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Chapter 1

Preliminaries

The book is dedicated to the study of L,-spaces where p > 0, consisting of functions
[ for which the function |f|” is Lebesgue integrable, and some other related function
spaces, which are normed or more general spaces consisting of real- or complex-
valued functions of n real variables (n € N).*

In general, a function space is a set of functions with a common domain. It
will always be assumed that this space is a linear (vector) space with respect to
point-wise addition and multiplication by a scalar.

We start with recalling some notions and facts in linear functional analysis,
which will be required in the sequel. Then we shall speak about spaces of continu-
ous, uniformly continuous, ! times continuously differentiable and infinitely many
times continuously differentiable functions. In the last, main, section of this chap-
ter a brief exposition of the theory of the Lebesgue integration will be given, with
emphasis on the properties related to passing to the limit, containing all tools which
will be used in the book.

1.1 Normed, semi-normed, quasi-normed spaces

A linear (vector) space with respect to multiplication by complex numbers is called
a normed space if for all z € X a real number T ||z|| = ||z||x, the norm of «, is
defined, and the following properties are satisfied:

1) forallz e X llz]| > 0,

2) if ||z|| = O then z = 6, where 6 is the null element of X,
3) forallz € X and for alla € C llaz|| = |a| - |||,
4) (the triangle inequality) for all z,y € X

llz +yll < ll=ll + [lyll -

*N is the set of all natural numbers, R = R! the set of all real numbers, R” (n € N) the set
of all z = (z1,...,zn) where z1,...,2, € R, C is the set of all complex numbers. It will always
be assumed that n € N. Moreover, the letter n will be only used to denote the dimension.

t The symbol = means identity, i.e. the notation a = b means that the symbols a and b have

the same meaning. We shall also use the symbol := which denotes the assignment operation, i.e.
a := b means that a is assigned the value of b.
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Note that properties 3 and 4 imply that

lz = yll > [ll=ll - llyll

(the reverse triangle inequality).

If properties 1, 3 and 4 are satisfied, then X is called a semi-normed space
and ||z|| a semi-norm. For semi-normed spaces that are not normed, the set § =
{z € X: ||z|| = 0} contains, apart from 6, other elements.

Exercise 1.1.1. Prove that 6 is a linear space.

If X is a semi-normed space, but not a normed space, then it can be partitioned
into non-intersecting subsets & of X (classes) satisfying the following condition: if
1 € Z, then z9 € % if and only if 1 — x5 € 0. Elements of the same class are called
equivalent, and the classes Z are called equivalence classes. The set of all classes Z,
which is the factor space X/ of the space X with respect to 6, will be denoted by
X. )

The set X becomes a linear space if we define, in a natural way, the operations
of addition of classes and of multiplication of a class by a scalar: T + ¢ := @,
aZ = ax, where z and y are any elements in Z, §j respectively, a € C and z +y
and ax are the classes which contain z + y, ax respectively. Moreover, X becomes
a normed space if we define the norm ||z|| of a class Z by

12l = [|Z]l % := ll=lx
where x is any element in Z.

Exercise 1.1.2. Verify that, for different z; € & and zy € &, the equality
llz1|| x = ||z2|| x holds, hence the above definition makes sense, and that ||Z|| satis-
fies properties 1-4.

If in the definition of a normed space property 4 is replaced by

4') there exists* ¢ > 1 such that for all z,y € X
e+ yll < c (el + Nyl

then spaces satisfying conditions 1, 2, 3 and 4’ are called quasi-normed and ||z||
a quasi-norm. If a space satisfies properties 1, 3 and 4/, it is called a semiquasi-
normed space.
A sequence {zg }ren of elements 5 € X is said to converge to an element z € X
in a normed space X if
lim ||zg — z|| = 0. (1.1.1)
k—00

A normed space X is called complete if, for any Cauchy sequence {Tr},cy Of
elements z; € X, i.e. a sequence satisfying

lim H.’Bk - :1:;” = 0,
l—00

b

there exists x € X such that lim 2z =z in X.
k-+o00

* Here and in the sequel, given an inequality, it is assumed that its entries are real numbers,
e. g. ‘there exists ¢ > 1’ means ‘there exists a real number ¢ > 1°.
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Convergence and completeness for other types of spaces considered above is
defined similarly.

A complete normed space is called a Banach space, a complete semi-normed
space a semi-Banach space etc.

The completeness property of real numbers implies that R™ and C" with the
standard Euclidean norm are Banach spaces.

A linear operator T: X — Y acting from a semi-quasi-normed space X to a
semi-quasi-normed space Y is called bounded if there exist ¢ > 0 such that for all
zeX

ITzlly < ell2llx -

The minimal value of ¢ > 0, in other words, the best, or the sharp, constant, in
this inequality is equal to
T=z|ly _

ITlxoy:= sup ——YX= sup |Tzly . (1.1.2)
sex, lzllx#0 1Zllx  sex, ol =1

(We, naturally, assume that ||z||y > 0 for some z € X. However, if one admits
the trivial case in which ||z||, = 0 for all z € X which is not excluded by the
above definitions, then one should set ||T||x_,, := 0 in this case.) In general, this
quantity is a semi-quasi-norm on the set of all bounded linear operators T: X — Y.
It is a semi-norm if Y is a semi-normed space, a quasi-norm if Y is a quasi-normed
space, and a norm if Y is a normed space. An operator T: X — Y acting from a
semi-quasi-normed space X to a semi-quasi-normed space Y is called continuous
if Tz — Tz in Y for all z € X and all sequences {zy}ren satisfying zx — =
in X. Clearly, the boundedness of T implies its continuity. For a linear operator
T: X — Y the continuity is equivalent to the boundedness.

Exercise 1.1.3. (Continuity of a semi-norm) Prove that if X is a semi-normed
space and lim zj = z in X, then lim ||zx| = ||z
k—oo k—o0

A linear space X with multiplication by complex numbers is called an inner-
product space (also known as a pre-Hilbert space), if for all z,y € X a complex
number (z,y), the inner product of z and y, is defined, and the following properties
are satisfied:

1) forallz € X (z,z) >0,
2) if (x,z) = 0, then z = 6,
3) forall z,y € X (z,y) = m,
4) for all z1,z92,y € X and for all ¢c1,cp € C
(c121 + c2x2,y) = c1 (21, Y) + c2 (T2, 9) -
Properties 3 and 4 imply that

(y, 121 + caz2) = €1 (y, 1) + C2 (¥, 22) -

Elements z,y € X are said to be orthogonal, shorthand notation: zly, if
(z,y) =0. If zly, then

lz + ylI* = llzl|* + lly||*
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where

|zl == v/ (=, z) (1.1.3)
(the Pythagoras theorem). Given z,y € X, y # 0, the element gl——’ﬁ!}y is the
orthogonal projection of z onto y (<= z — inmﬁgl yLy).

