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Introduction

In [14], Mukai proved that the moduli space M of sheaves on an abelian or
K3 surface S has a natural symplectic structure ω. However, in Mukai’s paper,
a symplectic structure is defined as a nowhere degenerate holomorphic 2-form,
hence a natural question arises: can we prove directly that ω is closed?

We may remark that the reason for considering only abelian or K3 surfaces
is that their canonical bundle is trivial, i.e., they are symplectic surfaces, and it
is actually the choice of a symplectic structure on the surface S that induces a
symplectic structure on the moduli space M.

In a later paper [16], Tyurin generalized this result by showing that the
choice of a 2-form ω ∈ H0(S,∧2T ∗S), which he calls a ‘symplectic structure’ on
S (resp. of a bivector field θ ∈ H0(S,∧2TS), which he calls a ‘Poisson structure’),
determines in a canonical way a 2-form ω̃ ∈ H0(M,∧2T ∗M) (resp. a bivector
field θ̃ ∈ H0(M,∧2TM)), i.e., a symplectic structure (resp. a Poisson structure)
on M. In this case, again, no mention is made of the closure condition dω̃ = 0
for the symplectic structure ω̃, nor of the analogous condition that the Poisson
bracket associated to a Poisson structure must satisfy the Jacobi identity.
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In this paper we consider the general case of a Poisson surface S and show
that, in correspondence to the choice of a Poisson structure on S, there is a
canonically defined Poisson structure on the moduli space M of stable sheaves
on S, i.e., there is a bilinear antisymmetric bracket {·, ·}, defined on the sheaf
of regular functions on M, that is a derivation in each entry and satisfies the
Jacobi identity

{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0,

for any functions f, g, h on M.
If S is an abelian or a K3 surface, i.e., in the symplectic case, our proof shows

that the symplectic form defined by Mukai is actually closed.
This paper is organized as follows: in §1 we recall some basic definitions

and results of symplectic geometry, then, in §2, we introduce and study Poisson
surfaces. In §3 we collect some results on moduli spaces of sheaves on a Poisson
surface S, and, in §4, we define the Poisson structure on the moduli space M
canonically associated to the choice of a Poisson structure on S. In §5, we shall
prove that θ satisfies a certain closure condition, equivalent to the Jacobi identity
for the Poisson bracket defined by θ. Finally, in §6, we conclude with some
remarks on the rank of the Poisson structure θ, i.e., on the dimension of the
symplectic leaves of the Poisson variety M.

Acknowledgement . We would like to thank A. Beauville, who inspired the present work. We
would also like to thank the referee for valuable comments and suggestions.

1. Symplectic and Poisson structures

We recall here some definitions and results of symplectic geometry.
Let X be a smooth algebraic variety over the complex field C. A (holo-

morphic) symplectic structure on X is a closed nondegenerate 2-form ω ∈
H0(X,Ω2

X). Given a symplectic structure ω, we define the Hamiltonian vec-
tor field Hf of a regular function f by requiring that ω(Hf , v) = 〈df, v〉, for
every tangent field v. Then, for f, g ∈ Γ (U,OX), we define the Poisson bracket
{f, g} of f and g by setting {f, g} = 〈Hf , dg〉 = ω(Hg,Hf ). The map g 7→ {f, g}
is a derivation of Γ (U,OX) whose corresponding vector field is precisely Hf .
The pairing {·, ·} on OX is a bilinear antisymmetric map that is a derivation in
each entry and satisfies the Jacobi identity

{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0, (1.1)

for any f, g, h ∈ Γ (U,OX). This implies that [Hf , Hg] = H{f,g}, where [u, v] =
uv − vu is the commutator of the vector fields u and v.

A natural generalization of symplectic structures is given by the notion of
Poisson structure.

A Poisson structure on X is a Lie algebra structure {·, ·} on OX satisfying the
identity {f, gh} = {f, g}h+g{f, h}. Equivalently, this is given by an antisymmet-
ric contravariant 2-tensor θ ∈ H0(X,∧2TX), where we set {f, g} = 〈θ, df ∧ dg〉.
Then θ is a Poisson structure if the bracket it defines satisfies the Jacobi iden-
tity (1.1). For any f ∈ Γ (U,OX), the map g 7→ {f, g} is a derivation of Γ (U,OX),
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hence corresponds to a vector field Hf on U , called the hamiltonian vector field
associated to f .

Note that giving θ ∈ H0(X,∧2TX) is equivalent to giving a homomorphism
of vector bundles B : T ∗X → TX, with 〈θ, α∧ β〉 = 〈B(α), β〉 (or 〈α,B(β)〉, up
to a sign), for 1-forms α, β.

Let us define an operator d̃ : H0(X,∧2TX) → H0(X,∧3TX) as follows:

d̃θ(α, β, γ) = B(α)θ(β, γ)−B(β)θ(α, γ) + B(γ)θ(α, β)
− 〈[B(α), B(β)], γ〉+ 〈[B(α), B(γ)], β〉 − 〈[B(β), B(γ)], α〉,

for 1-forms α, β, γ, where [·, ·] denotes the usual commutator of vector fields.
By a straightforward computation (using local coordinates), it is easy to

prove the following

Proposition 1.1. The bracket {·, ·}, defined by an element θ ∈ H0(X,∧2TX),
satisfies the Jacobi identity if and only if d̃θ = 0.

