poisson structure on the moduli spakteconstructed in [B2]. In this way we can
recover the results obtained in [B2] as a special case of the general construction of
Poisson structures on moduli spaces of parabolic vector bundI&s on

Remark 5.4. Let us consider here another special case= P2 andD = ¢ a

line in P2. In [B4] we proved that the moduli spadg3 of stable framed vector
bundles onX, i.e., the moduli space parametrizing isomorphism classes of pairs
(E, n), whereE is a vector bundle of rank on X with ¢; = 0 andy : E|p —

0%’ is an isomorphism of vector bundles, has a canonical holomorphic Poisson
structure, determined by the sectione H%(X, Ox (1)) defining the divisorD

(this Poisson structure is actually everywhere non-degenerate, hence it defines a
holomorphic symplectic structure ¢fB). Note that, by the work of Donaldson [D],

the moduli spacé&B is isomorphic to the moduli space of framed @Vinstantons

onR* U {o00}.
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In [M2] Maruyama proved that the moduli spag8 of framed vector bundles
is isomorphic to an open subset of a certain moduli sRig®f stable parabolic
vector bundles orX with parabolic structure oveb. The isomorphism can be
described as follows: to a vector bundiewith a trivializationy : E|p — O%’ we
can associate a homomorphism of vector bundle€|p, — Op(r — 1) inducing
an isomorphism on the spaces of global sections. The kerggsdhen isomorphic
to Op(—1)®"~1, hence we obtain the following quasi-parabolic structur& aver
D:

Elp=F5(E) D Op(=1)® 1= FA(E) D 0= F3(E)

(we are using here the alternative definition of parabolic structure given in Re-
mark 2.2). To obtain a parabolic structure it remains only to fix two weights,
andaz. The choice of weights influences the parabolic stability of the resulting
parabolic vector bundI€,, and Maruyama proved that there is a special choice for
the weights, namely; = % anday = % such that the parabolic vector bundig
corresponding to a framed vector bundig n) as above is always parabolic stable
(see [M2] for more details).

From Theorem 5.1 it follows that a Poisson structurédis determined by a
global sectior; of w;(l(—D) = Ox(2). Obviously, there is now a natural choice
for ¢, namely; = s2. It is now easy to check, by using the explicit description of
the Hamiltonian morphisn®, that the Poisson structure definedgy: s2 on PB
coincides with the Poisson structure definedstmn Fi5.

6. The symplectic leaf foliation

In this section we shall investigate the structure of the symplectic leaf foliation of
the moduli spacé’BB in some special cases. We start by considering the simpler
case of the moduli spackt of vector bundles (with no parabolic structure) on a
Poisson surfacé.

Let X be a smooth projective surface with the Poisson structure determined by
s € HO(X, w}l). Let us fix an ample divisoH on X, and letM = M(r, c1, ¢2)
denote the moduli space @f-stable vector bundles ok of rank» and Chern
classese; andcy. In [B2] we proved that the moduli spacet has a canonical
Poisson structuré; determined by the section The Poisson structurg; can
be described by giving its Hamiltonian morphisgg : 7*M — T .M. For any
E € M we defineB;(E) to be the map

By(E) : HY(X, End(E) ® wx) — HY(X, End(E))
induced on cohomology by the homomorphism of sheaves
ENd(E) ® wx > End(E)

given by the multiplication by the section
It is not difficult to see that the kernel @, (E) can be canonically identified
with HO(D;, End(E|p,))/C, whereD; is the divisor defined by the section It
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follows that the codimension of the symplectic leaf passing through a poini\
is equal toh°(Dy, End(E|p,)) — 1. We refer to [B2] for further details.

Let us now fix a vector bundl& on D, and consider the moduli spad@
parametrizing framed vector bundles Brnwhose restriction td; is isomorphic
to F. More precisely, a point it 3¢ is an isomorphism class of pait, n),
whereE is a stable vector bundle (of rankand Chern classes andcz) on X and
n: E|p, — F is an isomorphism of vector bundles. We refer to [B4] or [HL] for
more details on moduli spaces of framed vector bundles.

There is an obvious map : FBr — M which “forgets the framing”, i.e., it
sends a framed vector bundlE, ) to E (remember that we are considering only
framed vector bundle&, ) such that is a stable vector bundle). We shall denote
by M the image of this map:

Mp ={E € M|E|p, = F}.

