Efficient valuation of exotic derivatives in Lévy models

Ernst Eberlein and Antonis Papapantoleon

Department of Mathematical Stochastics and
Center for Data Analysis and Modeling (FDM)
University of Freiburg

Conference on Stochastic Processes: Theory and Applications on occasion of the 65th birthday of Wolfgang Runggaldier
Bressanone (Italy), July 16–20, 2007
Volatility smile and surface

Volatility surfaces of foreign exchange and interest rate options

- Volatilities vary in strike (**smile**)
- Volatilities vary in time to maturity (**term structure**)
- Volatility clustering
The model

Let $\mathcal{B}_T = (\Omega, \mathcal{F}, \mathbb{F}, P)$ be a stochastic basis, where $\mathcal{F} = \mathcal{F}_T$ and $\mathbb{F} = (\mathcal{F}_t)_{0 \leq t \leq T}$. We model the price process of a financial asset as an exponential semimartingale

$$S_t = e^{H_t}, \quad 0 \leq t \leq T. \quad (1)$$

$H = (H_t)_{0 \leq t \leq T}$ is a semimartingale with canonical representation

$$H = H_0 + B + H^c + h(x) \ast (\mu^H - \nu) + (x - h(x)) \ast \mu^H. \quad (2)$$

For the processes $B, \ C = \langle H^c \rangle$, and the measure ν we use the notation

$$\mathbb{T}(H|P) = (B, C, \nu)$$

which is called the *triplet of predictable characteristics* of the semimartingale H.

References
Alternative model description

\[\mathcal{E}(X) = (\mathcal{E}(X)_t)_{0 \leq t \leq T} \quad \text{stochastic exponential} \]

\[S_t = \mathcal{E}(\tilde{H})_t, \quad 0 \leq t \leq T \]
\[dS_t = S_t d\tilde{H}_t \]

where
\[\tilde{H}_t = H_t + \frac{1}{2} \langle H^c \rangle_t + \int_0^t \int_{\mathbb{R}} (e^x - 1 - x) \mu^H(ds, dx) \]

Note
\[\mathcal{E}(\tilde{H})_t = \exp(\tilde{H}_t - \frac{1}{2} \langle \tilde{H}^c \rangle_t) \prod_{0 < s \leq t} (1 + \Delta \tilde{H}_s) \exp(-\Delta \tilde{H}_s) \]

Asset price positive only if \(\Delta \tilde{H} > -1. \)
Martingale modeling

Let $\mathcal{M}_{\text{loc}}(P)$ be the class of local martingales.

Assumption (ES)

The process $1_{\{x>1\}}e^x \ast \nu$ has bounded variation.

Then

$$S = e^H \in \mathcal{M}_{\text{loc}}(P) \iff B + \frac{C}{2} + (e^x - 1 - h(x)) \ast \nu = 0. \quad (3)$$

Throughout, we assume that P is a (local) martingale measure for S. By the *Fundamental Theorem of Asset Pricing*, the value of an option on S equals the discounted expected payoff under a martingale measure.

We assume zero interest rates.
Supremum and infimum processes

Let $X = (X_t)_{0 \leq t \leq T}$ be a stochastic process. We denote by

$$
\overline{X}_t = \sup_{0 \leq u \leq t} X_u \quad \text{and} \quad \underline{X}_t = \inf_{0 \leq u \leq t} X_u
$$

the supremum and infimum process of X respectively. Since the exponential function is monotone and increasing

$$
\overline{S}_T = \sup_{0 \leq t \leq T} S_t = \sup_{0 \leq t \leq T} \left(e^{H_t} \right) = e^{\sup_{0 \leq t \leq T} H_t} = e^{\overline{H}_T}.
$$

(4)

Similarly

$$
\underline{S}_T = e^{\underline{H}_T}.
$$

(5)
Valuation formulae – payoff functional

We want to price an option with payoff $f(X_T)$, where $X_T = p(H_t, 0 \leq t \leq T)$ is an \mathcal{F}_T-measurable functional.