Exercise 1.1.4. Let X be an inner product space, z,y € X and y # 6. By
applying the Pythagoras theorem, prove that

(x v, 1(x,y)l

Hence deduce that for all z,y € X
(@, )| < Izl - llyll (1.1.4)

(the Cauchy—Bunyakovskii inequality). Deduce also that equality holds if and
only if z and y are proportional.

The quantity ||z|| defined above is a norm, and with this norm X becomes a
normed space.

If properties 1, 3 and 4 are satisfied, then X is called a semi-inner-product
space. The Cauchy—Bunyakovskii inequality (1.1.4) also holds for semi-inner-
product spaces X.

For a semi-inner-product space X the notation hm 2 = in X, where z € X

and for all k € N z; € X means that equality (1.1. 1) holds where ||I-|| is defined by
(1.1.3).

Exercise 1.1.5. (Continuity of a semi-inner product) Prove that if X is a
semi-inner-product space and hm T =1, hm yr =y in X, then hm (K, Yk) =

(z,y).
A normed space X can be made an inner-product space, i.e. it is possible to

define an inner product (z,y) on X x X satisfying ||z|| = /(z, z), if and only if
for all z,y € X the parallelogram identity

lz + ylI* + llz = yI* = 2(llell” + llylI*)

is satisfied (the Jordan—Neumann theorem).
If the parallelogram identity is satisfied, then the inner product (z,y) on X x X

satisfying ||z|| = /(z, z) is defined uniquely by
2)

2
i

Let X be the space of all vectors in R? or R3, more precisely the space of all
classes of vectors. (Each class contains all vectors which are parallel and have
the same length and direction.) Then the meaning of the parallelogram identity
is that the sum of the squares of lengths of the diagonals of a parallelogram is
equal to the sum of the squares of lengths of all its sides, one of the properties of
a parallelogram in the planimetry. Thus the statement above means, in particular

r+y 2
2

-y
2

T+ 1y 2
2

T -1y
2

(@, y) =
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that the geometry of a normed space, which is not an inner-product space, differs
from the standard, i.e. Euclidean geometry. However, some of the properties of the
Euclidean geometry are preserved. Say, all balls B(z,r) ={y € X : |ly—z| <r}
where z € X,r > 0 in a normed space X are convex (though not necessarily strictly
convex). If X is a semi-normed space, which is not a normed space, this property
may not hold.

A complete inner-product space is called a Hilbert space. (Sometimes an addi-
tional requirement on X is imposed that X is infinite-dimensional.)

For a space X of any of the aforementioned types, the conjugate space X' is
the space of all continuous linear functionals [: X — C. For | € X’ the quantity

|I(z
W=l = s SO sy ) (1.1.5)
seX, fzllz0 1]l zex,|jzf=1
is a norm. Moreover, for all spaces X under consideration, X’ is a Banach space.
A sequence {z }; oy of elements T3 € X is said to converge to an element z € X
weakly if for all functionals [ € X’

lim I(zx) = U(z).
k—so0

Given a semi-inner product space X and an element y € X, one can define a
functional [ by setting for all x € X

Iz) = (z,y).
By the properties of a semi-inner product [ is a continuous linear functional on X
and
el x = llyllx -
Conversely, if X is a semi-Hilbert space, then for all functionals [ € X' there
exists an element y € X such that for all z € X

Uz) = (z,y)
(the Riesz representation theorem).
One can take y = %‘% z, where z is any element in X orthogonal to the set
{z € X: I(z) = 0}, the kernel of [, with ||z|| # 0. If X is a Hilbert space, then y is
defined uniquely.
Given a semi-normed space X and an element x € X, there exists [ € X’ such

that ||I]] = 1 and I(z) = ||z||. (This is a corollary of the Khan—Banach theorem
on the extension of linear functionals.)

Exercise 1.1.6. By applying this statement prove that if a sequence {z},cn Of
elements z € X converges weakly to an element z € X, then

llz|| < liminf ||zg]| .
k—ro0

Finally, we recall a typical example showing that, in general, equality in this
inequality does not hold. Assume that X is an inner-product space and {"’k}keN
is an orthonormal sequence of elements zx € X, i.e. (zg,z;) = 0 for k # [ and
||lzx|| = 1. Since for all y € X the Fourier coefficients (y, zx) — 0 as k — 00, by the
Riesz representation theorem it follows that zj converges weakly to 6 as k — oo.
So, |16]l =0 < kli)xgo llzx|| = 1. (This also implies that x5 does not converge to 6 in

X.)
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Exercise 1.1.7. Let X be a semi-inner-product space, a sequence {Tg}cy Of
elements z; € X converges weakly to an element z € X and klim lzell = =l
—00

then lim zp =z in X.
k—»oc0

Exposition of the theory of normed and more general spaces considered above,
in particular, the proofs of all statements in this section, can be found in standard
courses on functional analysis, for example, in [4], [6].

1.2 Spaces of continuous and differentiable func-
tions

Definition 1.2.1. Let* Q C R*®. We say that f € C(Q2), i.e. f is continuous on
Q, if for all z € Q the function f is continuous at z with respect to €2, i.e. for all
£ > 0 there exists § > 0 such that for all y € Q satisfying |x — y| < & the inequality

|f(z) — f(y)| < & holds.

Note that if z is an isolated point of Q, then any function f is continuous
at z. If z € Q is a limit point of 2, then the continuity of f at z means that

g f (y) = f().

—z,y€Q

Definition 1.2.2. Let Q C R*. We say that f € C(Q) if 1) f is bounded on £2,
and 2) f is uniformly continuous on (, i.e., for all € > 0 there exists § > 0 such
that for all z,y € Q satisfying |z — y| < & the inequality |f(x) — f(y)| < € holds.

For a function f defined on a set Q C R™ the modulus of continuity wy of f is
defined by: for all 4 > 0

wi(0) =wra(®) = sup |f(@) = f)l
e i<s
The function w; is non-negative and non-decreasing. If Q is bounded, then for all
0 > diam Q) wf(é) = wy(diam ).
A function f is uniformly continuous on  if and only if hm L Wy (6) =0.

If Q is a compact and f € C(2), then 1) f is bounded on Q 2) there exist
z1,T2 € Q such that f(z1) = irelsf'z f(x), f(z2) = sup f(z) and 3) f is uniformly
z z€Q

continuous on (2.

So, in general, C(Q) C C(), but C(Q) = C(Q) if Q is a compact.

If f is uniformly continuous on  and z € 9 is a limit point of {2, then there
exists (a finite) ", hm(E f(y), which equals to f(z) if z € Q. Therefore, a function

f uniformly continuous on {2 may be extended to the boundary in such a way that
the extended function is uniformly continuous on the closure  of .