Remark 6.1. Two framed vector bundleéE, n) and (E’, n') are isomorphic (as
framed vector bundles) if there exists an isomorphgsmE — E’ such that its
restriction to the divisoD; satisfiesy’ o ¢|p, = An, for some constarit € C*,
hence, for every. € C*, the framed vector bundl€€, n) and(E, An) determine
the same point in the moduli spag®r. It follows that there is a natural action of
the groupG r = PAutp,, (F) on 7B defined byg - (E, n) = (E, g o n), where

g € Autp,, (F) is any representative of the clags G . The quotientFBr/G

is naturally identified with the subschemé r of the moduli spaceM.

Infinitesimal deformation theory provides a canonical identification between
the tangent spacgg ,) FBr to the moduli spaceBr at a point(E, ) and the
first conomology groug (X, End(E) ® Ox(—Dy)). In the present situation, we
haveOyx (D) = a);(l, hence we have a canonical identification

Tie.FBr = HY(X, End(E) ® o).

The tangent map te : F3r — M at a point(E, n) is then canonically identified
with the map

HY(X, End(E) ® wy) — HY(X, End(E))

induced on cohomology by the homomorphism of sheaves
End(E) ® wx > End(E)

given by the multiplication by the sectiene H°(X, a);(l). But this coincides with
the mapB, defining the Poisson structure of the moduli spAde

By recalling that the symplectic leaves of a Poisson variety are the integral
leaves of the characteristic distribution, which is the distribution defined by the
image of the Hamiltonian morphisiB, and by using the identification between
the mapB; and the tangent map to the morphiam F5r — M, itis now easy
to see that the symplectic leaf foliation of the moduli spAdes determined by
the images of the various moduli spacBsy in M, as we vary the vector bundle
F on D,. More precisely, we have:
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Proposition 6.2. The symplectic leaves of the moduli space M, endowed with the
Poisson structureé, corresponding totheglobal section s of a);(l, arethe(connected
components of the) subschemes Mg = {E € M | E|p, = F}, for any choice of a
vector bundle F on the divisor Dy defined by the section s.

Remark 6.3. This description of the symplectic leaves b6f, together with the
isomorphismM r = FBr/G r, agrees with the previous computation of the rank
of the Poisson structur®, expressed as ditht — (h%(D;, End(E|p,)) —1). In
fact, we have: dinFB8r = dim M, andh%(D;, End(E|p,)) — 1 is precisely the
dimension of the group r.

Remark 6.4. From the identification
Tie.FBr = HY (X, End(E) ® wx) = TfM

it follows that the Hamiltonian morphisn®, : T*M — T.M determines a
morphismb; : TFBr — T*FBr. The same proof given in [B2] to show that

B, : T*M — TM defines a Poisson structure @vi, can be used to show
that the morphisnb, : TFBr — T*FBF defines a closed, holomorphic 2-form

ws € HOFBr, A°T*FBr) on the moduli spacéBr. This is not a symplec-

tic structure because, in general, it will be degenerate. We shall call it a quasi-
symplectic structure.

The action of the grouf  is immediately seen to be a quasi-symplectic action
(with the obvious meaning of the word), and an analogue of the Marsden-Weinstein
symplectic reduction can be performed in this quasi-symplectic case. The corre-
sponding moment map : 7Br — g}, is identically zero, hence the reduced space
is . 1(0)/Gr = FBr/GFr = Mp.

Note that, even if the 2-form; on FBF is only quasi-symplectic, the induced
2-form on the reduced moduli spagd r = FBr/GF is actually a symplectic
structure. This is precisely the symplectic structure induced on the symplectic leaf
M by the Poisson structugg of M.

The next case we are going to consider is the one described in Remark 5.3.
Using the same notations as befoie,will be a Poisson surface with Poisson
structure determined by the sectiore HO(X, a);(l) and D = D, will denote
the divisor defined by. We shall now consider the moduli spaeB of parabolic
vector bundles with parabolic structure ov&rin this situation there is a canonical
Poisson structure on the moduli sp&gcorresponding to the choice of the section
¢ =1of w;(l(—D) = Oyx. The corresponding Hamiltonian morphisBn= Bj :

T*PB — TPBis given by the maps

B(E,) : HY(X, HOM(E,, E)) — HY(X, HOm(Ey, E)) (6.1)

induced by the natural inclusion of sheasm(E,, Ex) < HOM(E,, E.), for
anyE, € PB.

