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Abstract. Let X be a smooth complex projective surface andD an effective divisor onX
such thatH0(X, ω−1

X
(−D)) �= 0. Let us denote byPB the moduli space of stable parabolic

vector bundles onX with parabolic structure over the divisorD (with fixed weights and
Hilbert polynomials). We prove that the moduli spacePB is a non-singular quasi-projective
variety naturally endowed with a family of holomorphic Poisson structures parametrized by
the global sections ofω−1

X
(−D). This result is the natural generalization to the moduli spaces

of parabolic vector bundles of the results obtained in [B2] for the moduli spaces of stable
sheaves on a Poisson surface. We also give, in some special cases, a detailed description of
the symplectic leaf foliation of the Poisson manifoldPB.

1. Introduction

Moduli spaces of sheaves on smooth projective surfaces were studied, from the
point of view of symplectic geometry, by S. Mukai in [Mu]. Mukai discovered that
if a surfaceX has a holomorphic symplectic structure (this means that the canonical
line bundleωX of X is trivial, i.e.,X is an abelian or K3 surface) then the moduli
spaceM of stable sheaves onX has a holomorphic symplectic structure too. This
result was generalized to the case of Poisson structures in [B2]. More precisely,
we proved that the moduli spaceM of stable sheaves on a Poisson surfaceX has
a family of Poisson structuresθs ∈ H 0(M,∧2TM) parametrized by the global
sectionss of the anti-canonical line bundleω−1

X . Since a Poisson structure onX
is determined by choosing such a sections, it follows that the choice of a Poisson
structure onX naturally determines the Poisson structure of the moduli spaceM.
Similar results can be proven also for other kinds of moduli spaces, like Hilbert
schemes of points ofX [B3], or moduli spaces of framed vector bundles onX [B4].

In this paper we prove that similar results, concerning the existence of Pois-
son structures on moduli spaces, can be obtained for yet another kind of moduli
spaces, namely moduli spaces of parabolic vector bundles onX. In this case too,
we construct a family of holomorphic Poisson structures on the moduli spacePB
of parabolic vector bundles onX parametrized by the global sections of a certain
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line bundle onX. By considering parabolic vector bundles with trivial parabolic
structure over the divisor defined by a sections ∈ H 0(X, ω−1

X ), we recover the
results of [B2] as a special case of the general construction proposed in this paper.

This paper is organized as follows. In Sect. 2 we recall some basic definitions
and results on parabolic sheaves and their moduli spaces. Then, in Sect. 3, we recall,
for the convenience of the reader, some results of symplectic geometry that will be
needed in the sequel.

In Sect. 4 we construct the Poisson structureθζ on the moduli spacePB of
parabolic vector bundles onX with parabolic structure over an effective divisorD,
determined by a global sectionζ of the line bundleω−1

X (−D), and in Sect. 5 we
prove thatθζ is actually a Poisson structure, i.e., that the Poisson bracket defined
by θζ satisfies the Jacobi identity.

Finally, in Sect. 6 we study, in some particular cases, the symplectic leaf foliation
of the moduli spacePB determined by the Poisson structureθζ .

2. Parabolic sheaves

LetX be a non-singular complex projective surface andH an ample divisor on it.
We shall also fix an effective Cartier divisorD onX.

Definition 2.1. A parabolic structure overD on a coherent, torsion-freeOX-module
E is the data of a filtration

F∗ : E = F1(E) ⊃ F2(E) ⊃ · · · ⊃ Fl(E) ⊃ Fl+1(E) = E(−D),
where E(−D) denotes the image of E ⊗OX

OX(−D) → E, together with a
sequence of real numbers α∗ = (α1, . . . , αl), called weights, such that

0 ≤ α1 < α2 < · · · < αl < 1.

A parabolic sheaf is a coherent, torsion-free OX-module E with a parabolic struc-
ture over D.

Remark 2.2. Some authors (cf., [Bh]) define a parabolic structure overD on a sheaf
E as a sequence of subsheaves ofE|D

E|D = F1
D(E) ⊃ F2

D(E) ⊃ · · · ⊃ F l
D(E) ⊃ F l+1

D (E) = 0,

together with a system of weights 0≤ α1 < α2 < · · · < αl < 1.
Our definition is related to this one by setting

Fi(E) = ker(E→ E|D/F i
D(E)).

All definitions related to parabolic sheaves can be stated more efficiently in
terms ofR-filtered sheaves (see [Y2] for the definition).