Hence, if Q2 is bounded, then f € C(£) if and only if there exists F € C(£2) such
that for all z € Q F(z) = f(z). Since any function continuous on a compact may
be extended to a function continuous on R”, functions f € C(f2) are restrictions
to Q of functions in C(R"):

C(Q) =CR")|,- (1.2.1)

* Speaking about sets in R® we always assume, without reserve, that they are non-empty.
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For any non-empty set {2 C R™, the quantity
Ifllc) = sup |f(z)| (1.2.2)
€N

is a norm on C(R). If Q is a compact, one can write
1 llo = max|f ()

The space C(£2) with norm (1.2.2) is a Banach space.
Note that || f ”C‘(ﬂ) makes sense for all functions f defined on 2, and || f HC(Q) <
oo means that f is bounded on €.
For a sequence {fi}cy Of functions fi, and a function f defined on €, the
equality
Jim e = fllo@) =0

means that fr converge uniformly to f on Q as k — oo, i.e. for all € > 0 there
exists m € N such that for all k € N,k > m and for all z € Q the inequality
|fx(z) — f(x)| < € holds.

If © is an open set, one may consider a sequence {Qm} pen Of compacts Q, C Q

satisfying, for all m € N Q,, C Q+1, and U Qn = Q. Equipped with a
=1

countable family of norms |||, = || fllc(q,.)- the space C(€2) becomes a complete

countably normed space. A sequence {f},cy of functions f defined on Q converges
to a function f defined on Q in C(Q) if for allmeN klim \fe — fll,, =
—00

For all k¥ € N, let functions fi be defined on Q and let zo be a limit point of
Q. If for all k € N there exist (finite) limits limEQ fr(z) and for some § > 0 fx
T—rTo,T

converge uniformly on QN B(xzg,d), then

Jdim lim fi (o) = Lm lim fi(z).
e €

If all fi are continuous or uniformly continuous on € and fj converge uniformly
on 2 to a function f as k — oo, then f is continuous on 2, uniformly continuous
respectively.

If Q is an open set, for all k € N f, € C(Q) and fi converge uniformly to f on
every compact K C (2, then f € C(Q).

If for all k € N fi are Riemann integrable on [a, b], where —oo < a < b < 00, and
fx converge uniformly on [a, b] to a function f, then f is also Riemann integrable
and

b b
lim /fkd:nzf lim frpdz.
k—o0 k—oo

(Much more sophisticated theorems on passing to the limit under the integral sign
will be discussed in Section 1.3.4.)

If Q2 is an open set, j € {1,...,n}, for all k € N fi, gmk € C(Q), or fi, gm“
C(Q), fr converge on £, and —f—— converge uniformly on every compact K C 2, or
on {2 respectively, then for all )

lim (g‘f) (x) = (hm ) @)
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and hm frey =2 o hm fk e C(Q), hm i ai hm fk € C(Q) respectively.

Denote by Ng the set of all nonnegatzve mtegers, and, for n € N, by N} the set
of all o = (ay,...,a,) where ay,...,a, € Nyg. Elements of No" are often called
multi-indices. For a € No™ we write* |a| = a3+ -+ + an Finally, given a € Ny,
we put D® := D* ... D3 where Dy = 52-,... Dn = 32-. Thus
aal+"'+anf

Oz12t...0x,%

Definition 1.2.3. Let 2 C R be an open set and | € N. We say that f € C(Q)
or f € —C'_Z(Q) if for all o € Ny satisfying |a| < | the derivatives D*f exist on Q
and D*f € C(Q), D*f € C(Q) respectively.

Let © be an open set, ,m € Nym < I,f € CY(),8 := (b1,...,/51) where

By s Bm € {1,...,n}, and let v := (71, ..., Ym) be any vector obtained from 3 by
permutation of its components. Then for all x € Q2

(Dp, -+ Dp,, ) (@) = (Dy, - - - Dy, f)(2) = (D*f) (),

where o := (ay, ..., ) and a; are the numbers of the components of the vector 3
equal to j.

Without the assumption concerning the continuity of the derivatives, this equal-
ity may not hold, see Exercise 1.2.2.

The quantity’
Hf”cl(gz) = Z ”Dafnc(g) (1.2.3)
lal <l

Dof := (D°f=f).

is a norm on C'(Q2). The space C' () with this norm is a Banach space.
Definition 1.2.3 of C*(f2) given for open sets {2 € R™ can be extended to a wider
class of sets 2 in the following way.

Definition 1.2.4. Let Q C R™ be such that 002 = 052, where § is the set of inner

points of Q, and | € N. We say that f € CY(Q) if f € CY(RQ), and for allz € Q\ Q

and for all o« € N satisfying |a| < I there exists a (finite) limit limEQ (Df) (y).-
y—z,yeQ

Forz € Q\Q, (D*f) (x) is defined to be equal to this limit.

Ifn=1 —o00o < a < b < oo, then the space C*([a,b]) can be defined in an
equivalent way as the set of functions f defined on [a,b] for which for all £ €
{1,...,1} and for all z € [a,b] the derivative f*) exists and f' € C ([a,b]). It is
assumed that F®)(a) is the right derivative and f*)(b) is the left derivative.

For a function f defined on 2 C R", the set

supp f := {z € Q: f(z) # 0}

is called the support of f.

1

*For z € R we write |z| = (£ + -+~ + 22) ? (the Euclidean distance).

t Due to the above property, the information about all derivatives of order less than or equal
to [ is taken into account. One can verify that

all
Z ): ZlDﬂl Do oy = 2 EITL'L&“_,HDaf”c(Q)

m=0 ;=1 el
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Definition 1.2.5. Let Q C R™ be an open set. We say that f € Co(Q) if f € C(Q),
supp f is compact and supp f C Q. Moreover, forl € N, C}(Q) :=C! (Q)NCo(Q).

Each function f € Cy(f2) vanish in a certain ‘strip’ along the boundary 92,
depending on f, namely, on Q \ supp f.

Definition 1.2.6. For open sets Q C R™
o0
C®(Q):=[C'Q), CLEQ):=C>Q) [ Co(9).
=0
Note that, for n > 1, a function f may have all derivatives of any order on R”,

but not belong to C°(R"). (See Exercise 1.5.4.)
The following function is an important example of a function* in C§°(R™):

P ifze B
hiz):=<{ © ! L 1.24
() { 0 ifzecB,. (12.4)

Exercise 1.2.1. Prove that for all o € Ng there exist a polynomial P, such that
for all z € B
(D*h) (2) = —Le®) =
(1 —|z[7)2
Hence deduce that h € C§°(R™).
For all & C R™ and for all § > 0 there exists a function € O (R™) such that
0<n(z) < 1if z € R", n(z)=0if z ¢ Q7
where Q° is the é-neighbourhood of Q:
Q° = | B(z,9).
€

Functions of such type are called ‘hat-like functions’ and they play an important
role in some constructions.
For all © C R™ the set C*°(R™) (N C(Q) is dense in C(12), i.e. for all f € C(Q)
and for all £ > 0 there exists ¢ € C*°(R") () such that ||f — ollo@y <e
This statement and formula (1.2.1) explain why the space C(S2) are normally
used rather than the Banach space C(f2) of all functions bounded and continuous
on 2 with the same norm.