The functionals we consider are “European style”, and consist of two parts:

1. The *payoff function* is an arbitrary function $f : \mathbb{R} \rightarrow \mathbb{R}^+$; for example $f(x) = (e^x - K)^+$ or $f(x) = 1_{\{e^x > B\}}$, for $K, B \in \mathbb{R}^+$.

2. The *underlying process* can be the asset price or the supremum/infimum or an average of the asset price process (e.g. $X = H$ or $X = \overline{H}$).

- Exotic options
Valuation formulae – assumptions

Assumptions:

(R1) Assume that \(\int_{\mathbb{R}} e^{-Rx} f(x) \, dx < \infty \) for all \(R \in l_1 \subset \mathbb{R} \).

(R2) Assume that \(M_{X_T}(z) = E[e^{zX_T}] < \infty \), for all \(z \in l_2 \subset \mathbb{R} \).

(R3) Assume that \(l_1 \cap l_2 \neq \emptyset \).

Valuation formulae based on Fourier transforms; similar to Raible (2000), but no need for Lebesgue density.

Consider the Fourier transform of the payoff function like Borovkov and Novikov (2002); also Hubalek et al. (2006) and Černý (2007), for hedging.

Carr and Madan (1999) and Raible (2000) transform the option price.
Valuation formulae

Theorem 1

Assume that (R1)–(R3) are in force. Then, the price $V_f(X)$ of an option on $S = (S_t)_{0 \leq t \leq T}$ with payoff $f(X_T)$ is given by

$$V_f(X) = \frac{1}{2\pi} \int_{\mathbb{R}} \varphi_{X_T}(-u - iR)\mathcal{F}_f(u + iR)du,$$

where φ_{X_T} denotes the extended characteristic function of X_T and \mathcal{F}_f denotes the Fourier transform of f.

Proof

Introduce the *dampened payoff function* $g(x) = e^{-Rx} f(x), R \in \mathbb{I}_1$. Then

$$V_f(X) = E[f(X_T)] = E[e^{RX_T} g(X_T)] = \int_{\mathbb{R}} e^{Rx} g(x) P_{X_T}(dx).$$

cont. next page
Proof (cont.)

Under assumption (R1), g has a Fourier transform \tilde{g}; inverting it, we get a representation as

$$g(x) = \frac{1}{2\pi} \int_{\mathbb{R}} e^{-ixu} \tilde{g}(u) du. \quad (8)$$

Returning to the valuation problem (7) we get

$$V_f(X) = \int_{\mathbb{R}} e^{Rx} \left(\frac{1}{2\pi} \int_{\mathbb{R}} e^{-ixu} \tilde{g}(u) du \right) P_{X_T}(dx)$$

$$= \frac{1}{2\pi} \int_{\mathbb{R}} \left(\int_{\mathbb{R}} e^{i(-u-iR)x} P_{X_T}(dx) \right) \tilde{g}(u) du$$

$$= \frac{1}{2\pi} \int_{\mathbb{R}} \varphi_{X_T}(-u - iR) \tilde{f}_f(u + iR) du. \quad (9)$$
Valuation formulae II – options

Valuation formulae for options that depend on two functionals of the driving process.

Examples: barrier, slide-in or corridor and two-asset correlation option

\[
(S_T - K)^+ 1_{\{S_T > B\}};
\]

\[
(S_T - K)^+ \sum_{i=1}^{N} 1_{\{L < S_{T_i} < H\}};
\]

\[
(S_T^1 - K)^+ 1_{\{S_T^2 > B\}}.
\]
Valuation formulae II

Theorem 2

The price $V_{f,g}(X, Y)$ of an option on $S = (S_t)_{0 \leq t \leq T}$ with payoff function $f(X_T)g(Y_T)$ is given by

$$V_{f,g}(X, Y) = \frac{1}{4\pi^2} \int_{\mathbb{R}} \int_{\mathbb{R}} \varphi_{X_T,Y_T}(-u - iR_1, -v - iR_2)$$

$$\times \mathcal{F}_g(v + iR_2)\mathcal{F}_f(u + iR_1)dvdu,$$

where φ_{X_T,Y_T} denotes the extended characteristic function of the random vector (X_T, Y_T).