Given a parabolic sheaf(E, F∗, α∗), we define its associatedR-filtered sheaf
E∗ = (Ex), for 0≤ x ≤ 1, by settingE0 = E andEx = Fi(E) if αi−1 < x ≤ αi ,
where we have setα0 = 0 andαl+1 = 1. The definition ofEx can be extended
to all x ∈ R by settingEx+1 = Ex(−D). Figure 2.1 illustrates theR-filtered
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Fig. 2.1. TheR-filtered sheafE∗ associated to a parabolic sheaf(E, F∗, α∗)
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Fig. 2.2. TheR-filtered sheafÊ∗ associated to a parabolic sheaf(E, F∗, α∗)

sheaf corresponding to a parabolic sheaf(E, F∗, α∗) with weights 0≤ α1 < α2 <

α3 < 1.
From now on anR-filtered sheafE∗ = (Ex)x∈R associated to a parabolic sheaf

(E, F∗, α∗) as above, will be simply called a parabolic sheaf.
Given a parabolic sheafE∗, we shall define theR-filtered sheafÊ∗ by setting,

for anyx ∈ [0,1],
Êx =

{
Ex if x �= αi,

Eαi+1 if x = αi,

and by extending the definition to allx ∈ R by setting, as usual,̂Ex+1 = Êx(−D).
Figure 2.2 illustrates theR-filtered sheafÊ∗ corresponding to the parabolic sheaf
E∗ of Fig. 2.1.

If E∗ is anR-filtered sheaf, we shall always writeE for the sheafE0.

Definition 2.3. A homomorphism of R-filtered sheaves φ : E∗ → E′∗ is a homo-
morphism of OX-modules φ : E→ E′ such that φ(Ex) ⊆ E′x , for any x ∈ R.

We shall denote byHom(E∗, E′∗) the sheaf of homomorphisms ofR-filtered
sheaves fromE∗ toE′∗; it is a subsheaf ofHom(E,E′).

With these definitions the notion of parabolic homomorphism of two parabolic
sheaves becomes very simple:

Definition 2.4. IfE∗ andE′∗ are two parabolic sheaves, a parabolic homomorphism
φ : E∗ → E′∗ is a homomorphism of R-filtered sheaves.
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In order to construct moduli spaces of parabolic sheaves we need, as usual, a
suitable notion of stability. This was introduced in [MY], where moduli spaces of
semistable parabolic sheaves were constructed in great generality. We only state
here the results we shall need in the sequel.

Proposition 2.5. Let us fix a sequence of rational numbers α∗ = (α1, . . . , αl) with
0 ≤ α1 < α2 < · · · < αl < 1, and polynomials H,H1, . . . , Hl . Then there
exists a quasi-projective moduli space PS parametrizing isomorphism classes of
stable parabolic sheaves E∗ having α∗ as system of weights and such that the
Hilbert polynomial of E is H and the Hilbert polynomial of E/Fi+1(E) is Hi , for
i = 1, . . . , l.

Remark 2.6. Note that, in general, there does not exist a universal family of parabolic
sheaves on the moduli spacePS, i.e., a parabolic sheafE∗ overPS × X, flat over
PS, such thatE∗|{E∗}×X ∼= E∗, for anyE∗ ∈ PS. However, universal families
always exist locally, for the complex or étale topology, onPS.

In the sequel we shall be particularly interested in a special class of parabolic
sheaves, namely locally free parabolic sheaves (also called parabolic vector bun-
dles).

Definition 2.7. A parabolic sheaf E∗ is said to be locally free if, for any x, Ex is a
locally free OX-module and, for any x, y, with x ≤ y < x + 1, Ex/Ey is a locally
free OD-module.

We shall denote byPB the open subset of the moduli spacePS parametrizing
isomorphism classes of locally free parabolic sheaves.

Infinitesimal deformation theory for parabolic sheaves (cf. [Y2]) yields the
following result:

Proposition 2.8. The tangent space TE∗PB to the moduli space PB at a point E∗
is canonically identified with the cohomology groupH 1(X,Hom(E∗, E∗)) and the
obstruction to the smoothness of PB at the point E∗ lies in H 2(X,Hom(E∗, E∗)).

By recalling the version of Serre duality for parabolic sheaves [Y2, Proposi-
tion 3.7], we have:

Corollary 2.9. The cotangent space T ∗E∗PB to the moduli space PB at a pointE∗ is

canonically identified with the cohomology groupH 1(X,Hom(E∗, Ê∗)⊗ωX(D)).
Remark 2.10. With the notations of Remark 2.2, if the parabolic structure of a vector
bundleE is given by a filtration

E|D = F1
D(E) ⊃ F2

D(E) ⊃ · · · ⊃ F l
D(E) ⊃ F l+1

D (E) = 0,

and ifE∗ is the correspondingR-filtered sheaf, then a sectionφ of Hom(E∗, Ê∗) is
a homomorphismφ : E→ E such thatφ|D is nilpotent with respect to the filtration
of E|D given above, i.e., such thatφ|D(F i

D(E)) ⊆ F i+1
D (E), for i = 1, . . . , l.
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3. Poisson structures

In this section we recall, for the convenience of the reader, some basic definitions
of symplectic geometry that will be needed in the sequel.

Definition 3.1. A (holomorphic) Poisson structure on a non-singular complex va-
riety X is a Lie algebra structure {·, ·} on the sheaf of regular functions OX which
is a derivation in each entry, i.e., satisfies {f, gh} = {f, g}h+ g{f, h}.

