
A MARSDEN–WEINSTEIN REDUCTION THEOREM FOR
PRESYMPLECTIC MANIFOLDS

FRANCESCO BOTTACIN

Abstract. In this paper we prove an analogue of the Marsden–Weinstein reduc-
tion theorem for presymplectic actions of Lie groups on presymplectic manifolds.

Introduction.

The well-known symplectic reduction procedure of Marsden and Weinstein is an
important method of construction of new symplectic manifolds starting from old
ones (with a Lie group of symmetries acting on them). On the other hand, the
phase space corresponding to many physical systems, for instance those possessing
gauge symmetries, is only a presymplectic manifold (where by this we mean that
the closed 2-form may be degenerate). It is then natural to consider the problem of
reduction in this more general context. In this paper we generalize the Marsden–
Weinstein reduction procedure to the case of presymplectic actions of Lie groups on
presymplectic manifolds.

This paper is organized as follows. In the first two sections we briefly recall some
basic facts on symplectic and Poisson manifolds. In Section 3 we introduce the
notion of presymplectic structure and study the basic properties of presymplectic
manifolds. Finally, in Section 4, we study the actions of Lie groups on presym-
plectic manifolds, introduce the appropriate notion of moment map, and prove the
reduction theorem.

1. Symplectic structures.

In this section we recall some basic definitions and results of symplectic geometry.

Definition 1.1. A symplectic structure on a C∞ manifold M is a closed, non-
degenerate, 2-form on M .

A symplectic structure ω on M determines an isomorphism

b : TM → T ∗M,

called the Hamiltonian isomorphism, defined by setting b(X) = iXω, i.e.,

〈b(X), Y 〉 = ω(X,Y ),
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for any two vector fields X and Y on M .
Using this isomorphism we may define the Hamiltonian vector field associated to

a C∞ function on M as follows:

Definition 1.2. The Hamiltonian vector field Xf of a function f ∈ C∞(M) is given
by Xf = b−1(df).

Finally we can define the Poisson bracket of two functions:

Definition 1.3. Let f, g ∈ C∞(M). Their Poisson bracket is the function defined
by setting

{f, g} = ω(Xg, Xf ) = Xf (g) = −Xg(f).

Proposition 1.4. The Poisson bracket defines a structure of Lie algebra on C∞(M).
It also satisfies the following identity (called Leibnitz identity)

{f, gh} = {f, g}h + g{f, h},

which may be restated by saying that the Poisson bracket of functions is a derivation
in each of its entries.

Proof. The only non-trivial part of this proposition is the verification of the Jacobi
identity:

{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0.

This identity is equivalent to the closure of the 2-form ω, as may be verified by a
direct computation using local coordinates. �

Remark 1.5. From the Jacobi identity it follows that

[Xf , Xg] = X{f,g},

where [·, ·] denotes the commutator of two vector fields. It follows that the map
C∞(M) → X(M) sending a function f to its Hamiltonian vector field Xf is a
homomorphism of Lie algebras.

Definition 1.6. A vector field X is called hamiltonian if the 1-form b(X) is exact
(if b(X) = df it follows that X = Xf is the hamiltonian vector field of the function
f). A vector field X is called locally hamiltonian if the 1-form b(X) is closed. This
means that on a sufficiently small open neighborhood U of any point P there is a
function fU ∈ C∞(U) such that X|U is the hamiltonian vector field of the function
fU .

The locally hamiltonian vector fields may be characterized by the following prop-
erty:

Proposition 1.7. A vector field X is locally hamiltonian if and only if LXω = 0,
i.e., if and only if the symplectic form ω is constant along the flow of X.
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Proof. From the identity
LXω = iXdω + diXω

and the fact that ω is a closed form, it follows that diXω = LXω, which proves the
first statement. The equivalence of the first and second statements is well known
(it follows from the fact that

d

dλ
F ∗

λω = F ∗
λLXω,

where Fλ denotes the local flow of X). �

We shall denote by Xh(M) (resp. by Xlh(M)) the set of hamiltonian (resp. locally
hamiltonian) vector fields on M .

Proposition 1.8. The sets Xh(M) and Xlh(M) are Lie subalgebras of X(M).