Exercise 1.2.2. Prove that if a bounded set Q2 is not compact, then Co(Q) # C(Q)
and the set C*°(Q2) N Cy(€2) is not dense in Cy(Q2).

1.3 Basic facts in the theory of the Lebesgue in-
tegral

In this section we recall the definitions of the Lebesgue measure and the definition
of the Lebesgue integral based on the scheme ‘measure—integral’, and we state,
without proofs, the main theorems in the theory of the Lebesgue integral discussing
in more detail those of them which will be used in the sequel.

*Here and in the sequel, for z € R™ and r > 0, B{(z,r) denotes an open ball in R® of
radius r centered at z, i.e. B(z,r) = {y €R™: [z—y|<r}, and B, = B(0,r). °Q denotes the
complement of ().
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1.3.1 Lebesgue measure

The theory of the Lebesgue integration in R™, constructed by using the scheme
‘measure — integral’, is based on the notion of the Lebesgue measure of a set 2 C R"
which generalizes the notions of the length of an interval, area of a rectangle, the
volume of a cuboid* etc. The proofs of the statements below may be found in [?7].

Definition 1.3.1. The measure of a cuboid!
Q:={reR":a;<zj<bjje{l,...,n}},
where —00 < aj < bj < 00, and also the measure of its closure, is
n
meas @ := meas @ := H (b; — aj) . (1.3.1)
j=1

Each open set 2 € R” may be represented (in many ways) as
8 —
k=1

where s € N or s = 0o and Qy, are disjoint cuboids.
Definition 1.3.2. The measure of a bounded open set ) C R™ is
8
meas () := Z meas Q-
k=1
It is also assumed that meas() = 0.

One can prove that for different representations (1.3.2), the sum of the measures
of Qg is the same.

Definition 1.3.3. The measure of a compact 0 C R™ is
meas () := meas Q — meas (Q \ ),

where Q is an arbitrary cuboid containing Q.

The definition does not depend on the choice of Q.
Next we pass to the case of an arbitrary bounded set 2 C R™.

Definition 1.3.4. The outer measure of a bounded set 2 C R"™ 1is

meas* Q := inf measG
GO0

where the infimum is taken with respect to all bounded open sets G D §1.

* Here and in the sequel by cuboid we always mean a bounded open cuboid, whose faces are
parallel to the coordinate planes.

t Here and in the sequel by cuboid we always mean a bounded open cuboid, whose faces are
parallel to the coordinate planes.
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Definition 1.3.5. The inner measure of a bounded set Q C R™ s

meas, () := sup meas F
FCQ

where the supremum is taken with respect to all compacts F C 2.

Definition 1.3.6. A bounded set  C R™ is said to be Lebesgue measurable if
meas, () = meas* (2, and its measure is

meas ) := meas, ) = meas* Q.

Definition 1.3.7. An unbounded set @ C R™ is said to be Lebesgue measurable if
for all k € N the set 1N By, is measurable, and its measure is

meas ) := lim QN Bg.
k—r00

(It may happen that meas) = 00.)

Any open set © C R may be represented uniquely as a union of a finite or
countable family of disjoint intervals:

Q = U (a,k, bk)
k=1

where s € N or s = oo. The intervals (ax,bx) are called constituent intervals.
Moreover,

8
meas ) = Z (b — ax) -
k=1

Note that a set Q C R” is of zero Lebesgue measure if and only if for all e > 0
there exists a finite or countable family of cuboids or balls covering £ such that
the sum of measures of those cuboids, balls respectively, is less than e.

Each finite or countable set has zero Lebesgue measure. However not every set
of zero Lebesgue measure is finite or countable as the following example shows.

Example 1.3.1. (Cantor’s set) From the closed interval [0,1], let an open in-
terval (1, 2) of length 1 be cut out. Next from each of the two remaining closed
intervals, let open intervals centered at their midpoints of length §1§ be cut out, and
so on. The set obtained by cutting out all such open intervals which is a perfect set,
i.e. a closed set without isolated points, and nowhere dense* in [0,1], is Cantor’s
set D, which has zero Lebesgue measure and is uncountable. It consists of those,
and only those, points in [0, 1], for which the corresponding real numbers may be

written as infinite fractions to base 3, whose entries are not equal to 1.

The union of a finite or countable family of sets of zero Lebesgue measure is
also a set of zero Lebesgue measure.

A set © C R™ is called a Borel set if it can be constructed by finite or countable
number of operations of union and intersection from open and closed sets. Each
Borel set is Lebesgue measurable. However, there exist measurable sets which are
not Borel sets.

There exist non-measurable sets. Moreover, each measurable set of positive
measure contains a non-measurable subset.

* A set B C [0,1] is dense in [0,1] if B D [0,1]. A set B C [0, 1] is nowhere dense in [0,1] if it
is not dense in any closed interval [a, 8] C [0,1].
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Remark 1.3.1. This fact is based on the of choice aziom, which is assumed in
this book. However, if the axiom of choice is replaced by the so-called determi-
nation aziom (Definition 3.2.2), then all sets in R™ are Lebesgue measurable. See
Appendix 3.2.2 for details.

Given a measurable set 2 C R", any set congruent to €2 has the same measure.
In particular, meas (2 + h) = meas ), where h € R™, and Q+h={z+h: z € Q}
is the translation of the set .
If Q7 and Q, are measurable sets in R” and 2 C 4, then measQy < meas;.
If, further, measQ; < co, then meas (2 \ ©22) = measQ; — meas Q.
o0
If for all £ € N sets O C R” are measurable, then the set |J € is also

k=1
measurable, and

o0 o0
meas U O < Zmeast.
k= k=1
If, further, Qy are disjoint, then
O oo
meas U Q= Zmea,s O, (1.3.3)
k=1 k=1

(countable additivity of the Lebesgue measure).
For all £ € N let the sets O be measurable. If for all & € N Q C Qgyq, then

o ¢
= i . 1.3.4
meas kg Q kl_l_}rgo meas ( )

Ifforallk e N QD Q41 and meas; < 00, then

o0

meas ﬂ Q = lim meas Q. (1.3.5)

k—o0
k=1

Let Q2 C R™. A property is said to be satisfied for almost all z € Q (= almost
everywhere on Q) if the subset of all 2 € €, for which it is not satisfied, has zero
measure.

Let n > 2, Q C R™ be a measurable set, m € N, m < n, and let Q' denote the
projection of 2 onto the m-dimensional coordinate plane {z e R": 2,y = -+ =
z, = 0}.

Then for almost all (21, ... ,,,) € Q' in the sense of the m-dimensional Lebesgue
measure, the intersection N R &> Where RE— T m =WER My =1x4,...,
Ym = T}, is measurable in the sense of the (n—m)-dimensional Lebesgue measure.
The converse does not hold.