It is easy to see that to give a Poisson structure onX is equivalent to giving an
antisymmetric contravariant 2-tensorθ ∈ H 0(X,∧2TX), defined by setting

{f, g} = 〈θ, df ∧ dg〉. (3.1)

Given θ ∈ H 0(X,∧2TX), the bracket defined by the formula above satisfies all
the properties required to be a Poisson structure, except for the Jacobi identity

{f, {g, h}} + {g, {h, f }} + {h, {f, g}} = 0,

hence we must impose an additional condition onθ . In order to express this condi-
tion in a suitable way, we have to introduce one more piece of notation: we denote
by Bθ : T ∗X → TX the homomorphism of vector bundles defined by setting
〈θ, α ∧ β〉 = 〈Bθ(α), β〉, for 1-formsα andβ. The homomorphismBθ is called
the Hamiltonian morphism. In fact, for any regular functionf on X, the vector
field Xf = Bθ(df ) is precisely the Hamiltonian vector field off , defined by
Xf (g) = {f, g}, for any regular functiong.

We can now define an operatord̃ : H 0(X,∧2TX)→ H 0(X,∧3TX) by setting

d̃θ(α, β, γ ) = Bθ(α)θ(β, γ )− Bθ(β)θ(α, γ )+ Bθ(γ )θ(α, β)

−〈[Bθ(α), Bθ (β)], γ 〉 + 〈[Bθ(α), Bθ (γ )], β〉 − 〈[Bθ(β), Bθ (γ )], α〉, (3.2)

for 1-formsα, β, γ , where[·, ·] denotes the usual commutator of vector fields. We
have the following result, whose proof consists in a straightforward computation
using local coordinates.

Proposition 3.2. The bracket {·, ·} defined by an element θ ∈ H 0(X,∧2TX) as in
(3.1) is a Poisson structure, i.e., satisfies the Jacobi identity, if and only if d̃θ = 0.

Remark 3.3. The element̃dθ ∈ H 0(X,∧3TX) coincides (up to a factor of 2) with
the so-called Schouten bracket[θ, θ ] (see [V] for the definition). However, the
expression given in (3.2) is more convenient for our computations.

Remark 3.4. Whenθ has maximal rank everywhere, i.e., whenBθ : T ∗X→ TX is
an isomorphism, to giveθ is equivalent to giving its inverse 2-formω ∈ �2

X, which
corresponds to the inverse isomorphismB−1

θ : TX → T ∗X. It is easy to check
that, in this situation, the conditioñdθ = 0 is equivalent todω = 0, i.e., to the
closure of the 2-formω. In this case we say thatω defines a symplectic structure
on X, or simply, that the Poisson structure is symplectic. Note that a necessary
condition for the existence of a symplectic structure onX is that the dimension of
X be even.
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Remark 3.5. In the case of surfaces, the mapd̃ is identically 0 (∧3TX = 0, since
dimX = 2), hence a Poisson structure on a smooth surfaceX is given by a section
of ∧2TX ∼= ω−1

X , i.e., by a global sectionθ of the anti-canonical line bundle.

Let nowX be a Poisson variety, andθ ∈ H 0(X,∧2TX) its Poisson structure.
For anyx ∈ X, we setD(x) = Im(Bθ (x)) ⊆ TxX. The collectionD = (D(x))x∈X
of subspaces of the tangent spaces ofX is called the characteristic distribution of
the Poisson variety(X, θ).

It turns out that, for any Poisson variety, the characteristic distribution is com-
pletely integrable, and the Poisson structure ofX determines a symplectic structure
on the integral leaves of this distribution. These integral leaves are then called the
symplectic leaves of the Poisson variety(X, θ). For more details on the structure
of Poisson varieties, we refer to [V].

4. Poisson structures on moduli spaces

From now on we shall assume that the surfaceX and the divisorD are such that
H 0(X, ω−1

X (−D)) �= 0, whereωX is the canonical line bundle onX. We shall also
fix a non-zero global sectionζ of the line bundleω−1

X (−D) and denote byDζ the
divisor defined byζ .

Remark 4.1. From the standard exact sequence

0→ OX(−D)→ OX → OD → 0

we obtain, by tensoring withω−1
X , a canonical injection

H 0(X, ω−1
X (−D)) ↪→ H 0(X, ω−1

X ).

It follows that the choice ofζ determines a natural Poisson structure onX.

In [B2] we proved that the moduli spaceM of stable vector bundles on a Poisson
surface is always non-singular. For the special class of surfaces we are considering
here, the same result holds also for the moduli space of parabolic vector bundles.

Proposition 4.2. Let X be a non-singular projective surface and D an effective
divisor such that H 0(X, ω−1

X (−D)) �= 0. Then the moduli space PB of stable
parabolic vector bundles on X is a non-singular quasi-projective variety.