Proof. We shall prove this proposition later, in the more general context of presym-
plectic manifolds. �

The Hamiltonian isomorphism b : TM → T ∗M sets up a one-to-one corre-
spondence between Xh(M) and the set B1(M) of exact 1-forms on M (resp. be-
tween Xlh(M) and the set Z1(M) of closed 1-forms). It follows that the quotient
Xlh(M)/Xh(M) is isomorphic to Z1(M)/B1(M) = H1

DR(M), the first De Rham
cohomology group of M . This proves that the obstruction for a locally hamiltonian
vector field to be globally hamiltonian is of a topological nature and lies in H1

DR(M).

2. Poisson structures.

One way to generalize the notion of a symplectic manifold is simply to forget about
the 2-form ω and require instead the existence of a Poisson bracket on C∞(M) with
all the “good” properties, as in the symplectic case. More precisely:

Definition 2.1. A Poisson structure on a manifold M is a Lie algebra structure
{·, ·} on the sheaf of smooth functions on M which is a derivation in each entry, i.e.,
satisfies {f, gh} = {f, g}h + g{f, h}.

It is easy to see that to give a Poisson structure on M is equivalent to giving
a bivector field (i.e., an antisymmetric contravariant 2-tensor) θ ∈ H0(M,∧2TM),
defined by setting

(2.1) {f, g} = 〈θ, df ∧ dg〉,
with an additional requirement. In fact, given θ ∈ H0(M,∧2TM), the bracket
defined by (2.1) satisfies all the properties required to be a Poisson structure, except
for the Jacobi identity

{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0.

We must then impose an additional condition on θ. We shall see later how to express
this condition in a suitable way.
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Definition 2.2. Let (M, θ) be a Poisson manifold. The Hamiltonian morphism is
the homomorphism of vector bundles

B = Bθ : T ∗M → TM

defined by setting 〈θ, α ∧ β〉 = 〈Bθ(α), β〉, for 1-forms α and β on M .

The homomorphism B is called the Hamiltonian morphism by analogy with the
symplectic case.

We can now define an operator d̃ : H0(M,∧2TM) → H0(M,∧3TM) by setting

d̃θ(α, β, γ) = Bθ(α)θ(β, γ)−Bθ(β)θ(α, γ) + Bθ(γ)θ(α, β)(2.2)

−〈[Bθ(α), Bθ(β)], γ〉+ 〈[Bθ(α), Bθ(γ)], β〉 − 〈[Bθ(β), Bθ(γ)], α〉,
for any three 1-forms α, β, γ on M , where [·, ·] denotes the usual commutator of
vector fields. We have the following result, whose proof consists in a straightforward
computation using local coordinates.

Proposition 2.3. The bracket {·, ·} defined by an element θ ∈ H0(M,∧2TM) as in

(2.1) is a Poisson structure, i.e., satisfies the Jacobi identity, if and only if d̃θ = 0.

Remark 2.4. The element d̃θ ∈ H0(M,∧3TM) coincides (up to a factor of 2) with
the so-called Schouten bracket [θ, θ] (see [V] for the definition).

Remark 2.5. When θ has maximal rank everywhere, i.e., when Bθ : T ∗M → TM is
an isomorphism, to give θ is equivalent to giving its inverse 2-form ω ∈ Ω2

M , which
corresponds to the inverse isomorphism b = B−1

θ : TM → T ∗M . It is easy to check

that, in this situation, the condition d̃θ = 0 is equivalent to dω = 0, i.e., to the
closure of the 2-form ω. In this case we say that the Poisson structure is symplectic.
Note that a necessary condition for the existence of a symplectic structure on M is
that the dimension of M be even.

Let now M be a Poisson manifold, and θ ∈ H0(M,∧2TM) its Poisson structure.
For any x ∈ M , we set D(x) = Im(Bθ(x)) ⊆ TxM . The collection D = (D(x))x∈M of
subspaces of the tangent spaces of M is called the characteristic distribution of the
Poisson manifold (M, θ). It is actually a distribution in a generalized sense, since
the rank of the Poisson structure, i.e., the rank of the map B, will not be constant,
in general.