Itm € N,m < n, aset Q; C R™ is measurable in the sense of the m-dimensional
measure, and the set Qy C R,_,, is measurable in the sense of the (n — m)-
dimensional measure, then the set {; x {23 C R™ is measurable in the sense of the
n-dimensional measure, and

meas,, (21 x Q) = meas,, Q; - meas,, . Q,.



1.3. LEBESGUE INTEGRAL: BASIC FACTS 17

1.3.2 Measurable functions

We start with the following basic definition.

Definition 1.3.8. 1. Let @ C R™ be a measurable set and f: Q — R. The function
f is measurable on Q if for all a € R the set =1 ((a,00)) = {z € Q: f(z) > a} is
measurable.

9. Let Q C R" be a measurable set and f: @ — C. The function f is measurable
on ) if the functions Rf and Sf are measurable on €.

Next we recall several other definitions equivalent to Definition 1.3.8.
Two functions f,g: £ — C are said to be equivalent on 2, shorthand: f~ug,if
f(z) = g(z) for almost all z € Q.

Definition 1.3.9. Let Q C R” be a measurable set and f: Q — C. The function
f is measurable on € if there exists a sequence of functions, continuous on Q,
converging to f almost everywhere on Q.

Definition 1.3.10. Let Q@ C R™ be a measurable set and f: Q@ — C. The func-
tion f is measurable on Q if for all € > 0 there ezists g € C(R™) such that

meas {f(z) # g(x)} <e.

The equivalence of Definitions 1.3.8 and 1.3.9 is the Fréchet theorem, of Defi-
nitions 1.3.8 and 1.3.10 the Luzin* theorem respectively.

A function f: Q — C is called a function simple, if its range f(Q2) is a finite or
countable set.

Definition 1.3.11. 1. Let Q C R" be a measurable set and let f: Q@ — C be
a simple function. The function f is measurable if for all a € f(2) the set
{z € Q: f(z) = a} is measurable.

9. Let Q C R™ be a measurable set and let f: Q@ — C. The function f is
measurable on Q if there exists a sequence of measurable simple functions uniformly
convergent to f on Q.

Exercise 1.3.1. Let Q@ ¢ R® and f: @ — C. Prove that the sequence of simple
functions

fulo) = LRI +i BT @)), ze D, kEN
converges uniformly to f on 2.

A function f: Q — C is called a step-function if its range f(R™) is a finite set
and for all a € f(R™), a # 0, the set {z € R*: f(z) = a} is a cuboid whose faces
are parallel to the coordinate planes.

Definition 1.3.12. Let 2 C R” be a measurable set and f: Q — C. The function
f is measurable on § if there exists a sequence of step-functions (defined in R™ )
convergent to f almost everywhere on Q.

Definition 1.3.13. 1. Let Q C R™ be a measurable set and f: Q — R. The
function f is measurable on € if there exists functions f1 and f such that f=
f1 — f2 and non-decreasing sequences of step-functions (defined in R™ ) convergent
to f1, fa respectively, almost everywhere on €.

9. Let Q C R™ be a measurable set and f: Q@ — C. The function f is measurable
on Q if the functions Rf and Sf are measurable on 2.

* Also commonly transliterated as ‘Lusin’.
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Note that for @ = R" Definitions 1.3.12 and 1.3.13 only require that the
Lebesgue measure be defined for cuboids and sets of zero measure. Also note
that, given a measurable set ¢ R", a function f: Q — C is measurable on  if
and only if its extension to R™ by zero

_J flx) ifzeQ,
fO(‘”)“{ 0 ifzecn

is measurable on R”.
Let Q CR™ and let f: Q — C be a non-negative function. The set

Ty = {(2,Tn41) €R™': 0 < 2041 < f(2)} (1.3.6)

is called the subgraph of f.
Given a function f: Q — R, define the positive part [+ of f and the negative

part f_ of f by
f+(@) = max{f(2),0}, f_(2):=max{-f(2),0}, zeQ.

Then
=1, Ifl=Ff+f.

Definition 1.3.14. 1. Let Q ¢ R™ be g measurable set and f: Q — R. The
function f is measurable on Q in the sense of the n-dimensional measure if the
sets Ty, and Ty_ are measurable in the sense of the (n + 1)-dimensional measure.

2. Let ) C R™ be a measurable set and [+ Q — C. The function f is measurable
on Q if the functions Rf and ¥ f are measurable on €.

The characteristic function x(€2) of a set Q R™, defined by x(Q)(z) = 1 for
z € Qand x()(z) =0forz e €€}, is measurable on R” if and only if the set
) is measurable. Hence there exist non-measurable functions. For example, the
characteristic function of a non-measurable set 2 C R™ is non-measurable on R”™.

Remark 1.3.2. The existence of non-measurable functions is based on the exis-
tence of non-measurable sets, hence on the axiom of choice. See Remark 1.3.1.
If the axiom of choice is replaced by the determination axiom, then all functions
defined on any sets in R™ are measurable. See Appendix 3.2.2 for details.

If Q2 CR™ f: Q— R is measurable on O and A C R is a Borel set, then the
set f~1(A) is measurable. In particular, for all a,b € R the sets {z € Q: flz) >
a}, {z € Q: f(z) = a}, {z € Q: f(z) < a} and {z € Q:a < f(z) < b} are
all measurable. (In the last two cases each of the signs < can be replaced by
<.) However, given a measurable set A ¢ QQ, the set f~'(A) is not necessarily
measurable.

Exercise 1.3.2. For any measurable set () C R™ with measQ > 0 construct
a function f: © — R such that for all ¢ € R the sets {z € Q: f(z) = a} are
measurable, but f is not measurable on .

Assume that  C R™ is a measurable set. Then the following statements hold.

If a function f: Q — C is measurable, then the function |f | is also measurable
on 2. (Converse does not hold, say for the function f which is equal to 1 on a
non-measurable subset of  with measQ > 0 and equal to —1 on Q\ ©;.)
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If f: Q — C is measurable and g ~ f on £, then g is also measurable on Q.

A function on f: Q — C continuous for almost all z € Q with respect to 2, or
a function equivalent to f on £, is measurable on 2.

If f,g: Q — C are measurable, then the functions f+g, fg and (under assump-
tion that for all* z € Q g(z) # 0) g are measurable on €.

If for all ¥ € N functions fi: Q& — C are measurable on ©Q, f: Q — C and
flz)= kiixg fr(z) for almost all z € €, then f is also measurable on 2.

Thus, the arithmetic operations and the operation of passing to the limit are
closed in the space of functions measurable on 2.

Exercise 1.3.3. Let Q C R” be a measurable set, functions fi: Q@ = R, k € N be
measurable on Q and f: Q — R. If, for almost all z € Q, f(x) = sup fx(z), then
kEN

f is also measurable on . (A similar statement holds if sup is replaced by inf,
limsup or liminf.)

