

The impact of EFSM Composition on Functional ATPG

Davide Bresolin, Giuseppe Di Guglielmo, Franco Fummi, Graziano Pravadelli, Tiziano Villa

University of Verona
Department of Computer Science

Outline

Introduction

Laerte++: a functional ATPG

- Extended Event FSM (EEFSM) to model the DUT
- Constraint Logic Programming (CLP) engine to generate test vectors
- Two step algorithm: random walk + backjumping
- Transition and fault coverage to evaluate the quality of the test vectors

The EEFSM model

- EEFSM are I/O FSM augmented by a set of registers and of I/O events
- I/O events are used to model the clock and the sensitivity list construct of HDL
- Activation of a transition depends on the state, on inputs, on events, and on the value of the registers.

An EEFSM example

```
M: process(i)
begin
 case state is
 when s_0 =>
  if \alpha (i) then
    A_1(0); state := s_1;
  else
    A_2(0); state := s_0;
  end if;
 when s_1 =>
  if \beta ( i ) then
    B_1(0); state := s_0;
  else
    B_2(0); state := s_1;
  end if;
 end case;
end process;
```


Advantages of EEFSM

- They allow for more compact representations (no space state explosion)
- The event-based semantics make the asynchronous composition cleaner
- Events are used to activate only the components that should trigger a transition

Hard and Easy transitions

- Transitions that depends only on primary inputs are Easy-to-traverse (ETT) transitions.
- Transition that depends on the *value of the registers* are *Hard-to-traverse* (*HTT*) and should be treated with special care.

Laerte++ engine

Bottlenecks

- With multi-process design, scheduling can be problematic
- DUTs with a large number of HTT have a low transition coverage
- Invocation of the CLP engine is time consuming

A possible solution

- Compose the processes into a single EEFSM
- Scheduling is simplified
- Some HTT become Easy
- Less CLP invocations
- Higher transition coverage

Serial composition

Outputs of M₁ are inputs of M₂

 We do not allow the two EEFSM to update R simultaneously

M₂ fires a transition only if F is in its sensitivity list

Parallel composition

- M₁ and M₂ share the same inputs
- R cannot be updated simultaneously
- Outputs are computed in parallel
- Transitions are not necessarily synchronized

Feedback composition

Some outputs of
 M₁ are inputs of
 M₂ (and viceversa)

 This composition is well-defined only if there are no

algebraic loops in the dependencies

Hard transitions became Easy!

Composing Processes

Experimental results

- Three industrial benchmarks:
 - Vr01: module of a face recognition system
 - Ecc1, Ecc2: ECC code of a 16bit page of data

DUT	PI	РО	Р	FF	Gate	Trn	t(s)	ВС
Vr01	65	16	8	73	615	69	7.1	2168
Ecc1	25	32	9	79	703	17	1.7	1022
Ecc2	55	32	7	88	832	24	2.4	1032

Experimental Results: vr01

D	Т%	F%	t(s.)	TV	CSI	CST(s.)
0	80	54.10	228.38	15000	584935	182.7
1	80	54.10	201.35	15000	542523	161.1
2	80	54.10	187.34	15000	489031	159.3
3	93	71.80	134.92	15000	439413	103.4
4	93	71.80	132.33	15000	419321	100.0
5	93	71.80	103.43	15000	371391	73.1
6	100	98.90	13.93	256	16129	10.4
7	100	98.90	13.59	263	16129	10.1

Experimental Results: ecc1, ecc2

D	Т%	F%	t(s.)	TV	CSI	CST(s.)
0	100	87.7	4.852	884	11680	3.785
8	100	87.7	3.612	973	5162	2.998

Ecc01

D	Т%	F%	t(s.)	TV	CSI	CST(s.)
0	71	32.1	312.32	15000	612042	291.30
8	100	97.4	17.13	315	48984	16.98

Ecc02

Conclusions and Future Work

- EFSM composition has proved to be a valuable approach
- We are testing this approach on more complex case studies