It turns out that, for any Poisson manifold, the (generalized) characteristic dis-
tribution is completely integrable, and the Poisson structure of M determines a
symplectic structure on the integral leaves of this distribution. These integral leaves
are then called the symplectic leaves of the Poisson manifold (X, θ). For more details
on the structure of Poisson manifolds, we refer to [V].

Let us come now to the definition of the Hamiltonian vector fields.

Definition 2.6. For any smooth function f on M , the Hamiltonian vector field of
f is the vector field Xf = B(df). Equivalently, it is the vector field (derivation) on
M defined by Xf (g) = {f, g}, for any smooth function g.
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Definition 2.7. A function f is called a Casimir function if df ∈ ker(B), i.e., if its
Hamiltonian vector field is zero. Equivalently, f is a Casimir function if {f, g} = 0,
for every function g. We shall denote by Cas(M) the set of Casimir functions on
M .

Definition 2.8. We define the set of hamiltonian vector fields Xh(M) to be the
image, through the Hamiltonian morphism B, of the set B1(M) of exact 1-forms;

Xh(M) = B(B1(M)).

Similarly, we define the set of locally hamiltonian vector fields Xlh(M) to be the
image, through the Hamiltonian morphism B, of the set Z1(M) of closed 1-forms;

Xlh(M) = B(Z1(M)).

As in the symplectic case, we have:

Proposition 2.9. The sets Xh(M) and Xlh(M) are Lie subalgebras of X(M).

Proof. Let Xf , Xg ∈ Xh(M) be two Hamiltonian vector fields. Recall that we have
Xf (h) = {f, h}, for any smooth function h. Hence:

[Xf , Xg](h) = XfXg(h)−XgXf (h)

= {f, {g, h}} − {g, {f, h}}
= {f, {g, h}}+ {g, {h, f}}
= {{f, g}, h} = X{f,g}(h).

It follows that [Xf , Xg] = X{f,g} ∈ Xh(M).
To prove that Xlh(M) is a Lie subalgebra of X(M) we just use a local version of

the preceeding computation. �

Remark 2.10. We note that the fact that Xh(M) and Xlh(M) are Lie subalgebras of
X(M) is a direct consequence of the Jacobi identity satisfied by the Poisson bracket,

which, in turn, is equivalent to the vanishing of d̃θ.

We have natural isomorphisms

Xlh(M) ∼= Z1(M)/ ker(B) ∩ Z1(M), Xh(M) ∼= B1(M)/ ker(B) ∩B1(M).

By using the following isomorphisms

H1
DR(M) =

Z1(M)

B1(M)
∼=

Z1(M)/ ker(B) ∩B1(M)

B1(M)/ ker(B) ∩B1(M)

and
Xlh(M)

Xh(M)
∼=

Z1(M)/ ker(B) ∩ Z1(M)

B1(M)/ ker(B) ∩B1(M)
,

we deduce that the Hamiltonian morphism B induces a surjective map

H1
DR(M) → Xlh(M)

Xh(M)
,
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whose kernel consists of all cohomology classes which may be represented by a closed
1-form lying in the kernel of the map B.

It follows that the obstruction for a locally hamiltonian vector field to be globally
hamiltonian lies in a quotient of H1

DR(M). This obstruction now is not purely
topological, since it may well happen that H1

DR(M) 6= 0 but the quotient obstruction
group is zero (this happens, for instance, in the case of the zero Poisson structure,
i.e., θ = 0).

3. Presymplectic structures.

We have seen how the notion of a Poisson manifold may be considered a gen-
eralization of the notion of a symplectic manifold. There is also another way to
generalize the notion of a symplectic manifold, which is, in some sense, “dual” to
the notion of a Poisson manifold. This time we shall insist on the existence of a
closed 2-form ω but we shall release the requirements on the existence of a Poisson
bracket. This leads to the notion of a presymplectic manifold. Precisely, we have:

Definition 3.1. A presymplectic structure on a manifold M is a closed 2-form ω
on M .

Remark 3.2. In the literature it is usually required that ω have constant rank on
M (which is supposed to be connected). In this paper we shall not impose such a
restriction on ω.