Remark 1.2. A condition classically known to be equivalent to the Jacobi identity
for the bracket {·, ·} is the vanishing of the so-called Schouten bracket [θ, θ] = 0
(see [15], for example). This is equivalent to the condition expressed by the
preceding proposition.

When θ has maximal rank everywhere, to give θ is equivalent to giving its
inverse 2-form ω ∈ H0(X,Ω2

X), and the condition d̃θ = 0 is equivalent to dω = 0.
In this case the Poisson structure induces a symplectic structure.

2. Poisson surfaces

In this section we consider Poisson structures on smooth algebraic surfaces. Let
S be a smooth algebraic surface over the complex field C. We shall denote by ωS
its canonical line bundle, by KS its canonical divisor, and by q = dim H1(S,OS)
the irregularity of S. We have the following

Proposition 2.1. A Poisson structure on S is given by a global section s of
the anticanonical line bundle ω−1

S .

Proof . A Poisson structure on S is, by definition, an element s ∈ H0(S,∧2TS) =
H0(S, ω−1

S ) that satisfies the condition d̃s = 0. But S is a surface, hence the map
d̃ is identically zero.

Definition 2.2. A Poisson surface S is a smooth algebraic surface which admits
a non-zero Poisson structure, i.e., such that H0(S, ω−1

S ) 6= 0.

We have the following

Proposition 2.3. Let S be a connected Poisson surface. Then S is either a K3
surface (if ωS ∼= OS and q = 0) or an abelian surface (if ωS ∼= OS and q = 2)
or a ruled surface (if ωS is not trivial).

Proof . Let s be a non-zero section of ω−1
S ; we have an exact sequence
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0 → ωS
s→ OS → OD → 0,

where D is the divisor of s. It follows that either H0(S, ωS) = 0 or H0(S, ωS) =
C. In the second case ωS has a non-vanishing global section, hence it is trivial;
S is then either a K3 or an abelian surface, according to the value of q. If
H0(S, ωS) = 0, by considering the exact sequence

0 → ωn+1
S

s→ ωn
S → ωn

S |D → 0,

and using induction on n, it follows that H0(S, ωn
S) = 0 for all n ≥ 1. By recalling

now a theorem of Enriques (cf., for example, [3, Chap. VI]), we conclude that S
is a ruled surface.

Remark 2.4. Note that not every ruled surface is a Poisson surface. Let, for
example, S = C × P1; then we have, for every integer n,

H0(S, ωn
S) = H0(C, ωn

C)⊗H0(P1,OP1(−2n)).

It follows that H0(S, ω−1
S ) 6= 0 if and only if C is a rational or an elliptic curve.

Remark 2.5. If S is a Poisson surface and ω−1
S is ample, then it follows that

either S = P1 × P1 or S is obtained from P2 by blowing-up n distinct points
in general position, with n ≤ 8. It follows, in particular, that S is rational ([3,
Ch. V, Ex. 1]).

Remark 2.6. Let s ∈ H0(S, ω−1
S ) be a Poisson structure on S, and denote by D

the divisor of s. Then the rank of the Poisson structure is 2 on the open subset
S \D, and is 0 on D. Hence the Poisson structure induces a symplectic structure
on S \D.

Example 2.7. Let S = P2 and take as the anticanonical divisor D a triple line.
We may fix homogeneous coordinates (x0, x1, x2) on P2 such that the section s
defining the divisor D is given by s = x3

0. The Poisson structure defined by s on
P2 induces a symplectic structure on C2 = P2 \D. If we consider the coordinates
(X, Y ) on C2 given by X = x1/x0 and Y = x2/x0, it is immediate to see that
this symplectic structure is given by the 2-form dX ∧ dY . In other words, the
Poisson structure determined by s on P2 induces on C2 the standard symplectic
structure.

3. The moduli space of semistable sheaves on S

Let S be a connected Poisson surface, and let us fix a Poisson structure s ∈
H0(S, ω−1

S ) on S. Let us denote by D the divisor of s, D ∈ | −KS |.
We recall now some basic definitions and results on moduli spaces of

semistable sheaves on surfaces.
Let H be a very ample divisor on S. For every coherent torsion-free OS-

module E, we set

pE(n) =
χ(E(n))
rk(E)

,
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where rk(E) is the rank at the generic point of S, and E(n) = E ⊗OS(nH).
From now on, by a sheaf on S we will always mean an OS-module.

Definition 3.1. A sheaf E on S is said to be H-stable (resp. H-semistable) if
it is a coherent torsion-free OS-module and, for every proper coherent subsheaf
F of E, we have

pF (n) < pE(n), (resp. pF (n) ≤ pE(n)),

for all sufficiently large integers n.