Let © C R™ be a measurable set and f:  — R™ be measurable. If a function
@: f(Q) — C is continuous on f(£2), then the composition ¢(f) is also measurable
on f(Q). If a function ¢: f(Q) — C is measurable on f(£2), then the composition
¢(f) may not be measurable on f(Q2) even if f is continuous on 2.

In particular, if f: Q — C is measurable on Q and 0 < p < oo, then |FI? is also
measurable on 2.

Exercise 1.3.4. By applying Definition 1.3.8 give a direct proof of this statement.
Furthermore, assuming that f: Q — R, prove that the function sgn f is measurable
on 2.

Let n > 2, Q C R™ be a measurable set, m € N, m < n, and let Q' denote the
projection of Q onto the m-dimensional coordinate plane {reR*: zpp1 ==
&, = 0}. Furthermore, let a function f: @ — C be measurable. Then for almost
all (z1,...,Zm) € Q' in the sense of the m-dimensional measure, the restriction of
f to the set QN RE~™ is measurable in the sense of the (n — m)-dimensional
measure. The converse does not hold.

If Q C R™ is a measurable set, measQ < oo, functions f: @ — C and fi : 2 —
C, k € N, are measurable on 2 and klirgo fr(z) = f(z) almost everywhere on €2,

then for all ¢ > 0 there exists a closed set F' C € such that meas(Q2\ F)) < € and
f1 converge uniformly to f on F (the Egorov theorem).

Proofs of the equivalence of the definitions formulated above and other state-
ments in this section can be found in [?7].

Exercise 1.3.5. Let () be a measurable set in R”, a function ¢: @ — R™ be
continuous on (2, and a function f: ¢(Q) — C be measurable on (£2). Assume
that for all sets w C (Q) satisfying meas,, w = 0 one has meas, e Hw) = 0.
(In other words, the inverse map ¢~' possesses the N -property.) By applying
Definition 1.3.9 prove that the function f(p): @ — C is measurable on (2.

Exercise 1.3.6. Let a function f: R® — C be measurable on R". Define the
function F: R?2® — C by setting F(z,y) := f(z —y) for all 2,y € R™. By applying
Exercise 1.3.5 prove that the function F' is measurable on R2",

* One may admit that g(z) # 0 for almost all z € Q and define ﬁ(m) in an arbitrary way for
those z € Q for which g(z) = 0.



20 CHAPTER 1. PRELIMINARIES

Exercise 1.3.7. Let a function f: (0,00) — C be measurable on R"”. Define
the function F: (0,00) x (0,00) — C by setting F(z,y) := f(zy) for all z,y €
(0,00). By applying Exercise 1.3.5 prove that the function F' is measurable on
(0,00) x (0,00).

1.3.3 Definition of the Lebesgue integral

Definition 1.3.15. Let Q C R be a measurable set and let a function f: Q — R
be non-negative and measurable on Q. The Lebesgue integral of f over () is the
measure of its subgraph (1.3.6):

/fda: = /f(as) dz := meas,+1T%.
Q Q

(It is not ruled out that [ fdx = c0.)
Q

If n =1, Q = [a, b], then the subgraph of f is a ‘curvilinear trapezium’, and the
Lebesgue integral is the ‘area of the curvilinear trapezium’.

Definition 1.3.16. Let Q C R be a measurable set and let a function f : Q — R
be measurable on Q. If at least one of the integrals [ fidx or [ f-dz is finite,
Q Q

then the Lebesgue integral over €2 is

/fda:::/f+dx—/f~d$.
Q Q Q

(It is assumed that, for a € R, +00 —a = 400 and a — (+o0) = —o0.) If both
integrals are finite, it is said that f is Lebesgue integrable on (2 (or summable on
Q).

Definition 1.3.17. Let Q C R™ be a measurable set and let a function f:Q — C
be measurable on Q. The function f is said to be Lebesgue integrable on € if both
Rf and Sf are Lebesgue integrable on Q. If f is integrable on €2, then

g[fd:c ::Q/%fdx—i-z'([%fdm.

b a
Ifn=1 —oco<a<b< oo then [fdz:= [ fdz. Conventionally [ fdz =
a [a,b] a

b a
0, and, for —co < b< a< oo, [ fdz:=— [ fdz.
b

Next we formulate two other definitions equivalent to Definition 1.3.15.
Assume that  C R" is a bounded measurable set, and a function f: Q — R is
measurable and bounded on Q, say, for all z € Q A < f(z) < B, where A, B € R,

A< B. Forall m e Nlet 5™, 5™, ..., 4% € R and

(m

Yo V=A< ygm) < yém) <---<ym.=B. (1.3.7)
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Moreover, for all k € {0,...,m — 1}, let

om .= {a: eQ:y™ < fz) < y,(::)l

(Q,(,;m) are bounded measurable sets — see Section 1.3.2.) The lower and upper
Lebesgue sums s and S are defined as

m—1 m—1
si= ) y™ meas O™,  §:= y™) meas Q™ .
k=0 k=0

(Note that AmeasQ < s< S < Bmeas{2.)

Definition 1.3.18. Let Q C R® be a measurable set and let a function f: Q) — R
be non-negative and measurable on (1.
1. IfQ and f are bounded, the Lebesgue integral of f over Q is

/fd:n = sup S, (1.3.8)
Q y((‘JM)>y§m))---yy$nm)
where the supremum is taken over all m € N and over all y(()m),ygm),...,ygn )

satisfying (1.3.7).
2. If Q is bounded and f is unbounded, then

[ 1ao= i [ £z,
Q Q

where for all k € N and for all z € Q [flk(z) := f(z) if f(z) <k and [fle(z) ==k
if f(z) > k.
3. If Q is unbounded, then

/fd:c = kl}_)l“go / fdz. (1.3.9)
Q

QNBy

One can prove that definition (1.3.8) is independent of the choice of A and B,
satisfying for all z € Q A < f(z) < B, and
sup s= inf S.
gt ™
Let f : @ — R be a simple function: f(2) = {yx},—, where s € Nor s = oo,
and let Qp :={x € Q: f(z) =y} forall k€ {1,...,s}.

Definition 1.3.19. Let Q C R™ be a measurable set and let a function f : Q@ — R
be non-negative and measurable on ).

1. If Q is bounded and f : @ — R is a simple function, then the Lebesgue
integral of f over €2 is

8
/fdzc = Zykmeasﬂk.
Q k=1
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2. If Q is bounded and f is not a simple function, then the Lebesgue integral
of f over §} is

/fdm = lim [fkdx, (1.3.10)
k—»o0
Q Q

where for all k € N the non-negative measurable simple functions fi are defined
for all z € Q2 by
[kf(z)]

fk(.’L‘) = ——-T .

3. If Q is unbounded, then the Lebesgue integral of f over Q is defined by
(1.3.9).

One can prove that in (1.3.10) the limit, finite or infinite, always exists and
has the same value if the sequence {fx},cn is replaced by any other sequence of
non-negative measurable simple functions converging uniformly to f on Q.