As in the symplectic case, a presymplectic structure ω on M determines a homo-
morphism

b : TM → T ∗M,

called the Hamiltonian morphism, defined by setting b(X) = iXω, i.e.,

〈b(X), Y 〉 = ω(X, Y ),

for any two vector fields X and Y on M . This morphism will be an isomorphism if
and only if the presymplectic structure is actually a symplectic structure.

We shall denote by K the kernel of b; it is a subsheaf of the tangent bundle TM .

Lemma 3.3. K is a sheaf of Lie subalgebras of TM .

Proof. Let X, Y ∈ Γ(U,K) and Z ∈ Γ(U, TM) be vector fields defined on an open
set U . We have iXω = iY ω = 0, and the closedness of ω implies that

0 = dω(X, Y, Z) = Xω(Y, Z)− Y ω(X, Z) + Zω(X, Y )

− ω([X, Y ], Z) + ω([X,Z], Y )− ω([Y, Z], X)

= −ω([X, Y ], Z)

for any vector field Z. This shows that [X, Y ] ∈ Γ(U,K). �
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This lemma shows that K defines an involutive distribution on M (this is not
a distribution in the classical sense, since we do not assume the rank of ω to be
constant on M ; it is sometimes called a general distribution, see [V, Chapter 2]).

In the regular case, i.e., when the rank of ω is constant, this distribution is
completely integrable, by the classical Frobenius theorem. This is also true in the
general case, as we shall prove later. Before doing that, we need to introduce the
notions of Hamiltonian and locally Hamiltonian vector fields.

Definition 3.4. A vector field X on M is called a Hamiltonian vector field of a
function f ∈ C∞(M) if b(X) = df .

Note that, in the presymplectic case, it is not true that to any function f ∈
C∞(M) there corresponds a Hamiltonian vector field. When this happens, i.e.,
when there is a Hamiltonian vector field corresponding to a function f , this vector
field is defined only up to the addition of vector fields in K. It is instructive to
compare this situation with the case of Poisson manifolds, where it is the function f
corresponding to a Hamiltonian vector field to be determined only up to the addition
of a Casimir function.

We can now define the sets of Hamiltonian and locally Hamiltonian vector fields
as follows:

Definition 3.5. The set Xh(M) of Hamiltonian vector fields on M is the inverse
image, through b, of the set of exact 1-forms:

Xh(M) = b−1(B1(M)).

Analogously, the set Xlh(M) of locally Hamiltonian vector fields is the inverse image,
through b, of the set of closed 1-forms:

Xlh(M) = b−1(Z1(M)).

We have then an isomorphism, induced by the map b,

Xlh(M)

Xh(M)
∼=

Z1(M) ∩ Im(b)

B1(M) ∩ Im(b)
.

From this we deduce the existence of an injective morphism

b̄ :
Xlh(M)

Xh(M)
→ Z1(M)

B1(M)
= H1

DR(M),

induced by the Hamiltonian morphism b.
This proves that the obstruction for a locally hamiltonian vector field to be glob-

ally hamiltonian lies in a (generally proper) subset of H1
DR(M) (hence it is not of a

purely topological nature).
Let us come now to the definition of a Poisson bracket. Obviously, in the case of

a presymplectic manifold, it is not possible to define the Poisson bracket of any two
smooth functions. It is however possible to define a Poisson bracket if we restrict to
a suitable class of functions.
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Definition 3.6. Let C∞
h (M) be the subset of C∞(M) consisting of Hamiltonian

functions, i.e., functions having a Hamiltonian vector field.

We can define the Poisson bracket of two Hamiltonian functions as follows:

Definition 3.7. Let f, g ∈ C∞
h (M). Their Poisson bracket is the function defined

by

{f, g} = ω(Xg, Xf ),

where Xf and Xg are any two Hamiltonian vector fields corresponding to the func-
tions f and g respectively.

Remark 3.8. It is easy to prove that the Poisson bracket of two Hamiltonian func-
tions is well defined. In fact, if X ′

f = Xf + Y and X ′
g = Xg + Z, with Y, Z ∈ K, are

two different Hamiltonian vector fields for f and g, we have

ω(X ′
g, X

′
f ) = ω(Xg, Xf ).