Let us denote by r, c1 and c2, respectively the rank and the Chern classes of
a coherent torsion-free sheaf on S. We have the following well-known result:

Theorem 3.2. For fixed r, c1, c2, there exists a coarse moduli space M =
M(r, c1, c2) parametrizing S-equivalence classes of H-semistable sheaves of rank
r and Chern classes c1 and c2 on S. M is a projective variety and it contains
an open subset M = M(r, c1, c2) parametrizing isomorphism classes of H-stable
sheaves.

In the sequel we shall denote by E either an H-semistable (resp. H-stable)
sheaf on S, or the point of M (resp. M) corresponding to the S-equivalence
class (resp. isomorphism class) of E.

From infinitesimal deformation theory, it follows that there is a canonical
isomorphism

TEM∼= Ext1(E,E), (3.1)

where TEM denotes the tangent space to M at E.
Then, from Grothendieck-Serre duality, it follows that the cotangent space

to M at E is given by

T ∗EM∼= Ext1(E, E ⊗ ωS). (3.2)

We now turn to the problem of smoothness of moduli spaces. We have the
following result:

Proposition 3.3. The moduli space M = M(r, c1, c2) is a smooth quasi-
projective variety of dimension (1− r)c2

1 + 2rc2 − r2χ(OS) + 1.

Proof . If S is a symplectic surface (ωS ∼= OS), this is proved in [14, Theorem 0.1].
If S is a Poisson surface and ωS is not trivial, then the divisor D ∈ | −KS | of a
Poisson structure s is effective. It follows that (D ·H) > 0, hence (KS ·H) < 0.
Under this condition, the smoothness ofM is proved in [13, Corollary 6.7.3]. The
computation of the dimension of M is an easy application of the Riemann-Roch
theorem, and is done in [13, Proposition 6.9].

Since M is a smooth variety, we may give global versions of (3.1) and (3.2).
First we need a definition:

Definition 3.4. Let f : X → T be a T -scheme, and E, F two coherent OX-
modules. The i-th relative Ext-sheaf Ext i

OT
(E,F ) is the sheaf associated to the

presheaf U 7→ Exti
f−1(U)(EU , FU ) for every open subset U of T .

Now we note that, in general, a universal family E on M does not exist (not
even on any Zariski open subset of M); however it does exist locally in the étale
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topology (or in the complex topology). As shown by Mukai, this is enough to
ensure that the i-th relative Ext-sheaves Ext i

OM(E , E) on M are well defined,
for any integer i.

Then we have:

Proposition 3.5. Let p : M× S → M and q : M× S → S be the canonical
projections. There are canonical isomorphisms

TM∼= Ext1
OM(E , E), (3.3)

and
T ∗M∼= Ext1

OM(E , E ⊗ q∗(ωS)). (3.4)

Let us denote by M0 the open subset of M parametrizing isomorphism
classes of H-stable locally free sheaves on S. Then, for E ∈M0, we have

TEM0 ∼= H1(S, End(E)), (3.5)

and
T ∗EM0 ∼= H1(S, End(E)⊗ ωS). (3.6)

Now, even if a universal family E on M does not exist, the sheaf End(E) on
M× S is well defined, and we have

End(E)|{E}×S
∼= End(E), ∀E ∈M.

Hence we may rewrite (3.3) and (3.4) for M0 as follows:

TM0 ∼= R1p∗(End(E)), (3.7)

and
T ∗M0 ∼= R1p∗(End(E)⊗ q∗(ωS)). (3.8)

This may also be proved directly by noting that, sinceM0 is smooth, the function
E 7→ dim H1(S, End(E)) is constant on M0. It follows that R1p∗(End(E)) is
locally free and we have isomorphisms R1p∗(End(E))⊗C(E) ∼= H1(S, End(E)),
for every E ∈M0. A similar argument works for the cotangent bundle.

4. Poisson structures on M

Let S be a Poisson surface and choose a Poisson structure s ∈ H0(S, ω−1
S ) on S.

We shall define an element θ = θs ∈ H0(M,⊗2TM) as follows: for any E ∈M,
θ(E) : T ∗EM× T ∗EM→ C is defined by

θ(E) : Ext1(E, E ⊗ ωS)× Ext1(E,E ⊗ ωS) ◦→

Ext2(E, E ⊗ ω2
S) s→ Ext2(E, E ⊗ ωS) Tr→ C,

(4.1)

where the first map is the composition map, the second is induced by the mul-
tiplication by the section s, and the third is the trace map.

Note that, by Grothendieck-Serre duality and the stability hypothesis on E,
it follows that the trace map Tr : Ext2(E, E ⊗ ωS) → C is an isomorphism.
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A method analogous to the one used by Mukai in [14] may be used to prove
the following

Proposition 4.1. The sheaf L = Ext2
OM(E , E ⊗ q∗(ωS)) is a trivial invertible

sheaf on M, and there is a bilinear map

θ : Ext1
OM(E , E ⊗ q∗(ωS))⊗Ext1

OM(E , E ⊗ q∗(ωS)) ◦→ Ext2
OM(E , E ⊗ q∗(ω2

S)) s→ L

such that, for every E ∈ M, θ ⊗ C(E) coincides with the map θ(E) defined
in (4.1).