Proof.

Assumptions and proof are similar to Theorem 1.
Examples of payoff functions

Example (Call and put option)

Call payoff \(f(x) = (e^x - K)^+ \), \(K \in \mathbb{R}_+ \),

\[
\tilde{f}(u + iR) = \frac{K^{1+iu-R}}{(iu - R)(1 + iu - R)}, \quad R \in I_1 = (1, \infty). \tag{11}
\]

Similarly, if \(f(x) = (K - e^x)^+ \), \(K \in \mathbb{R}_+ \),

\[
\tilde{f}(u + iR) = \frac{K^{1+iu-R}}{(iu - R)(1 + iu - R)}, \quad R \in I_1 = (-\infty, 0). \tag{12}
\]
Example (Digital option)

Call payoff $1_{\{e^x > B\}}$, $B \in \mathbb{R}^+$.

\[\zeta_f(u + iR) = -B^{iu-R} \frac{1}{iu - R}, \quad R \in I_1 = (0, \infty). \]

(13)

Similarly, for the payoff $f(x) = 1_{\{e^x < B\}}$, $B \in \mathbb{R}^+$,

\[\zeta_f(u + iR) = B^{iu-R} \frac{1}{iu - R}, \quad R \in I_1 = (-\infty, 0). \]

(14)

Example (Double digital option)

The payoff of a double digital call option is $1_{\{B < e^x < B\}}$, $B, \overline{B} \in \mathbb{R}^+$.

\[\zeta_f(u + iR) = \frac{1}{iu - R} \left(B^{iu-R} - \overline{B}^{iu-R} \right), \quad R \in I_1 = \mathbb{R} \setminus \{0\}. \]

(15)
Example (Asset-or-nothing digital)

Call payoff \(f(x) = e^x 1_{\{e^x > B\}} \)

\[\tilde{\mathbb{F}} f(u + iR) = -\frac{B^{1+iu-R}}{1 + iu - R}, \quad R \in I_1 = (1, \infty) \]

Put payoff \(f(x) = e^x 1_{\{e^x < B\}} \)

\[\tilde{\mathbb{F}} f(u + iR) = \frac{B^{1+iu-R}}{1 + iu - R}, \quad R \in I_1 = (-\infty, 1) \]

Example (Self-quanto option)

Call payoff \(f(x) = e^x (e^x - K)^+ \)

\[\tilde{\mathbb{F}} f(u + iR) = \frac{K^{2+iu-R}}{(1 + iu - R)(2 + iu - R)}, \quad R \in I_1 = (2, \infty) \]
Lévy processes

Let $L = (L_t)_{0 \leq t \leq T}$ be a Lévy process with triplet of local characteristics (b, c, λ), i.e. $B_t(\omega) = bt$, $C_t(\omega) = ct$, $\nu(\omega; dt, dx) = dt\lambda(dx)$, λ Lévy measure.

Assumption (EM)

There exists a constant $M > 1$ such that

$$\int_{\{|x| > 1\}} e^{ux} \lambda(dx) < \infty, \quad \forall u \in [-M, M].$$

Using (EM) and Theorems 25.3 and 25.17 in Sato (1999), we get that

$$E[e^{uL_t}] < \infty, \quad E[e^{-uL_t}] < \infty \quad \text{and} \quad E[e^{uL_t}] < \infty$$

for all $u \in [-M, M]$.
On the characteristic function of the supremum I

Lemma 3

Let \(L = (L_t)_{0 \leq t \leq T} \) be a Lévy process that satisfies assumption \((EM)\). Then, the moment generating function of \(\bar{L}_t \) is defined for all \(u \in (-\infty, M] \) and \(t \in [0, T] \).