Proof. The obstruction to the smoothness of the moduli spacePB at a pointE∗
lies inH 2(X,Hom(E∗, E∗)). By the Serre duality theorem for parabolic bundles
(cf. [Y2, Proposition 3.7]), the dual of this vector space is canonically identified
with H 0(X,Hom(E∗, Ê∗) ⊗ ωX(D)). Finally, the existence of a non-zero global
section ofω−1

X (−D), together with the hypothesis of stability ofE∗, implies that
H 0(X,Hom(E∗, Ê∗)⊗ ωX(D)) = 0. ��
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By recalling the identifications of the tangent and cotangent spaces to the moduli
spacePB described above, we can define a map

Bζ (E∗) : T ∗E∗PB → TE∗PB
as follows:

Bζ (E∗) : H 1(X,Hom(E∗, Ê∗)⊗ ωX(D))
ζ−→ H 1(X,Hom(E∗, E∗)), (4.1)

where this is the map induced on the cohomology groups by the following map of
sheaves (whereζ denotes multiplication by the sectionζ ):

Hom(E∗, Ê∗)⊗ ωX(D)
ζ→ Hom(E∗, Ê∗) ↪→ Hom(E∗, E∗).

From the smoothness of the moduli spacePB, it follows that the family of maps
Bζ (E∗), asE∗ varies inPB, defines a global homomorphism

Bζ : T ∗PB → TPB.
From this we obtain a global sectionθζ ∈ H 0(PB,⊗2TPB) defined by setting

θζ (α, β) = 〈Bζ (α), β〉,
for any two 1-formsα, β onPB.

By recalling the expression of the Serre duality and the definition ofBζ , it is
not difficult to see that, for anyE∗ ∈ PB, the map

θζ (E∗) : T ∗E∗PB × T ∗E∗PB → C

is identified to the map

θζ (E∗) : H 1(X,Hom(E∗, Ê∗)⊗ ωX(D))×H 1(X,Hom(E∗, Ê∗)⊗ ωX(D))

→ H 2(X, ωX) ∼= C,

given by the composition of the following maps: first we take the cup-product of
two cohomology classes followed by the composition of the homomorphisms of
filtered sheaves, then we compose with the map induced by the multiplication by
ζ , and finally we apply the trace map

tr : H 2(X,Hom(E∗, Ê∗)⊗ ωX(D))→ H 2(X, ωX).

From this explicit description ofθζ it follows, by recalling the graded commutativity
property of the cup-product, thatθζ is skew-symmetric, hence we have actually
defined a bivector fieldθζ ∈ H 0(PB,∧2TPB). This is our candidate to define a
Poisson structure on the moduli spacePB.

Remark 4.3. If the divisorD is non-singular, the definition of the bivector fieldθζ on
the moduli spacePB can be extended to the moduli spacePS of torsion-free coher-
ent parabolic sheaves. In order to do that it is enough to modify the construction of
θζ given above by simply replacing the cohomology groupsH 1(X,Hom(E∗, E∗))
andH 1(X,Hom(E∗, Ê∗)⊗ωX(D)) with appropriate “parabolic Ext”-groups (de-
fined in [Y2]), that are canonically identified with the tangent and cotangent spaces
to the moduli spacePS at the point corresponding to a parabolic sheafE∗. The
assumption of non-singularity ofD is needed in order to be able to apply the Serre
duality theorem for non-locally free parabolic sheaves (cf. [Y2, Proposition 3.7]).
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5. The closure of θζ

In this section we shall prove thatθζ satisfies the closure conditioñdθζ = 0, i.e.,
it defines a Poisson structure on the moduli spacePB. The proof of this result is a
generalization to the case of parabolic bundles of the proof of the analogous result
for the moduli space of vector bundles given in [B2]. We shall describe only the
relevant modifications.

First of all let us recall some preliminary results. Letπ : X→ Y be a morphism
(locally of finite presentation) of schemes, andE,F two locally free sheaves onX.
We denote byDiff 1

X/Y (E, F ) the sheaf of relative differential operators fromE to
F of order≤ 1. We have the following short exact sequence

0→ HomX(E, F )→ Diff 1
X/Y (E, F )

σ→ DerY (OX)⊗HomX(E, F )→ 0,

whereσ is the symbol morphism. From this, ifE = F and we restrict to differential
operators with scalar symbol, writtenD1

X/Y (E), we obtain the exact sequence

0→ EndX(E)→ D1
X/Y (E)

σ→ DerY (OX)→ 0.

Now, if E∗ andF∗ are two parabolic bundles onX, we denote byDiff 1
X/Y (E∗, F∗)

the subsheaf ofDiff 1
X/Y (E, F ) of differential operatorsD : E → F such that

D(Ex) ⊂ Fx , for anyx ∈ R. We call it the sheaf of relative parabolic differential
operators fromE∗ to F∗ of order≤ 1. Analogously, ifE∗ = F∗ we can define the
sheafD1

X/Y (E∗) of relative parabolic differential operators with scalar symbol. We
have the following exact sequence:

0→ HomX(E∗, E∗)→ D1
X/Y (E∗)

σ→ DerY (OX)→ 0.