As we have previously stated, giving θ is equivalent to giving a homomor-
phism of vector bundles

B : T ∗M→ TM,

where we set θ(α⊗ β) = 〈B(α), β〉.
It is easy to see that in this situation the homomorphism B is the map

induced on Ext-sheaves by the multiplication by the section s. On the fibers
over a point E ∈M, we have

B(E) : Ext1(E,E ⊗ ωS) s→ Ext1(E, E). (4.2)

From now on we shall restrict ourselves to the open subset M0 of M, and
we shall use indifferently the expressions ‘locally-free sheaf’ or ‘vector bundle’.

If E is an H-stable locally-free sheaf, the map θ(E) may be written as

θ(E) :H1(S, End(E)⊗ ωS)×H1(S, End(E)⊗ ωS) ◦→

H2(S, End(E)⊗ ω2
S) s→ H2(S, End(E)⊗ ωS) Tr→ C.

(4.3)

This is essentially the cup-product of two cohomology classes, followed by the
multiplication by s. From the graded commutativity of the usual cup-product
it follows that θ(E) is skew-symmetric (cf., for example, [10, p. 707]), hence to
prove that θ defines a Poisson structure on M0 we have only to prove that it
satisfies the closure condition d̃θ = 0. Note that if we prove that θ defines a
Poisson structure on the open subset M0, then the same holds on the closure
M0.

As a final remark note that, for E ∈M0, the global map θ of Proposition 4.1
may be written as

θ : R1p∗(End(E)⊗ q∗(ωS))⊗R1p∗(End(E)⊗ q∗(ωS)) ◦→
R2p∗(End(E)⊗ q∗(ω2

S)) s→ L,

where the trivial invertible sheaf L is given by L = R2p∗(End(E) ⊗ q∗(ωS)),
while the map B is the map induced on cohomology by the multiplication by
the section s:

B(E) : H1(S, End(E)⊗ ωS)
id⊗s
−−−→ H1(S, End(E)). (4.4)

5. The closure of θ

In this section we shall prove that d̃θ = 0, thus proving that θ defines a Poisson
structure on M0. We note that this proof is original even in the symplectic case.
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We start by recalling some preliminaries (see [5] for a detailed description of
what follows).

Let C[ε]/(ε2) be the ring of dual numbers over C. By convenience of notations,
in the sequel it will be denoted simply by C[ε]. Let us denote by Sε the fiber
product S × Spec(C[ε]). If pε : Sε → S is the natural morphism and F is a
vector bundle on S, we shall denote by F [ε] its trivial infinitesimal deformation,
F [ε] = p∗ε (F ).

Let π : X → Y be a morphism (locally of finite presentation) of schemes,
and F,G two locally free sheaves on X. We denote by Diff 1

X/Y (F, G) the sheaf
of relative differential operators from F to G of order ≤ 1. There is an exact
sequence ([11, Ch. IV, §16.8])

0 → HomX(F, G) → Diff 1
X/Y (F,G) σ→ DerY (OX)⊗HomX(F, G) → 0,

where σ is the symbol morphism. Then, if F = G and we restrict to differential
operators with ‘scalar symbol’, written D1

X/Y (F ), we get the exact sequence

0 → EndX(F ) → D1
X/Y (F ) σ→ DerY (OX) → 0. (5.1)

Let p : M0×S →M0 and q : M0×S → S denote the canonical projections.
To apply (5.1) to q : M0 × S → S, note that, as previously said, even if there is
no Poincaré bundle E on M0×S, the sheaf End(E) is well defined. By a similar
argument it follows easily that the sheaf D1

S(E) = D1
M0×S/S(E) of first-order

differential operators with scalar symbols that are q∗(OS)-linear, is also well
defined. Then we have an exact sequence

0 → End(E) → D1
S(E) → p∗TM0 → 0.

By applying p∗, and noting that p∗p∗TM0 ∼= TM0 since p is a proper morphism,
we get a long exact cohomology sequence, a piece of which is

· · · → TM0 → R1p∗(End(E)) → R1p∗(D1
S(E)) → · · · .

It is easy to prove that the map TM0 → R1p∗(End(E)) is precisely the isomor-
phism (3.7), hence the image of R1p∗(End(E)) in R1p∗(D1

S(E)) is zero. It follows
that, for every section {ηij} of R1p∗(End(E)), there exist sections Ḋi of D1

S(E)
over suitable open subsets Vi, such that

ηij = Ḋj − Ḋi, (5.2)

where, by simplicity of notations, we have not explicitly indicated the restrictions
to the intersection Vij = Vi ∩ Vj .