Lemma 4

Let \(L = (L_t)_{0 \leq t \leq T} \) be a Lévy process that satisfies assumption \((EM)\). Then, the characteristic function \(\varphi_{\bar{L}_t} \) of \(\bar{L}_t \) is holomorphic in the half plane \(\{ z \in \mathbb{C} : -M < \ImaginaryPart z < \infty \} \) and can be represented as a Fourier integral in the complex domain

\[
\varphi_{\bar{L}_t}(z) = E\left[e^{iz\bar{L}_t} \right] = \int_{\mathbb{R}} e^{izx} P_{\bar{L}_t}(dx).
\]
Theorem 5 (Wiener–Hopf factorization)

Let L be a Lévy process. The Laplace transform of L at an independent and exponentially distributed time θ can be identified from the Wiener–Hopf factorization of L via

$$E[e^{-\beta L_\theta}] = \frac{\kappa(q, 0)}{\kappa(q, \beta)}$$

(16)

where $\kappa(\alpha, \beta)$, $\alpha \geq 0$, $\beta \geq 0$, is given by

$$\kappa(\alpha, \beta) = k \exp \left(\int_0^\infty \int_0^\infty \left(e^{-t} - e^{-\alpha t - \beta x} \right) \frac{1}{t} P_{L_t}(dx) \, dt \right).$$

(17)

Moreover, κ can be analytically extended to $\alpha, \beta \in \mathbb{C}$ with $\Re \alpha \geq 0$ and $\Re \beta \geq -M$.

Proof.

Linking fixed and exponential times

Lemma 6

Let $L = (L_t)_{0 \leq t \leq T}$ be a Lévy process that satisfies assumption (EM) and consider $\beta \in \mathbb{C}$ with $\Re \beta \in [-M, \infty)$. The Laplace transforms of L_t, $t \in [0, T]$ and L_θ, $\theta \sim \text{Exp}(q)$, are related via

$$E[e^{-\beta L_\theta}] = q \int_0^\infty e^{-qt} E[e^{-\beta L_t}] \, dt. \quad (18)$$

Moreover, the Laplace transform of L_θ is finite for $\beta \in \mathbb{C}$ with $\Re \beta \in [-M, \infty)$.

Proof.

An application of Fubini’s theorem yields

$$E[e^{-\beta L_\theta}] = E\left[\int_0^\infty qe^{-qt} e^{-\beta L_t} \, dt\right] = q \int_0^\infty e^{-qt} E[e^{-\beta L_t}] \, dt.$$
On the characteristic function of the supremum II

Theorem 7

Let \(L = (L_t)_{0 \leq t \leq T} \) be a Lévy process. The Laplace transform of \(\bar{L}_t \) at a fixed time \(t, t \in [0, T] \), is given by

\[
E[e^{-\beta \bar{L}_t}] = \frac{1}{2\pi} \int_{\mathbb{R}} \frac{e^{t(Y + iv)}}{Y + iv} \frac{\kappa(Y + iv, 0)}{\kappa(Y + iv, \beta)} dv,
\]

for \(Y > 0 \). Moreover, the Laplace transform can be extended to the complex plane for \(\beta \in \mathbb{C} \) with \(\Re \beta \in [-M, \infty) \).

Proof.

Combining eqs. (16) and (18) we get

\[
q \int_0^\infty e^{-qt} E[e^{-\beta \bar{L}_t}] dt = \frac{\kappa(q, 0)}{\kappa(q, \beta)}.
\]

Applying Doetsch (1950), we invert the Laplace transform and the claim follows.
Non-path-dependent options

European option on an asset with price process $S_t = e^{H_t}$

Examples: call, put, digitals, asset-or-nothing, double digitals, self-quanto options