Since the symplectic leaves of the Poisson maniféiicare the integral leaves
of the characteristic distribution, which is the distribution defined by the images
of the mapsB(E,), and recalling the results obtained in the previous special case,
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we shall now look for a moduli space whose tangent space at some point can be
identified with the cohomology groui*(X, Hom(E, E)).
For a parabolic vector bundig, € PB, let us denote by

E = F1(E) D F2(E) O --- D Fi(E) D Fi11(E) = E(=D)

its parabolic structure oved (with some fixed weightg.). Let us choose now,
foranyi = 1,...,1, a vector bundlez; on D and setG = (G1, ..., G;). We
shall now denote byFPBg the moduli space parametrizing isomorphism classes
of (I + 1)-tuples(Ex, n1, . .., n1), whereE, € PBandy; : F;(E)/Fi11(E) > G;

is an isomorphism of vector bundles, foe 1, ..., [. Then we have:

Proposition 6.5. Thetangent spaceat a point (Ex, 11, . .., n;) to the moduli space
FPBg iscanonicallyidentified to thefirst conomol ogy group H1(X, Hom(E., E.)).

Proof. We shall give a sketch of the proof in the special case of parabolic vector

bundles with parabolic structure of length 2. The general case is only notationally
more complicated. Moreover, since in this case it is more convenient to use the def-
inition of parabolic structure as given in Remark 2.2, we shall denote the parabolic
structure ofE by

Elp=F5(E) D F3(E) D F(E)=0

(with some fixed weighta1 anda?).
Let(Ey, n1, n2) € FPBg. If we choose a suitable open coveridg= (U;);c; Of
X, the rankr vector bundleE can be described by giving a collection of transition
functions
gi:UinU; — GL(r, ©),

satisfying the usual cocycle conditions. Sinf%(E) is a sub-vector bundle of
E|p, it is possible to choose the open coverifigind the transition functiong;;
such that the restriction @f; to (U; N U;) N D has the following form

fij hij)
gijlp = (

where f;; andk;; are transition functions for the sub—buntﬂ?—’,;(E) and for the
quotient bundleF 5 (E)/F3 (E), respectively.

To construct atangent vector to the moduli spaB8 g atthe pointE,, n1, 2),
let us consider a curve

(=€, €) 3t (Ex(t), m(t), n2(t)) € FPBg

with (E,(0), n1(0), n2(0)) = (Ex, n1, n2). The transition functiong;; () of the
vector bundleE () can be choosen so that their restriction®tbave the following
form

5 _ (Jij @) hij(@)
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The tangent vector tPBg at the point(E.., n1, n2) determined by this curve is
identified with the cohomology class determined by the cocygle= %h:o.
Since the isomorphism classes of the vector bun@Iige (1)) and

FH(E@)/FA(E®))

are fixed, it is possible to choose the transition functigné) such that the tran-
sition functionsf;; () andk;;(¢) do not actually depend on It follows that the
functionsg;; have the property that their restriction Bbhave the following form

1 = 0 hyj
8ijlD = 00/

This means that the functiong; determine a cocycle with values in the sheaf
HoOM(E,, E*) of homomorphismgp : E — E such that the restrictiop|p :
E|p — E|p is nilpotent with respect to the parabolic structure fof i.e.,
¢>|D(}'g(E)) - }"D“(E). It is now easy to deduce that the tangent vectors to
FPBg at a point(E,., n1, n2) are naturally identified with the elements of the co-
homology groupH (X, Hom(E,, Ey)). O

There is a natural map : FPBg — PB sending a pointE., n1, ..., n) to
E.. Inview of the preceding result, the tangent map @&t a point(E, n1, ..., n1)
is naturally identified with the map (6.1), but these are precisely the maps defining
the characteristic distribution of the Poisson varigts. It follows that the images
of the moduli space&PB¢ in PB (as we vary the collection of vector bundigs
on D) determine the symplectic leaf foliation #13. Precisely, we have:

Proposition 6.6. The symplectic leaves of the moduli space PB endowed with its
canonical Poisson structure are the (connected components of the) subschemes

PBg = {E+ € PB| F;(E)/Fiz1(E) = Gy, fori=1,...,1},
for any collection of vector bundlesG = (Gy, ..., G;) onthedivisor D.

Remark 6.7. Note that if the parabolic structure over the divigbis the trivial one

(cf. Remark 5.3), we recover the description of the symplectic leaf foliation of the
moduli spaceM of stable vector bundles on the Poisson surféabtained in the
first part of this section.
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