If E ∈ M0, and we consider restrictions to {E} × S, it follows that (5.2) is
valid with {ηij} being a 1-cocycle with values in End(E), and Ḋi being sections
of D1

S(E).
Let now X be a k-scheme. A tangent vector field on X is a k-linear map

of sheaves D : OX → OX such that the induced map D(U) : Γ (U,OX) →
Γ (U,OX) is a k-derivation, for every open subset U of X. Equivalently, a vector
field on X can be expressed by an automorphism over Spec k[ε]
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X × Spec(k[ε])
D̃
−−→ X × Spec(k[ε])

↘ ↙
Spec(k[ε])

that restricts to the identity morphism of X when one looks at the fibers over
Spec k.

Over an open affine subset U = Spec A of X the tangent field D : OX → OX
is given equivalently by a k-derivation D(U) : A → A. In this situation the
automorphism D̃ is determined by the k-algebra homomorphism D̃(U) : A[ε] →
A[ε] given by D̃(U) = 1 + εD(U).

Let now D : OM0 → OM0 be a tangent vector field on M0 and denote by D̃
the corresponding automorphism of M0 × SpecC[ε]. Let E be a local universal
family for stable vector bundles (the local existence of E in the étale topology
is enough for our purposes), and E [ε] be its pull-back to M0 × SpecC[ε]. The
vector field D (or the automorphism D̃) may be described locally by giving the
infinitesimal deformation Eε = (D̃× idS)∗E [ε] of the local universal family E . At
a point E ∈ M0 the corresponding tangent vector is given by Eε = Eε|{E}×Sε ,
which is an infinitesimal deformation of the vector bundle E.

From what we have previously seen, the tangent field Eε corresponds to a
global section η = {ηij} of R1p∗(End(E)), which can be described in terms of
first-order differential operators. Let us give another useful interpretation of this
fact.

Let D : OM0 → OM0 be the derivation corresponding to the infinitesi-
mal deformation Eε = (D̃ × idS)∗E determined by the global section η = {ηij}
of R1p∗(End(E)). Let (Vi)i∈I , Vi = Spec(Ai), be an open affine covering of
M0 × S. The vector field D is locally described by giving, for each i ∈ I, a
C[ε]-automorphism of Ai[ε] of the form 1 + εDi, where Di : Ai → Ai is the
C-derivation determined by the restriction of D to Vi. Let Mi = Γ (Vi, E) and
Mi[ε] = Γ (Vi, E [ε]). The infinitesimal deformation Eε = (D̃ × idS)∗E [ε] may be
described as obtained by gluing the sheaves ˜Mi[ε] by means of suitable isomor-
phisms.

Let us denote by

˜1 + εḊi : Eε|Vi×SpecC[ε]
∼→ ˜Mi[ε]

the trivialization isomorphisms, where Ḋi : Mi → Mi is a first-order differential
operator with associated C-derivation Di : Ai → Ai. By what we have previously
seen, the gluing isomorphism on the intersection Vi ∩ Vj is given by 1 + εηij =
(1 + εḊj)(1 + εḊi)−1 = 1 + ε(Ḋj − Ḋi). It follows that ηij = Ḋj − Ḋi, which is
precisely (5.2).

Now let us consider two tangent vector fields D1, D2 : OM0 → OM0 , corre-
sponding to the global sections η1 = {η1

ij} and η2 = {η2
ij} of R1p∗(End(E)). By

what we have seen, there exist first-order differential operators Ḋ1
i and Ḋ2

i such
that

η1
ij = Ḋ1

j − Ḋ1
i ,

η2
ij = Ḋ2

j − Ḋ2
i .

Let us denote by
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M0 × SpecC[ε, ε′]× S
D̃h×idS
−−−−−−→ M0 × SpecC[ε, ε′]× S

↘ ↙
SpecC[ε, ε′]

the automorphism corresponding to Dh, for h = 1, 2. The vector field Dh is
given equivalently by the infinitesimal deformation Eh

ε = (D̃h × idS)∗E [ε] of
E , described by the global section {ηh

ij} of R1p∗(End(E)). Let us recall that

if fh
i : Eh

ε |Vi →
˜Mh
i [ε] are isomorphisms, then the sheaf Eh

ε is constructed by

gluing the sheaves ˜Mh
i [ε] and ˜Mh

j [ε] along the open sets Vij by means of the

isomorphisms ˜1 + εηh
ij = fh

j |Vij ◦ fh
i
−1
|Vij .

By applying the same reasoning, the second-order differential operator D1D2

is equivalent to (D̃1 × idS)∗(D̃2 × idS)∗E . We have isomorphisms

(D̃1 × idS)∗(D̃2 × idS)∗E|Vi×SpecC[ε,ε′]

(1+εḊ1
i )◦(1+ε′Ḋ2

i )
−−−−−−−−−−−−→ ˜Mi[ε, ε′],

hence the gluing isomorphisms are given by ((1+ εḊ1
j )◦ (1+ ε′Ḋ2

j ))◦ ((1+ εḊ1
i )◦

(1+ε′Ḋ2
i ))−1 = 1+ε(Ḋ1

j−Ḋ1
i )+ε′(Ḋ2

j−Ḋ2
i )+εε′(Ḋ1

j Ḋ2
j−Ḋ2

j Ḋ1
i−Ḋ1

j Ḋ2
i +Ḋ2

i Ḋ1
i ),

that we can write in a simpler form as 1 + εη1
ij + ε′η2

ij + εε′(Ḋ1
j η2

ij − η2
ijḊ

1
i ).