$X_t \equiv H_T$, i.e. we need φ_{H_T}

Generalized hyperbolic model (GH model):

$$\varphi_{H_1}(u) = e^{iu\mu} \left(\frac{\alpha^2 - \beta^2}{\alpha^2 - (\beta + iu)^2} \right)^{\lambda/2} \frac{K_{\lambda}(\delta \sqrt{\alpha^2 - (\beta + iu)^2})}{K_{\lambda}(\delta \sqrt{\alpha^2 - \beta^2})}$$

$$l_2 = (-\alpha - \beta, \alpha - \beta)$$

$$\varphi_{H_T}(u) = (\varphi_{H_1}(u))^T$$

similar: NIG, CGMY, Meixner
Non-path-dependent options II

Stochastic volatility Lévy models: Carr, Geman, Madan, Yor (2003)

Stochastic clock \[Y_t = \int_0^t y_s ds \quad (y_s > 0) \]
e.g. CIR process
\[dy_t = K(\eta - y_t)dt + \lambda y_t^{1/2} dW_t \]

Define for a pure jump Lévy process \(X = (X_t)_{t \geq 0} \)
\[H_t = X_{Y_t} \quad (0 \leq t \leq T) \]
Then
\[\varphi_{H_t}(u) = \frac{\varphi_{Y_t}(-i\varphi_{X_t}(u))}{(\varphi_{Y_t}(-iu\varphi_{X_t}(-i)))^{iu}} \]
Lookback options

Fixed strike lookback option: $(\bar{S}_T - K)^+$.

Combining Theorem 1 and Theorem 7, we get

$$C_T(\bar{S}; K) = \frac{1}{2\pi} \int_{\mathbb{R}} \varphi_{\mathcal{L}_T}(-u - iR) \frac{K^{1+iu-R}}{(iu - R)(1 + iu - R)} \, du$$ \hspace{1cm} (21)

where

$$\varphi_{\mathcal{L}_T}(-u - iR) = \frac{1}{2\pi} \int_{\mathbb{R}} \frac{e^{T(Y + iv)}}{Y + iv} \frac{\kappa(Y + iv, 0)}{\kappa(Y + iv, iu - R)} \, dv.$$ \hspace{1cm} (22)

• The floating strike lookback option, $(\bar{S}_T - S_T)^+$, is treated by a duality formula.
Floating strike lookback options (1)

Payoff of a put: \(\left(\beta \sup_{0 \leq t \leq T} S_t - S_T \right)^+ \) for a \(0 < \beta \leq 1 \)

Assume \(H' = (H'_t)_{0 \leq t \leq T} \) satisfies
\[
\text{Law} \left(H'_T - \inf_{t \leq T} H'_t \big| P' \right) = \text{Law} \left(\sup_{t \leq T} H'_t \big| P' \right)
\]
(holds for Lévy processes), then
\[
\mathbb{P}_T(\beta \sup S; S) = \beta C'_T \left(\sup S'; \frac{1}{\beta} \right)
\]

Value of a *floating strike* lookback put
→ value of a *fixed strike* lookback call
Floating strike lookback options (2)

Payoff of a call: \(\left(S_T - \alpha \inf_{0 \leq t \leq T} S_t \right)^+ \) for an \(\alpha \geq 1 \)

Assume \(H' = (H'_t)_{0 \leq t \leq T} \) satisfies the reflection principle

\[
\text{Law} \left(\sup_{t \leq T} H'_t - H'_T \mid P' \right) = \text{Law}(- \inf_{t \leq T} H'_t \mid P')
\]

(holds for Lévy processes), then

\[
C_T(S; \alpha \inf S) = \alpha P'_T \left(\frac{1}{\alpha} ; \inf S' \right)
\]

Value of a floating strike lookback call
→ value of a fixed strike lookback put
Proof

\[C_T(S; \alpha \inf S) = E[(S_T - \alpha \inf_{t \leq T} S_t)^+] = E[S_T \left(1 - \frac{\alpha \inf_{t \leq T} S_t}{S_T}\right)^+] \]

\[= E' \left[\left(1 - \alpha e^{\inf_{t \leq T} H_t - H_T}\right)^+\right] \]

\[= E' \left[\left(1 - \alpha e^{H'_T - \sup_{t \leq T} H'_t}\right)^+\right] \]