Let us denote byp : PB×X→ PB andq : PB×X→ X the canonical projections.
We would like to apply the preceding results to the mapq : PB × X → X and to
the ‘universal parabolic bundle’E∗ onPB ×X, but unfortunately such a universal
parabolic bundle does not exist in general (cf. Remark 2.6). So let us consider an
open subsetU (for the complex or étale topology, not for the Zariski topology) of
the moduli spacePB such that there exists a universal parabolic familyE∗ = EU∗
onU ×X. We still denote byp andq the restrictions of the canonical projections
to U × X. By applying the preceding results to the mapq : U × X → X and to
the (local) universal parabolic bundleE∗, we obtain the following exact sequence

0→ Hom(E∗, E∗)→ D1
X(E∗)→ p∗T U → 0,

whereD1
X(E∗) = D1

U×X/X(E∗) denotes the sheaf of first-order parabolic differen-
tial operators onE∗ with scalar symbol, that areq∗OX-linear.

By applyingp∗, and noting thatp∗p∗T U ∼= T U sincep : U × X → U is a
proper morphism, we get a long exact sequence, a piece of which is

· · · → T U → R1p∗(Hom(E∗, E∗))→ R1p∗(D1
X(E∗))→ · · · . (5.1)
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It is not difficult to see that the map

T U → R1p∗(Hom(E∗, E∗))
is the global version of the canonical isomorphism

TE∗PB ∼−→ H 1(X,Hom(E∗, E∗)),
for E∗ ∈ U , hence it is an isomorphism.

From the exact sequence (5.1) it follows that the map

R1p∗(Hom(E∗, E∗))→ R1p∗(D1
X(E∗))

factors through 0, i.e., the image of a global section{ηij } of R1p∗(Hom(E∗, E∗)) is
zero inR1p∗(D1

X(E∗)). This means that there exist sectionsḊi of R1p∗(D1
X(E∗))

over suitable open subsetsVi , such that, onVi ∩ Vj , we have

ηij = Ḋj − Ḋi .

Note that this equation is formally the same as equation (5.2) of [B2]. From now
on all the subsequent discussion carried out in [B2, Sect. 5] can be repeated, almost
literally, for the moduli spacePB. The proof of the closure conditioñdθζ = 0 is
now practically identical to the proof of [B2, Theorem 5.1]. Finally, note that the
preceding discussion applies to any open subset of a suitable open covering of the
moduli spacePB.

We have thus proved the following result:

Theorem 5.1. For any non-zero section ζ ∈ H 0(X, ω−1
X (−D)), the antisymmetric

contravariant 2-tensor θζ ∈ H 0(PB,∧2TPB) defines a Poisson structure on the
moduli space PB.

Remark 5.2. Let X, D andζ ∈ H 0(X, ω−1
X (−D)) be as above. We have already

observed (cf. Remark 4.1) thatζ determines a Poisson structure onX, hence, by the
results of [B2], it also defines a Poisson structure on the moduli spaceM of stable
vector bundles onX. If we restrict to the open subschemePBo of PB parametrizing
parabolic bundlesE∗ such that the vector bundleE = E0 is stable, and consider
the natural projection mapπ : PBo →M sending a parabolic bundleE∗ toE, it is
easy to prove thatπ is a Poisson morphism, i.e., it is compatible with the Poisson
structures ofPBo andM determined byζ .

Remark 5.3. Let X be a Poisson surface, with Poisson structure given by a non-
zero sections ∈ H 0(X, ω−1

X ) (cf. [B2]) and letD be the divisor defined bys. In
this situation it is natural to consider parabolic vector bundles onX with parabolic
structure overD. Let us denote byPB the corresponding moduli space.

According to Theorem 5.1, to define a Poisson structure onPB we need a non-
zero global sectionζ of ω−1

X (−D), but in this case we haveω−1
X (−D) ∼= OX,

hence there is a canonical choice for the sectionζ , namelyζ = 1 ∈ H 0(X,OX).
The corresponding Hamiltonian morphism

B = B1 : T ∗PB → PB
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is given, at any pointE∗ ∈ PB, by the map

H 1(X,Hom(E∗, Ê∗))→ H 1(X,Hom(E∗, E∗))

induced by the natural injection of sheaves

Hom(E∗, Ê∗) ↪→ Hom(E∗, E∗).

Note that this Hamiltonian morphism is not an isomorphism, in general, hence the
Poisson structure onPB corresponding to the choiceζ = 1 is, in general, not a
symplectic structure.

For instance, if we consider parabolic vector bundles with trivial parabolic
structure overD, i.e., vector bundlesE with parabolic structure given by

E = F1(E) ⊃ F2(E) = E(−D)
(and weightα1 = 0), then the moduli spacePB coincides with the moduli space
M of stable vector bundles onX. We also have the following identifications:

Hom(E∗, E∗) = Hom(E,E)

and
Hom(E∗, Ê∗) = Hom(E,E)⊗OX(−D) = Hom(E,E)⊗ ωX.