In conclusion, we have proved that the second-order differential operator
D1D2, or, in other words the ‘infinitesimal deformation’ of η2 = {η2

ij} in the
direction given by η1 = {η1

ij}, is described by giving gluing isomorphisms of the
form

1 + εη1
ij + ε′η2

ij + εε′(Ḋ1
j η2

ij − η2
ijḊ

1
i ). (5.3)

Analogously, we find that D2D1 is equivalent to the data of

1 + εη1
ij + ε′η2

ij + εε′(Ḋ2
j η1

ij − η1
ijḊ

2
i ). (5.4)

Finally, it is easy to see that the vector field [D1, D2] is determined by gluing
isomorphisms of the form

1 + εε′([Ḋ1, Ḋ2]j − [Ḋ1, Ḋ2]i).

Now we are able to prove the following

Theorem 5.1. Let S be a Poisson surface and s ∈ H0(S, ω−1
S ) a Poisson struc-

ture on S. The antisymmetric contravariant 2-tensor θ = θs ∈ H0(M0,∧2TM0)
defines a Poisson structure on the moduli space M0 of H-stable vector bundles
on S.

Proof . We have to prove that d̃θ = 0. Let η1, η2, η3 be three 1-forms on M0, i.e.,
three global sections of R1p∗(End(E)⊗q∗(ωS)). To compute (B(η1))(θ(η2, η3)) =
(B(η1))(〈sη2, η3〉), i.e., the derivative of the function 〈sη2, η3〉 along the vector
field B(η1), we shall use first-order Taylor series expansions of η2 and η3, i.e., we
shall compute 〈sη2

ε , η3
ε 〉, where η2

ε and η3
ε are ‘infinitesimal deformations’ along

the vector field B(η1) of η2 and η3 respectively.
Let us represent the cohomology classes ηh by 1-cocycles ηh = {ηh

ij}, for
h = 1, 2, 3, so that B(ηh) is represented by the 1-cocycle {sηh

ij}. We know that
there exist first-order differential operators Ḋh

i such that
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sηh
ij = Ḋh

j − Ḋh
i , for h = 1, 2, 3. (5.5)

If we apply what we have previously seen to the second-order differential
operator B(ηh)B(ηk), we find that the infinitesimal deformation of B(ηk) = sηk

along the vector field B(ηh) is given by

sηk
ε = {sηk

ij + ε(Ḋh
j (sηk

ij)− sηk
ijḊ

h
i )} = {sηk

ij + sε(Ḋh
j ηk

ij − ηk
ijḊ

h
i )},

because of the OS-linearity of the differential operators.
Since the multiplication by s is injective at the level of cocycles, it follows

that
ηk

ε = {ηk
ij + ε(Ḋh

j ηk
ij − ηk

ijḊ
h
i )}, (5.6)

for h, k = 1, 2, 3.
Then we have:

〈sη2
ε , η3

ε 〉 = 〈{sη2
ij + sε(Ḋ1

j η2
ij − η2

ijḊ
1
i )}, {η3

ij + ε(Ḋ1
j η3

ij − η3
ijḊ

1
i )}〉

= {sη2
ij ◦ η3

jk}+ ε{(sη2
ij(Ḋ

1
kη3

jk − η3
jkḊ1

j ) + s(Ḋ1
j η2

ij − η2
ijḊ

1
i )η3

jk)},

from which it follows that

(B(η1))(θ(η2, η3)) = {sη2
ij(Ḋ

1
kη3

jk − η3
jkḊ1

j ) + s(Ḋ1
j η2

ij − η2
ijḊ

1
i )η3

jk}. (5.7)

Now, by using the decomposition (5.5), and by recalling that the antisym-
metry of θ implies that 〈sηh, ηl〉 = {sηh

ij ◦ ηl
jk} = −{ηh

ij ◦ sηl
jk} = −〈ηh, sηl〉, we

may decompose the various terms of (5.7) in different ways as follows:

sη2
ij(Ḋ

1
kη3

jk − η3
jkḊ1

j ) = Ḋ2
j Ḋ1

kη3
jk − Ḋ2

j η3
jkḊ1

j − Ḋ2
i Ḋ1

kη3
jk + Ḋ2

i η3
jkḊ1

j

= −η2
ijḊ

1
kḊ3

k + η2
ijḊ

1
kḊ3

j + η2
ijḊ

3
kḊ1

j − η2
ijḊ

3
j Ḋ1

j ,

and

s(Ḋ1
j η2

ij − η2
ijḊ

1
i )η3

jk = Ḋ1
j Ḋ2

j η3
jk − Ḋ1

j Ḋ2
i η3

jk − Ḋ2
j Ḋ1

i η3
jk + Ḋ2

i Ḋ1
i η3

jk

= −Ḋ1
j η2

ijḊ
3
k + η2

ijḊ
1
i Ḋ3

k + Ḋ1
j η2

ijḊ
3
j − η2

ijḊ
1
i Ḋ3

j .