On the other hand, if we try to define the Poisson bracket of a Hamiltonian function
f ∈ C∞

h (M) with a generic function g ∈ C∞(M) by setting (as in the symplectic
case)

{f, g} = Xf (g),

we can easily see that this will not work, because the result will depend on the
choice of the Hamiltonian vector field of the function f . A consequence of this fact
is that the map

g 7→ {f, g},
does not define a derivation on C∞(M), but only on the subset C∞

h (M). It follows
that it is not possible to identify a Hamiltonian vector field of a Hamiltonian function
f with the map g 7→ {f, g} (which, by the way, is obvious, otherwise the Hamiltonian
vector field of a Hamiltonian function would be uniquely determined). However, it
is true that the restriction of any Hamiltonian vector field Xf of f to the subset
C∞

h (M) of C∞(M) coincides with the derivation g 7→ {f, g}.

Proposition 3.9. The Poisson bracket of Hamiltonian functions defines a structure
of Lie algebra on C∞

h (M), and it satisfies the Leibnitz identity

{f, gh} = {f, g}h + g{f, h}.

Proof. The only non-trivial part of this proposition is the verification of the Jacobi
identity:

{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0.

This identity is equivalent to the closure of the 2-form ω, as may be verified by a
direct computation using local coordinates. �
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Remark 3.10. If we denote by Df the derivation on C∞
h (M) defined by

Df (g) = {f, g},
it follows from the Jacobi identity that

[Df , Dg] = D{f,g}.

As in the case of a symplectic manifold, the locally Hamiltonian vector fields may
be characterized by the following property, whose proof is exactly the same as in
the symplectic case.

Proposition 3.11. A vector field X on a presymplectic manifold (M, ω) is locally
Hamiltonian if and only if LXω = 0, i.e., if and only if the presymplectic form ω is
constant along the flow of X.

We can now prove the assertion about the complete integrability of the (general)
distribution defined by K.

Proposition 3.12. The distribution defined by K is completely integrable.

Proof. Since all vector fields in K are Hamiltonian, we have LXω = 0 for any X ∈ K,
by Proposition 3.11. This means that exp(tX) is a presymplectic automorphism.
It follows that the rank of ω is constant along the integral curves of the vector
fields X ∈ K. This, together with the involutivity of K, is precisely the condition
that ensures that the distribution defined by K is completely integrable (cf. [V,
Theorem 2.6] or [V, Theorem 2.9′′]). �

Remark 3.13. Since the distribution defined by K is completely integrable, it deter-
mines a foliation of M by integral submanifolds. When the quotient M̄ = M/∼
of M by this foliation exists as a smooth manifold, i.e., when the space of leaves
has the structure of a smooth manifold, it is easy to prove that the presymplectic
structure ω on M determines, in a natural way, a symplectic structure ω̄ on M̄ .

Let us go back to the study of the Hamiltonian and locally Hamiltonian vector
fields. To prove the next proposition we shall need the following lemma:

Lemma 3.14. The differential of a 2-form may be expressed, in terms of Lie deriv-
atives, by the following formula:

(3.1) dω(X, Y, Z) = LXω(Y, Z)− LY ω(X, Z) + LZω(X, Y )

+ ω([X, Y ], Z)− ω([X, Z], Y ) + ω([Y, Z], X).

Proof. Let us recall the following properties of the Lie derivative:

LXf = X(f), LXY = [X, Y ],

and
LX(ω(Y, Z)) = LXω(Y, Z) + ω([X, Y ], Z) + ω(Y, [X, Z]).
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Then we have:

LXω(Y, Z) = X(ω(Y, Z))− ω([X, Y ], Z) + ω([X, Z], Y ).

Now, by an easy computation, we find:

LXω(Y, Z)− LY ω(X, Z) + LZω(X, Y )

+ ω([X, Y ], Z)− ω([X, Z], Y ) + ω([Y, Z], X)

= X(ω(Y, Z))− Y (ω(X, Z)) + Z(ω(X, Y ))

− ω([X, Y ], Z) + ω([X, Z], Y )− ω([Y, Z], X)

= dω(X, Y, Z).

�

Proposition 3.15. The sets Xh(M) and Xlh(M) are Lie subalgebras of X(M).