Remark 1.3.3. The equivalence of Definitions 1.3.15, 1.3.18 and 1.3.19 is proved
in [??]. Some of the formulated definitions make also sense for a wider class of
functions. For example, part 1 of Definition 1.3.18 is applicable to all functions
f : © = R measurable and bounded on a measurable bounded set . Part 1 of
Definition 1.3.19 is applicable to all simple functions f :  — C for which the series

o0

Y yx, meas Q, converges. Part 2 of Definition 1.3.19 is applicable to all measurable
k=1

functions f : Q@ — C if the functions fi are defined for all x € Q by

) o= BRIG) B3]

and both limits lim [Rfxdz and lim [ Sfi dz are finite.

Note that each bounded measurable function defined on a bounded measur-
able set Q C R™ is Lebesgue integrable on €. For non-measurable functions the
Lebesgue integral is not defined.

Remark 1.3.4. By Remarks 1.3.1 and 1.3.2 each bounded function defined on any
bounded set  C R™ is Lebesgue integrable on € if the axiom of choice is replaced
by the determination axiom. See Appendix 3.2.2 for details.

Note also that Definition 1.3.15 clearly implies that for all measurable sets
QcCcR?

/ dz = meas{}. (1.3.11)
Q

Remark 1.3.5. If n = 1,—00 < a < b < oo and f : [a,b] = C is Riemann
integrable on [a, b], then f is also Lebesgue integrable on [a,b] and both integrals
have the same value.

Recall that f: [a,b] — C is Riemann integrable on |a, b] if and only if it is
bounded on [a, b] and the set of all points of discontinuity has zero Lebesgue mea-
sure. (For a proof see, for example, (Nikol’ski1,197?).) Hence the set of all functions
Lebesgue integrable on [a, b] is much wider than the set of all functions Riemann
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integrable on [a, b]. A typical example of a bounded function, which is not Riemann
integrable but is Lebesgue integrable, is the Dirichlet function, that is equal to 1
in all rational points of [a, b] and to 0 in all irrational points of [a,b]. (Its Lebesgue
integral is equal to 0 because it is equivalent to 0 on [a, b].)

Remark 1.3.6. In a number of cases there arises a necessity in introducing an
improper Lebesgue integral. If, say, n = 1, a € R, then for functions f:(a,00) —
C, Lebesgue integrable on (a,A) for all A > a, the improper Lebesgue integral is
defined, similarly to the improper Riemann integral, by

oo A
/fdx:: lim /fdx.
A—c0

a a

If f is Lebesgue integrable on (a,00), then this integral coincides with the ‘ordi-
nary’ Lebesgue integral. However, there exist functions, which are not Lebesgue
integrable on (a, o), but their improper Lebesgue integrals exist and are finite. For
example, the function os%% is not Lebesgue integrable on (0,00), but is Lebesgue
integrable in improper sense. (The value of the improper integral over (0, c0) is
equal to Z).

In some other cases, it becomes necessary to introduce Lebesgue integration in
the sense of the principal value. For example, if a function f: R — R, for all ¢ > 0,
Lebesgue integrable on (—oo,¢) U (e, 00), then the Lebesgue integral in the sense of
the principal value is defined as

o —& [ee)
V.p./fdm:: _1_i>%1+ (/+/ fdz.
£
bt o] oo 1>

The function f(z) = 531? for zx # 0, f(0) = 0 is not Lebesgue integrable on
(—00,00), is not Lebesgue integrable in improper sense on (—00,0) and (0, 00),
o0
but v.p. [ fdz =0.
-0
Remark 1.3.7. It is also possible to define the Lebesgue integral of a func-
tion f non-negative and measurable on a measurable set Q@ C R” as the im-
proper Riemann integral of its non-increasing rearrangement f*, which is a non-

negative non-increasing function on (0, 00) equimeasurable with f, i.e. meas; {t €
(0,00): f*(t) > a} = meas, {z € Q: f(z) > a} for all a € R, by setting

(L) / fde = (R) ]o frdti= lim (R) /A Frdt.
Q 0 a

a—>0+

Remark 1.3.8. We have outlined the scheme for constructing the Lebesgue mea-
sure and integral ‘measure—integral’. In this scheme, first, the measure is defined,
and then, the integral is defined essentially as a measure of some set, or in some
other equivalent way. There exists another equivalent scheme for constructing the
Lebesgue measure and integral, ‘integral—measure’. We give its short description.
(For detailed exposition, see [?7].) First, the measure of a cuboid is defined. Then
the sets of zero measure are defined as the sets, for which for all € > 0 there exists
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a finite or countable family of cuboids covering them, the sum of whose measures
is less than e. For real-valued step-functions in R", which have constant values ag
on a finite family of cuboids A, k € {1,..., m}, and are equal to zero elsewhere,
the integral is defined by setting

m
/fdm = Zakmea,sAk .
Rn k=1

Next, the integral over R™ is defined for real-valued functions f, for which there
exist non-decreasing sequences {f}en Of step-functions convergent to f almost

everywhere, by setting
/fdx = lim /fk dzx.
k—o00
Rn Rn

Finally, if a function f: @ — R is measurable on R", hence * there exist functions
f1 and fo such that f = f; — fo and non-decreasing sequences of real valued step-
functions defined in R™ convergent to f, f2 respectively, almost everywhere on 2,

then by definition
/fd:v :=/f1dx—-/f2da:
R™ R® R~

if at least one of the integrals in the right-hand side is finite. If f: Q& — C, then
Definition 1.3.17 should be applied.

A set © C R™ is said to be measurable if its characteristic function x({2) is
measurable on R”. A function f: Q — C defined on a measurable set (2 is said to
be measurable on € if its extension by zero fo is measurable on R™ and

Q]fd:c:-—-R[fgdx.

For a measurable set , the measure is defined by

measQ:———/dx :=/X(Q)dm.
Q R"

(Compare with formula (1.3.11).)

Remark 1.3.9. In many cases the Lebesgue integration with respect to a general
measure is widely used. Let S be a o-ring of sets, i.e. a family of sets satisfying
the following conditions: 1) @ € S, 2) if Q1,0 € S, then Q1 \ 22 € S, and 3) if

o0
Qr €S keN, then |J Q € S. A measure is a non-negative function of sets u

k=1
such that p(9) = 0 and the property of countable additivity is satisfied, i.e. for all
sequences {2 }ren of disjoint sets Qx € S

”(Qz Qk) = ;u(ﬂk) :

* In this scheme Definition 1.3.13 is the main definition of measurability.
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The sets in S are called y-measurable sets. For a function f: Q — C defined on a
p-measurable set, the Lebesgue integral with respect to the measure p, [ fu(dz), is
Q

defined as in Definitions 1.3.18, 1.3.16 and 1.3.17 replacing in the lower and upper

Lebesgue sums meas chm) by u(Qgcm)).