The last expression we have to compute is the following:

〈[Bs(η1), Bs(η2)], η3〉 = {〈([Ḋ1, Ḋ2]j − [Ḋ1, Ḋ2]i), η3〉}
= {(Ḋ1

j Ḋ2
j − Ḋ2

j Ḋ1
j − Ḋ1

i Ḋ2
i + Ḋ2

i Ḋ1
i )η3

jk}

= {Ḋ1
j Ḋ2

j η3
jk − Ḋ2

j Ḋ1
j η3

jk − Ḋ1
i Ḋ2

i η3
jk + Ḋ2

i Ḋ1
i η3

jk}.

As for the last term, we may use the following decomposition:

〈[Bs(η2), Bs(η3)], η1〉 = 〈η1, [Bs(η2), Bs(η3)]〉
= {η1

ij([Ḋ
2, Ḋ3]k − [Ḋ2, Ḋ3]j)}

= {η1
ijḊ

2
kḊ3

k − η1
ijḊ

3
kḊ2

k − η1
ijḊ

2
j Ḋ3

j + η1
ijḊ

3
j Ḋ2

j}.

Now, by collecting all the pieces, we find
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d̃θ(η1, η2, η3) = Bs(η1)(θ(η2, η3))−Bs(η2)(θ(η1, η3)) + Bs(η3)(θ(η1, η2))
− 〈[Bs(η1), Bs(η2)], η3〉+ 〈[Bs(η1), Bs(η3)], η2〉
− 〈[Bs(η2), Bs(η3)], η1〉

= {sη2
ij(Ḋ

1
kη3

jk − η3
jkḊ1

j )− Ḋ3
j Ḋ1

i η2
jk − Ḋ1

j Ḋ3
i η2

jk

+ Ḋ1
j Ḋ3

j η2
jk + Ḋ3

i Ḋ1
i η2

jk}

= {sη2
ij(Ḋ

1
kη3

jk − η3
jkḊ1

j )

+ (Ḋ1
j Ḋ3

j − Ḋ1
j Ḋ3

i − Ḋ3
j Ḋ1

i + Ḋ3
i Ḋ1

i )η2
jk}

= {sη2
ij(Ḋ

1
kη3

jk − η3
jkḊ1

j ) + (Ḋ1
j (sη3

ij)− (sη3
ij)Ḋ

1
i )η2

jk}

= {sη2
ij(Ḋ

1
kη3

jk − η3
jkḊ1

j ) + s(Ḋ1
j η3

ij − η3
ijḊ

1
i )η2

jk}
= {sη2

ij ◦ ξ3
jk + sξ3

ij ◦ η2
jk}

= 0,

where, for the infinitesimal deformation η3
ε of η3 along Bs(η1), we have set

η3
ε ij = η3

ij + εξ3
ij . Note that the last equality follows from the antisymmetry of

θ.

Remark 5.2. We note here that a perfectly analogous result holds for the moduli
spaces of H-stable sheaves with fixed determinant; the only difference being that,
in this case, the tangent (resp. cotangent) space to the moduli variety at a point
E is given by Ext10(E, E) (resp. Ext10(E, E ⊗ ωS)), where the subscript 0 means
that we are considering only trace-free classes.

6. The rank of θ

Let us turn now to the computation of the rank of the Poisson structure θ, i.e.,
of the dimension of the symplectic leaves of the Poisson variety M0.

Let S be a Poisson surface and let us fix a Poisson structure s ∈ H0(S, ω−1
S )

on S. If s is a symplectic structure, i.e., if S is an abelian or a K3 surface, then θ
actually defines a symplectic structure on M0, hence it has everywhere maximal
rank (equal to the dimension of M0).

If S is not symplectic, let us denote by D the divisor of s and suppose,
for simplicity, that D is an irreducible nonsingular curve (note that from the
adjunction formula it follows that the canonical line bundle of D is trivial, hence
D is an elliptic curve). For any vector bundle E on S, we have an exact sequence

0 → End(E)⊗ ωS
s→ End(E) → End(E|D) → 0. (6.1)

Lemma 6.1. If E is H-semistable, then H0(S, End(E)⊗ ωS) = 0.

Proof . Note that an H-semistable sheaf is also µ-H-semistable, where a coherent
sheaf E is said to be µ-H-semistable (resp. µ-H-stable) if it torsion-free and for
any proper coherent torsion-free subsheaf F of E, we have

µ(F ) =
(c1(F ) ·H)

rk(F )
≤ (c1(E) ·H)

rk(E)
= µ(E) (resp. µ(F ) < µ(E)).
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Now we recall that, in the proof of Proposition 3.3, we have shown that (KS ·H) <
0, hence, if φ ∈ Hom(E, E ⊗ ωS) is not zero, we have µ(E) ≤ µ(φ(E)) ≤
µ(E ⊗ ωS) = µ(E) + (KS ·H) < µ(E), which is a contradiction.