Proof. We shall prove the assertion for Xh(M). The same reasoning, done locally,
will prove the assertion also for Xlh(M).

Let X = Xf and Y = Yg be two Hamiltonian vector fields. Let Z ∈ X(M) be any
vector field. Since ω is closed, we have:

0 = dω(X, Y, Z) = LXω(Y, Z)− LY ω(X, Z) + LZω(X, Y )

+ ω([X, Y ], Z)− ω([X, Z], Y ) + ω([Y, Z], X)

= LZω(X,Y ) + ω([X, Y ], Z)− ω([X, Z], Y ) + ω([Y, Z], X)

= Z(ω(X, Y ))− ω([Z,X], Y ) + ω([Z, Y ], X)

+ ω([X, Y ], Z)− ω([X, Z], Y ) + ω([Y, Z], X)

= Z(ω(X, Y )) + ω([X,Y ], Z).

It follows that

Z({f, g}) = Z(ω(Y, X)) = ω([X, Y ], Z) = 〈Z, b([X,Y ])〉,

for any vector field Z, hence

d{f, g} = b([X, Y ]),

which means that {f, g} is a Hamiltonian function and

X{f,g} = [Xf , Yg] mod K.

From this equation it follows that Xh(M) is closed for the Lie bracket, hence is a
Lie subalgebra of X(M). �

Proposition 3.16. The kernel K of the Hamiltonian morphism is a Lie ideal of the
Lie algebras Xh(M) and Xlh(M) (but not of X(M)).
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Proof. We shall prove the assertion for Xlh(M). Let X ∈ K, Y ∈ Xlh(M) and
Z ∈ X(M) be three vector fields. From the closure of ω it follows that

0 = dω(X, Y, Z) = LXω(Y, Z)− LY ω(X, Z) + LZω(X, Y )

+ ω([X, Y ], Z)− ω([X, Z], Y ) + ω([Y, Z], X)

= LZω(X, Y ) + ω([X, Y ], Z)− ω([X, Z], Y )

= −ω([Z,X], Y ) + ω([X, Y ], Z)− ω([X, Z], Y )

= ω([X, Y ], Z),

for any Z, hence [X, Y ] ∈ K. �

4. Actions of Lie groups on presymplectic manifolds.

The usual notion of a symplectic action of a Lie group on a symplectic manifold
admits a straightforward generalization to the presymplectic case.

Let (M, ω) be a presymplectic manifold and let G be a (connected) Lie group
acting on M . We shall denote by Φ : G×M → M the action of G, by Φg : M → M
the map Φg(x) = Φ(g, x) and by Φx : G → M the map Φx(g) = Φ(g, x), for any
g ∈ G and x ∈ M .

Definition 4.1. The action Φ of G on M is called a presymplectic action if Φ∗
gω = ω,

for any g ∈ G.

Let g be the Lie algebra of G. For any ξ ∈ g we shall denote by ξM the fundamental
vector field on M corresponding to ξ. The set of all fundamental vector fields will
be denoted by gM . The action Φ of G on M is a presymplectic action if and only if
the 2-form ω is constant along the flow of ξM , i.e., if and only if LξM

ω = 0, for any
ξ ∈ g. By Proposition 3.11 this is equivalent to saying that the vector field ξM is
locally Hamiltonian, i.e., that the 1-form b(ξM) is closed, for any ξ ∈ g.

We can now state the following definition:

Definition 4.2. The action Φ of G on M is called a strongly presymplectic, or a
Hamiltonian action if, for any ξ ∈ g, the fundamental vector field ξM is a Hamilton-
ian vector field, i.e., if the 1-form b(ξM) is exact.

4.1. Momentum mapping. Let (M, ω) be a presymplectic manifold and let G be
a Lie group acting presymplectically on M . Let g be the Lie algebra of G.

Definition 4.3. A map J : M → g∗ is a moment map (or momentum map) for the
action of G on M if, for any ξ ∈ g, b(ξM) = dJξ, where ξM is the fundamental vector
field on M associated to ξ, and Jξ ∈ C∞(M) is the function defined by setting
Jξ(x) = 〈J(x), ξ〉, for any x ∈ M .