From this it follows that the Hamiltonian map

B : T ∗M→ TM
is given, at any pointE ∈M, by the map

H 1(X,Hom(E,E)⊗ ωX)→ H 1(X,Hom(E,E))

induced on the cohomology groups by the map of sheaves

Hom(E,E)⊗ ωX
s−→ Hom(E,E)

given by the multiplication by the sections ∈ H 0(X, ω−1
X ). But this is precisely the

Poisson structure on the moduli spaceM constructed in [B2]. In this way we can
recover the results obtained in [B2] as a special case of the general construction of
Poisson structures on moduli spaces of parabolic vector bundles onX.

Remark 5.4. Let us consider here another special case:X = P
2 andD = + a

line in P
2. In [B4] we proved that the moduli spaceFB of stable framed vector

bundles onX, i.e., the moduli space parametrizing isomorphism classes of pairs
(E, η), whereE is a vector bundle of rankr onX with c1 = 0 andη : E|D ∼→
O⊕rD is an isomorphism of vector bundles, has a canonical holomorphic Poisson
structure, determined by the sections ∈ H 0(X,OX(1)) defining the divisorD
(this Poisson structure is actually everywhere non-degenerate, hence it defines a
holomorphic symplectic structure onFB). Note that, by the work of Donaldson [D],
the moduli spaceFB is isomorphic to the moduli space of framed SU(r)-instantons
onR

4 ∪ {∞}.
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In [M2] Maruyama proved that the moduli spaceFB of framed vector bundles
is isomorphic to an open subset of a certain moduli spacePB of stable parabolic
vector bundles onX with parabolic structure overD. The isomorphism can be
described as follows: to a vector bundleE with a trivializationη : E|D ∼→ O⊕rD we
can associate a homomorphism of vector bundlesφ : E|D → OD(r − 1) inducing
an isomorphism on the spaces of global sections. The kernel ofφ is then isomorphic
toOD(−1)⊕r−1, hence we obtain the following quasi-parabolic structure onE over
D:

E|D = F1
D(E) ⊃ OD(−1)⊕r−1 = F2

D(E) ⊃ 0= F3
D(E)

(we are using here the alternative definition of parabolic structure given in Re-
mark 2.2). To obtain a parabolic structure it remains only to fix two weights,α1
andα2. The choice of weights influences the parabolic stability of the resulting
parabolic vector bundleE∗, and Maruyama proved that there is a special choice for
the weights, namelyα1 = 1

3 andα2 = 1
2, such that the parabolic vector bundleE∗

corresponding to a framed vector bundle(E, η) as above is always parabolic stable
(see [M2] for more details).

From Theorem 5.1 it follows that a Poisson structure onPB is determined by a
global sectionζ of ω−1

X (−D) ∼= OX(2). Obviously, there is now a natural choice
for ζ , namelyζ = s2. It is now easy to check, by using the explicit description of
the Hamiltonian morphismB, that the Poisson structure defined byζ = s2 onPB
coincides with the Poisson structure defined bys onFB.

6. The symplectic leaf foliation

In this section we shall investigate the structure of the symplectic leaf foliation of
the moduli spacePB in some special cases. We start by considering the simpler
case of the moduli spaceM of vector bundles (with no parabolic structure) on a
Poisson surfaceX.

LetX be a smooth projective surface with the Poisson structure determined by
s ∈ H 0(X, ω−1

X ). Let us fix an ample divisorH onX, and letM = M(r, c1, c2)

denote the moduli space ofH -stable vector bundles onX of rank r and Chern
classesc1 andc2. In [B2] we proved that the moduli spaceM has a canonical
Poisson structureθs determined by the sections. The Poisson structureθs can
be described by giving its Hamiltonian morphismBs : T ∗M → TM. For any
E ∈M we defineBs(E) to be the map

Bs(E) : H 1(X, End(E)⊗ ωX)→ H 1(X, End(E))

induced on cohomology by the homomorphism of sheaves

End(E)⊗ ωX
s→ End(E)

given by the multiplication by the sections.
It is not difficult to see that the kernel ofBs(E) can be canonically identified

with H 0(Ds, End(E|Ds ))/C, whereDs is the divisor defined by the sections. It
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follows that the codimension of the symplectic leaf passing through a pointE ∈M
is equal toh0(Ds, End(E|Ds ))− 1. We refer to [B2] for further details.

Let us now fix a vector bundleF onDs and consider the moduli spaceFBF

parametrizing framed vector bundles onX whose restriction toDs is isomorphic
to F . More precisely, a point inFBF is an isomorphism class of pairs(E, η),
whereE is a stable vector bundle (of rankr and Chern classesc1 andc2) onX and
η : E|Ds

∼→ F is an isomorphism of vector bundles. We refer to [B4] or [HL] for
more details on moduli spaces of framed vector bundles.

There is an obvious mapπ : FBF → M which “forgets the framing”, i.e., it
sends a framed vector bundle(E, η) toE (remember that we are considering only
framed vector bundles(E, η) such thatE is a stable vector bundle). We shall denote
by MF the image of this map:

MF = {E ∈M |E|Ds
∼= F }.