Now, by considering the long exact cohomology sequence of (6.1), we get

0 → C→ H0(D, End(E|D)) → H1(S, End(E)⊗ ωS)
B(E)→ H1(S, End(E)) → · · · .

We have thus proved the following

Proposition 6.2. The kernel of the hamiltonian morphism B(E) is given by

Ker B(E) = H0(D, End(E|D))/C.

Hence
rk(B(E)) = dimM0 − dim H0(D, End(E|D)) + 1.

This shows how the rank of the Poisson structure θ at a point E ∈ M0 is
determined by the restriction E|D of E to the curve D. On the open subset of
M0 consisting of vector bundles E that restrict to a simple bundle on D, the
rank of θ is equal to the dimension of M0, i.e., θ is nondegenerate, or, in other
terms, it induces a symplectic structure.

Remark 6.3. If dimM0 = 2, then M0 is, like S, a Poisson surface, i.e., an
abelian or a K3 surface in the symplectic case, or a ruled surface with an effective
anticanonical divisor in the general case.

Remark 6.4. By recalling that the dimension of M0 = M0(r, c1, c2) is given by
(1− r)c2

1 + 2rc2 − r2χ(OS) + 1 (if it is non-empty), and that the dimension of a
symplectic variety is even, we see that, if r and c1 are both even, then dimM0

is odd, hence the symplectic leaves of M0 have dimension strictly less then the
dimension of M0. It follows that there are no H-stable vector bundles E ∈M0

such that E|D is simple. The same conclusion holds, for example, if r is odd and
χ(OS) is even.

Remark 6.5. If S = P2, much more is known on the structure of the moduli space
M. If we denote byM0

µ the moduli space of µ-H-stable locally free sheaves on P2,
then we know that M0

µ is irreducible and that, under some technical conditions
on the rank and Chern classes, it is everywhere dense in M (see [8] for details).
It follows that, in this case, θ defines a Poisson structure on all of M.

Remark 6.6. Let us denote now by MD the moduli space of semistable vector
bundles on the curve D and by MS the open subset of M0 such that

E ∈MS ⇒ E|D ∈MD.

Let us denote by ρ : MS →MD the restriction map.
By recalling the Poisson structure of MS , for every E ∈ MS we get the

following commutative diagram
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TEMS
TEρ

−−−−→ TE|DMD
x




B(E)

x



B̃(E)

T ∗EMS

T∗Eρ
←−−−− T ∗E|DMD,

where B̃(E) = TEρ ◦B(E) ◦ T ∗Eρ.
Since the canonical bundle of the curve D is trivial, the preceding diagram

is canonically identified with

H1(S, End(E)) −−−−→ H1(D, End(E|D))
x




B(E)

x



B̃(E)

H1(S, End(E)⊗ ωS)←−−−− H0(D, End(E|D)).

Now, the long exact cohomology sequence of (6.1), gives

H0(D, End(E|D)) δ→ H1(S, End(E)⊗ ωS)
B(E)→

H1(S, End(E)) α→ H1(D, End(E|D)),

and it is easy to see that B̃(E) is precisely the composition α ◦B(E) ◦ δ, hence
it is zero.

This proves that the Poisson structure of MS induces on the image ρ(MS) ⊂
MD a Poisson structure that is identically zero.

We would like to end with some remarks on the relations between the moduli
space of stable vector bundles on P2 and the moduli space of anti self-dual
connections on S4.

Let P be a principal SU(r)-bundle on S4 = R4 ∪ {∞}, and k be minus its
Pontryagin index. Let us denote by ˜M(SU(r), k) the moduli space parametrizing
pairs consisting of an anti self-dual SU(r)-connection on P and an isomorphism
P∞ ∼= SU(r). This is a manifold of (real) dimension 4rk, if k is sufficiently large.
The usual moduli space of anti self-dual SU(r)-connections on P is then given
by M(SU(r), k) = ˜M(SU(r), k)/ SU(r).

Now let us fix a line D ⊂ P2 (so that we get isomorphisms P2 \ D ∼= C2 ∼=
R4) and denote by ˜M(r, 0, k) the moduli space of pairs consisting of a rank r
holomorphic vector bundle E on P2 with c1(E) = 0 and c2(E) = k and a
trivialization of E|D.

Donaldson proved in [6] that there is a natural isomorphism

˜M(SU(r), k) ∼= ˜M(r, 0, k).

If M0(r, 0, k) denotes the moduli space of stable rank r vector bundles on P2

with Chern classes c1 = 0 and c2 = k, it is known that there are Zariski open
subsets U ⊂ ˜M(r, 0, k) and V ⊂ M0(r, 0, k) such that U fibers over V . As a
consequence we find that an open subset of the moduli space M(SU(r), k) fibers
over V with fiber SL(r,C)/ SU(r). Hence, after factoring out by this group, we
get a complex structure and a (complex) Poisson structure on the real moduli
space of anti self-dual connections.
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