The process \(H' = (H'_t)_{0 \leq t \leq T} \) satisfies the reflection principle:

\[\text{Law} \left(\sup_{t \leq T} H'_t - H'_T \mid P'\right) = \text{Law} \left(- \inf_{t \leq T} H'_t \mid P'\right) \]

\[C_T(S; \alpha \inf S) = \alpha E' \left[\left(\frac{1}{\alpha} - e^{\inf_{t \leq T} H'_t}\right)^+\right] \]

\[= \alpha E' \left[\left(\frac{1}{\alpha} - \inf_{t \leq T} S'_t\right)^+\right] = \alpha \mathbb{P}'_T \left(\frac{1}{\alpha}; \inf S'\right) \]
One-touch options

One-touch call option: \(1_{\{S_T > B\}} \).

Combining Theorem 1, Theorem 7 and the example for digital options, we get

\[
\mathbb{D}C_T(S; B) = \frac{1}{4\pi^2} \int_{\mathbb{R}} \int_{\mathbb{R}} \frac{e^{T(Y+iv)}}{Y + iv} \frac{\kappa(Y + iv, 0)}{\kappa(Y + iv, iu - R)} \frac{B^{iu-R}}{R - iu} dv du. \tag{23}
\]

Similarly for the one-touch put option: \(1_{\{S_T \leq B\}} \).

\[
\mathbb{D}P_T(S; B) = \frac{1}{4\pi^2} \int_{\mathbb{R}} \int_{\mathbb{R}} \frac{e^{T(Y+iv)}}{Y + iv} \frac{\widehat{\kappa}(Y + iv, 0)}{\widehat{\kappa}(Y + iv, iu - R)} \frac{B^{iu-R}}{iu - R} dv du. \tag{24}
\]
Equity default swap (EDS)

- Fixed premium exchanged for payment at “default”
- default: drop of stock price by 30% or 50% of $S_0 \rightarrow$ first passage time
- fixed leg pays premium \mathcal{K} at times T_1, \ldots, T_N, if $T_i \leq \tau_B$
- if $\tau_B \leq T$: protection payment, paid at time τ_B
- premium of the EDS chosen such that initial value equals 0; hence

$$\mathcal{K} = \frac{E \left[e^{-r\tau_B} 1_{\{\tau_B \leq T\}} \right]}{\sum_{i=1}^{N} E \left[e^{-rT_i} 1_{\{\tau_B > T_i\}} \right]}.$$ \hspace{1cm} (25)

- Calculations similar to touch options, since $1_{\{\tau_B \leq T\}} = 1_{\{S_T \leq B\}}$.
Options on two assets

Two-asset correlation options:
Payoff of a correlation call: \((S_T^1 - K)^+ 1_{\{S_T^2 > B\}}\)

Measurement asset \(S^2\) in the money \(\rightarrow\) call on a payment asset \(S^1\)

Asset price processes \(S^i_t = \exp(L^i_t)\) \(i = 1, 2\)
where \(L = (L^1, L^2)\) is a time-inhomogeneous \(\text{Lévy}\) process

\[
\text{TAC}_{T}(S^1, S^2; K, B) = \frac{1}{4\pi^2} \int_{\mathbb{R}} \int_{\mathbb{R}} \varphi_{LT}(-u - iR_1, -v - iR_2) \\
\times \frac{K^{1+iu-R_1}}{(iu - R_1)(1 + iu - R_1)} \frac{B^{iu-R_2}}{R_2 - iu} dv du
\]
References

- Eberlein, E. and A. Papapantoleon (2007). Valuation of exotic and credit derivatives in Lévy models. FDM Preprint 97, University of Freiburg

- Eberlein, E., A. Papapantoleon, and A. N. Shiryaev (2006). On the duality principle in option pricing: semimartingale setting. FDM-Preprint Nr. 92, University of Freiburg
References (cont.)