Remark 6.1. Two framed vector bundles(E, η) and (E′, η′) are isomorphic (as
framed vector bundles) if there exists an isomorphismφ : E ∼→ E′ such that its
restriction to the divisorDs satisfiesη′ ◦ φ|Ds = λη, for some constantλ ∈ C

∗,
hence, for everyλ ∈ C

∗, the framed vector bundles(E, η) and(E, λη) determine
the same point in the moduli spaceFBF . It follows that there is a natural action of
the groupGF = P AutODs

(F ) onFBF defined byḡ · (E, η) = (E, g ◦ η), where
g ∈ AutODs

(F ) is any representative of the classḡ ∈ GF . The quotientFBF /GF

is naturally identified with the subschemeMF of the moduli spaceM.

Infinitesimal deformation theory provides a canonical identification between
the tangent spaceT(E,η)FBF to the moduli spaceFBF at a point(E, η) and the
first cohomology groupH 1(X, End(E)⊗OX(−Ds)). In the present situation, we
haveOX(Ds) ∼= ω−1

X , hence we have a canonical identification

T(E,η)FBF
∼= H 1(X, End(E)⊗ ωX).

The tangent map toπ : FBF →M at a point(E, η) is then canonically identified
with the map

H 1(X, End(E)⊗ ωX)
s−→ H 1(X, End(E))

induced on cohomology by the homomorphism of sheaves

End(E)⊗ ωX
s→ End(E)

given by the multiplication by the sections ∈ H 0(X, ω−1
X ). But this coincides with

the mapBs defining the Poisson structure of the moduli spaceM.
By recalling that the symplectic leaves of a Poisson variety are the integral

leaves of the characteristic distribution, which is the distribution defined by the
image of the Hamiltonian morphismBs , and by using the identification between
the mapBs and the tangent map to the morphismπ : FBF → M, it is now easy
to see that the symplectic leaf foliation of the moduli spaceM is determined by
the images of the various moduli spacesFBF in M, as we vary the vector bundle
F onDs . More precisely, we have:
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Proposition 6.2. The symplectic leaves of the moduli space M, endowed with the
Poisson structure θs corresponding to the global section s ofω−1

X , are the (connected
components of the) subschemes MF = {E ∈ M |E|Ds

∼= F }, for any choice of a
vector bundle F on the divisor Ds defined by the section s.

Remark 6.3. This description of the symplectic leaves ofM, together with the
isomorphismMF

∼= FBF /GF , agrees with the previous computation of the rank
of the Poisson structureθs , expressed as dimM − (h0(Ds, End(E|Ds )) − 1). In
fact, we have: dimFBF = dimM, andh0(Ds, End(E|Ds )) − 1 is precisely the
dimension of the groupGF .

Remark 6.4. From the identification

T(E,η)FBF
∼= H 1(X, End(E)⊗ ωX) ∼= T ∗EM

it follows that the Hamiltonian morphismBs : T ∗M → TM determines a
morphismbs : TFBF → T ∗FBF . The same proof given in [B2] to show that
Bs : T ∗M → TM defines a Poisson structure onM, can be used to show
that the morphismbs : TFBF → T ∗FBF defines a closed, holomorphic 2-form
ωs ∈ H 0(FBF ,∧2T ∗FBF ) on the moduli spaceFBF . This is not a symplec-
tic structure because, in general, it will be degenerate. We shall call it a quasi-
symplectic structure.

The action of the groupGF is immediately seen to be a quasi-symplectic action
(with the obvious meaning of the word), and an analogue of the Marsden-Weinstein
symplectic reduction can be performed in this quasi-symplectic case. The corre-
sponding moment mapµ : FBF → g∗F is identically zero, hence the reduced space
isµ−1(0)/GF = FBF /GF

∼=MF .
Note that, even if the 2-formωs onFBF is only quasi-symplectic, the induced

2-form on the reduced moduli spaceMF
∼= FBF /GF is actually a symplectic

structure. This is precisely the symplectic structure induced on the symplectic leaf
MF by the Poisson structureθs of M.

The next case we are going to consider is the one described in Remark 5.3.
Using the same notations as before,X will be a Poisson surface with Poisson
structure determined by the sections ∈ H 0(X, ω−1

X ) andD = Ds will denote
the divisor defined bys. We shall now consider the moduli spacePB of parabolic
vector bundles with parabolic structure overD. In this situation there is a canonical
Poisson structure on the moduli spacePB corresponding to the choice of the section
ζ = 1 of ω−1

X (−D) ∼= OX. The corresponding Hamiltonian morphismB = B1 :
T ∗PB → TPB is given by the maps

B(E∗) : H 1(X,Hom(E∗, Ê∗))→ H 1(X,Hom(E∗, E∗)) (6.1)

induced by the natural inclusion of sheavesHom(E∗, Ê∗) ↪→ Hom(E∗, E∗), for
anyE∗ ∈ PB.