Note that a necessary condition for the existence of a moment map is that the
1-form b(ξM) be an exact 1-form, for any ξ ∈ g, i.e., that the action of G on M
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be strongly presymplectic. Actually the converse is also true (as in the symplectic
case):

Proposition 4.4. A moment map J : M → g∗ exists if and only if the action of G
on M is strongly presymplectic.

Proof. We have already seen that this condition is necessary. Let us assume now
that the action of G on M is strongly presymplectic. Let ξ1, . . . , ξk be a basis of g
and let Jξi

∈ C∞(M), be functions such that b(ξiM) = dJξi
, for i = 1, . . . , k. For

any ξ =
∑k

i=1 λiξi ∈ g we define Jξ ∈ C∞(M) by setting Jξ =
∑k

i=1 λiJξi
. Then the

map J : M → g∗ defined by 〈J(x), ξ〉 = Jξ(x) is a moment map for the action of G
on M . �

Remark 4.5. It is clear from the definition that, if J1 and J2 are two moment maps
for the same action of G on M , and M is connected, then there exists µ ∈ g∗ such
that J1(x)− J2(x) = µ, for any x ∈ M . On the other hand, if J is a moment map
for the action of G on M then Jµ(x) = J(x) + µ is another moment map for the
same action of G on M , for any µ ∈ g∗.

Let us assume now that there exists a moment map J : M → g∗ for the action
of G on M . Since the functions Jξ, for any ξ ∈ g, are Hamiltonian functions, the
Poisson bracket of Jξ and Jη is well defined for any ξ, η ∈ g. However it is not true,
in general, that

{Jξ, Jη} = J[ξ,η].

Related to this problem we have the following result, whose proof is the same as in
the symplectic case (see [AM]):

Proposition 4.6. The following two statements are equivalent:

(1) {Jξ, Jη} = J[ξ,η], for every ξ, η ∈ g,
(2) for any g ∈ G the following diagram is commutative

M
J //

Φg

��

g∗

Ad∗g
��

M
J

// g∗,

i.e., the moment map J is Ad∗-equivariant.

We can now give the following definition:

Definition 4.7. The action Φ of G on M is called a Poissonian, or a strongly
Hamiltonian action if there exists an Ad∗-equivariant moment map J .
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4.2. Presymplectic reduction. We shall now describe how the usual symplectic
reduction procedure of Marsden–Weinstein can be extended to the case of presym-
plectic manifolds.

Let (M, ω) be a presymplectic manifold and G be a Lie group acting on M . We
shall assume that the action is strongly Hamiltonian, so that there exists an Ad∗-
equivariant moment map J : M → g∗. Under these assumptions, it follows that, for
any µ ∈ g∗, the isotropy group

Gµ = {g ∈ G | Ad∗g µ = µ}
acts on J−1(µ) (it is actually the maximal subgroup of G leaving J−1(µ) invariant),
hence we can form the quotient Mµ = J−1(µ)/Gµ. This is usually called the reduced
phase space. Of course we are especially interested in the case when Mµ is actually
a “space”, i.e., for instance, a smooth manifold. The usual way to ensure this is
to assume that µ is a regular value of J and that the action of Gµ on J−1(µ) is
free and proper. In particular, from now on, we shall assume that both J−1(µ) and
Mµ = J−1(µ)/Gµ are smooth manifolds.

Let us denote by i the natural injection i : J−1(µ) ↪→ M . The presymplectic
structure ω on M determines a natural presymplectic structure ωµ = i∗ω on J−1(µ).
In the following proposition we shall describe the kernel of ωµ.

Proposition 4.8. For any x ∈ J−1(µ), we have ker ωµ(x) = gµM x +ker ω(x), where

gµM x = {v ∈ TxJ
−1(µ) | v = ξM(x), for some ξ ∈ gµ}.

To prove this result we need the following lemma:

Lemma 4.9. (1) gµM = gM ∩ X(J−1(µ));
(2) For any x ∈ J−1(µ), we have TxJ

−1(µ) = gM
⊥ω
x ;

(3) For any x ∈ J−1(µ), we have ker ω(x) ⊂ TxJ
−1(µ);

(4) ker ωµ(x) = TxJ
−1(µ) ∩ TxJ

−1(µ)⊥ω .