Since the symplectic leaves of the Poisson manifoldPB are the integral leaves
of the characteristic distribution, which is the distribution defined by the images
of the mapsB(E∗), and recalling the results obtained in the previous special case,
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we shall now look for a moduli space whose tangent space at some point can be
identified with the cohomology groupH 1(X,Hom(E∗, Ê∗)).

For a parabolic vector bundleE∗ ∈ PB, let us denote by

E = F1(E) ⊃ F2(E) ⊃ · · · ⊃ Fl(E) ⊃ Fl+1(E) = E(−D)
its parabolic structure overD (with some fixed weightsα∗). Let us choose now,
for any i = 1, . . . , l, a vector bundleGi on D and setG = (G1, . . . ,Gl). We
shall now denote byFPBG the moduli space parametrizing isomorphism classes

of (l+1)-tuples(E∗, η1, . . . , ηl), whereE∗ ∈ PB andηi : Fi(E)/Fi+1(E)
∼→ Gi

is an isomorphism of vector bundles, fori = 1, . . . , l. Then we have:

Proposition 6.5. The tangent space at a point (E∗, η1, . . . , ηl) to the moduli space
FPBG is canonically identified to the first cohomology groupH 1(X,Hom(E∗, Ê∗)).

Proof. We shall give a sketch of the proof in the special case of parabolic vector
bundles with parabolic structure of length 2. The general case is only notationally
more complicated. Moreover, since in this case it is more convenient to use the def-
inition of parabolic structure as given in Remark 2.2, we shall denote the parabolic
structure ofE by

E|D = F1
D(E) ⊃ F2

D(E) ⊃ F3
D(E) = 0

(with some fixed weightsα1 andα2).
Let(E∗, η1, η2) ∈ FPBG . If we choose a suitable open coveringU = (Ui)i∈I of

X, the rank-r vector bundleE can be described by giving a collection of transition
functions

gij : Ui ∩ Uj → GL(r,C),

satisfying the usual cocycle conditions. SinceF2
D(E) is a sub-vector bundle of

E|D, it is possible to choose the open coveringU and the transition functionsgij
such that the restriction ofgij to (Ui ∩ Uj) ∩D has the following form

gij |D =
(
fij hij
0 kij

)

wherefij andkij are transition functions for the sub-bundleF2
D(E) and for the

quotient bundleF1
D(E)/F2

D(E), respectively.
To construct a tangent vector to the moduli spaceFPBG at the point(E∗, η1, η2),

let us consider a curve

(−ε, ε) % t &→ (E∗(t), η1(t), η2(t)) ∈ FPBG

with (E∗(0), η1(0), η2(0)) = (E∗, η1, η2). The transition functionsgij (t) of the
vector bundleE(t) can be choosen so that their restrictions toD have the following
form

gij (t)|D =
(
fij (t) hij (t)

0 kij (t)

)
.
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The tangent vector toFPBG at the point(E∗, η1, η2) determined by this curve is

identified with the cohomology class determined by the cocycleġij = dgij
dt
|t=0.

Since the isomorphism classes of the vector bundlesF2
D(E(t)) and

F1
D(E(t))/F2

D(E(t))

are fixed, it is possible to choose the transition functionsgij (t) such that the tran-
sition functionsfij (t) andkij (t) do not actually depend ont . It follows that the
functionsġij have the property that their restriction toD have the following form

ġij |D =
(

0 ḣij
0 0

)
.

This means that the functionṡgij determine a cocycle with values in the sheaf
Hom(E∗, Ê∗) of homomorphismsφ : E → E such that the restrictionφ|D :
E|D → E|D is nilpotent with respect to the parabolic structure ofE, i.e.,
φ|D(F i

D(E)) ⊆ F i+1
D (E). It is now easy to deduce that the tangent vectors to

FPBG at a point(E∗, η1, η2) are naturally identified with the elements of the co-
homology groupH 1(X,Hom(E∗, Ê∗)). ��

There is a natural mapπ : FPBG → PB sending a point(E∗, η1, . . . , ηl) to
E∗. In view of the preceding result, the tangent map toπ at a point(E∗, η1, . . . , ηl)

is naturally identified with the map (6.1), but these are precisely the maps defining
the characteristic distribution of the Poisson varietyPB. It follows that the images
of the moduli spacesFPBG in PB (as we vary the collection of vector bundlesG
onD) determine the symplectic leaf foliation ofPB. Precisely, we have:

Proposition 6.6. The symplectic leaves of the moduli space PB endowed with its
canonical Poisson structure are the (connected components of the) subschemes

PBG = {E∗ ∈ PB |Fi(E)/Fi+1(E) ∼= Gi, for i = 1, . . . , l},
for any collection of vector bundles G = (G1, . . . ,Gl) on the divisor D.

Remark 6.7. Note that if the parabolic structure over the divisorD is the trivial one
(cf. Remark 5.3), we recover the description of the symplectic leaf foliation of the
moduli spaceM of stable vector bundles on the Poisson surfaceX obtained in the
first part of this section.
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