Proof. (1) Let us recall that gµ is the Lie algebra of Gµ. Since Gµ acts on J−1(µ),
we have gµM ⊂ X(J−1(µ)). But, by recalling that Gµ is the maximal subgroup of G
leaving J−1(µ) invariant, it follows that

gµM = gM ∩ X(J−1(µ)).

(2) Since µ is a regular value of J , we have TxJ
−1(µ) = ker(TxJ). Hence v ∈

TxJ
−1(µ) if and only if, for every ξ ∈ g,

0 = 〈TxJ(v), ξ〉 = 〈v, dJξ(x)〉 = ω(ξM(x), v).

This means precisely that v ∈ gM
⊥ω
x .

(3) By (2) we know that TxJ
−1(µ) = gM

⊥ω
x , and it is obvious that ker ω(x) ⊂

gM
⊥ω
x .
(4) By definition, we have that v ∈ ker ωµ(x) if and only if v ∈ TxJ

−1(µ) and
ωµ(v, w) = 0 for any w ∈ TxJ

−1(µ), which means precisely that v ∈ TxJ
−1(µ)⊥ω . �
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We can now prove the preceeding proposition:

Proof. By the results of the lemma we have:

ker ωµ(x) = TxJ
−1(µ) ∩ TxJ

−1(µ)⊥ω

= TxJ
−1(µ) ∩ (gM

⊥ω
x )⊥ω

= TxJ
−1(µ) ∩ (gM x + ker ω(x))

= gµM x + ker ω(x),

where the equality
(gM

⊥ω
x )⊥ω = gM x + ker ω(x)

is left as a simple exercise in linear algebra. �

Now we shall consider the quotient Mµ = J−1(µ)/Gµ. Let us denote by π :
J−1(µ) → Mµ the canonical projection. For any x ∈ J−1(µ), we have Tπ(x)Mµ =
TxJ

−1(µ)/gµM x. From the inclusion gµM x ⊂ ker ωµ(x), it follows that we can define

a 2-form ωµ on Mµ by setting

ωµ(v̄, w̄) = ωµ(v, w),

where v, w ∈ TxJ
−1(µ) are any two vectors such that Txπ(v) = v̄ and Txπ(w) = w̄.

It is evident that ωµ is a 2-form on Mµ satisfying π∗ωµ = ωµ = i∗ω. It is a closed
2-form because we have π∗(dωµ) = d(π∗ωµ) = dωµ = 0, and from this it follows that
dωµ = 0 (because π and Tπ are surjections).

From what we have seen before it is now clear that the kernel of ωµ is the projec-
tion of the kernel of ωµ, i.e., for any x ∈ J−1(µ) we have

ker ωµ(π(x)) = ker ωµ(x)/gµM x.

Finally, by recalling the preceeding description of ker ωµ(x), we deduce that

ker ωµ(π(x)) = ker ω(x)/gµM x.

We have thus proved the following result, which is the analogue in the presymplectic
case of the usual symplectic reduction theorem:

Theorem 4.10. Let (M, ω) be a presymplectic manifold. Let G be a Lie group
acting on M . Let us assume that the action of G on M is strongly Hamiltonian
and let us denote by J : M → g∗ an Ad∗-equivariant moment map. Let µ ∈ g∗ be
a regular value of J and let us denote by i : J−1(µ) ↪→ M the natural inclusion.
Let Gµ denote the isotropy subgroup for the coadjoint action of G on g∗. Finally
let us assume that the quotient space Mµ = J−1(µ)/Gµ is a smooth manifold (e.g.,
assume that the action of Gµ on J−1(µ) is free and proper), and let us denote by
π : J−1(µ) → Mµ the canonical projection. Then there exists a unique presymplectic
structure ωµ on Mµ such that π∗ωµ = i∗ω. Moreover, for any x ∈ J−1(µ), we have

ker ωµ(π(x)) = ker ω(x)/gµM x.
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In particular, the reduced presymplectic structure ωµ is a symplectic structure if and
only if we have ker ω(x) = gµM x, for any x ∈ J−1(µ).
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