Let n = 1 and let g be a non-decreasing function defined on R. The Lebesgue—
Stiltjes measure is the completion of the measure defined on semi-closed intervals
by u([a,b)) := g(b) — g(a). (Completion in the sense of the measure theory.) The
integral with respect to this measure is called the Lebesgue—Stiltjes integral and

is denoted by [ fdg(z) where @ C R. If g is non-increasing, then [ fdg(z) =
Q Q
- Jz‘ fd(—g(=)).

o0
Example 1.3.2. Let g(z) := Y 6(z — k),z € R, where 6(z) = 0 for z < 0 and
k=1

6(z) =1 for x > 0. Then for any function f continuous on R

[ tas@ =3 1.
k=1

0

Example 1.3.3. Let m € Nyag = 0,0 < a1 < a2 < -+ < am, AL > A > ... 2

m
g($) - ZAkX[ak__l,a.k) .
k=1

Then for any function f continuous on (0, c0)

/ Fdg@) =3 flax) (glax +0) — glax — 0) = Y f(ar) (Axs1 — 4r).
0 k=1 k=1

(1.3.12)
For our purposes it suffices to consider the case in which S is the set of all

Lebesgue measurable sets in R” and p(Q) = [ ¢dz, where g is a function non-
Q

negative and measurable on R™. In this case

Q/ fu(dz) = Q/ fodz.

1.3.4 Properties of the Lebesgue integral

Everywhere in this section, unless specifically stated, functions under consideration,
are complex-valued functions defined on measurable sets in R". Speaking about
integrable functions, we always mean functions Lebesgue integrable. Proofs of the
theorems below can be found in [?7].

Theorem 1.3.1. If functions f1 and fo are integrable on a measurable set €,
c1, ¢y € C, then the function cif1 + caf2 is also integrable on ) and

/(clfl—f—czfg) dz:clffldm—}—cz/fzdx.
Q Q Q
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Theorem 1.3.2. If a function f is integrable on a measurable set Q and a function
g is equivalent to f on Q, then g is also integrable on € and

g[fda::/gdx.

Q

Corollary 1.3.1. IfmeasQ = 0, then, for any function f defined on Q, [ fdz=0.
Q

Corollary 1.3.2. If a function is integrable on a measurable set Q; and a set

Qy C Q4 is such that meas (2 \ Q) =0, then [ fdz= [ fdz.
Q0 o

Theorem 1.3.3. If a function f is integrable on a measurable set 2y, then it is
integrable on any of its measurable subsets Q. If, further, it is real-valued and

non-negative, then
/ fdz < / fdx.
Q2 o

Theorem 1.3.4. 1. If real-valued functions f and g are integrable on a measurable
set Q, and f < g almost everywhere on Q, then*

/fdmé[gdx. (1.3.13)

Q Q

2. If, further, f < g on a measurable subset of Q of positive measure, then

/fdx</gd$. (1.3.14)

Q Q

3. Inequality (1.3.13) also holds if functions f and g are non-negative and
measurable on a measurable set Q, and f < g almost everywhere on Q. (In this

case the integrals may be infinite.) If [gdz < oo, then also [fdx < co. If
Q Q

[ fdz = oo, then also [ gdz = oo.
Q Q

Corollary 1.3.3. If a non-negative function f is measurable on a measurable set
Q of positive measure, then [ fdz =0 if and only if the function f ~ 0 on Q.
Q

Corollary 1.3.4. (Mean value theorem) If a non-negative function g if inte-
grable on a measurable set 2, a real-valued function f is measurable on Q, and, for
some a,b € R, a < f(x) < b for almost all x € ), then

a/gdxg/fdng/gdm.
Q

Q Q

* Sometimes verifying the measurability of the entries of the inequality f < g may be quite
tedious (see, for example, Sections 7? and ?7), and many authors do not do this assuming that,
roughly speaking, all functions under consideration are measurable. In this book we try to be
persistent in verifying the measurability everywhere where required. (See also Remark 1.3.2.)
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Theorem 1.3.5. A function f measurable on a measurable set §) is integrable on
Q if and only if the function |f| is integrable on Q. If f is integrable on ), then

’!fdxéﬂflfldm~

Corollary 1.3.5. If a function f is measurable on a measurable set Q, a function
g is non-negative and integrable on Q, and |f| < g almost everywhere on 2, then
f 1is also integrable on Q.

Without the assumption on measurability of f, the statement of Theorem 1.3.5
is not true. The integrability of f implies the integrability of |f|. However, the
converse does not hold, as shown by the appropriate example in Section 1.3.2.

Theorem 1.3.6. Let {Q},y be a finite or countable family of disjoint measurable
sets (se N ors= = 00 ). If a function f is integrable on each of the sets Q. and, in

the case s = oo, Z [ |f] dz < oo, then f is integrable on U Q and
k=1gY,

(countable additivity of the Lebesgue integral ).

Let M be a set of indices. By the multiplicity of covering of a family of sets
{Qu}uem we mean the expression

= ({Qﬂ}ueM) = :él]gpn N(z),

where N (z) is the number sets 2, containing z. (If z € ¢( J ), then N(z) :=
pEM
0.)

Theorem 1.3.7. Let {Q};_, be a finite or countable family of measurable sets
(s € N or s = 00) and, in the case s = 00, % = 3 ({Q},—,) < 0. Then for any

function f non-negative and measurable on |J Q,
k=1

Theorem 1.3.8. (Absolute continuity of the Lebesgue integral) Let a func-
tion f be integrable on a measurable set Q2. Then for all € > 0 there exists § > 0
such that for all measurable sets w C Q satisfying measw < § the inequality

'/fd:c

<eg

holds.
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This statement can be briefly written as lim [ fdz =
meas w—0+

Corollary 1.3.6. If a function f is integrable on a measurable set Q2 and sets
Qr C Q, k €N, are such that for allr > 0

lim meas((Q\ Q)N B,) =0
k—o0

(in particular, if for allk € N Qi C Qg41 and |J Qi =), then
k=1

lim/fdm:/fd:c.
k—o0
Qp

Q

Theorem 1.3.9. (The Fatou theorem) Let for all k € N functions fr be non-
negative and measurable on a measurable set Q). Assume that for almost all x € Q
there exists a finite or infinite limit klim fr(z). Then

hade ]

hm frdz < hmmf/fdx (1.3.15)
Q

(If klim fe(x) = oo on a subset of Q of positive measure, it is assumed that
—+00

J lim frdz=00.)

Q k—o00

In general, the inequality sign cannot be replaced by the equality sign, as shown
by Example 1.3.4 below.

For an arbitrary sequence { fx }xen of functions fi non-negative and measurable
on a measurable set () the Fatou theorem can be formulated in the following way:

/lim inf fr dz < liminf/fk dz. (1.3.16)
k—o0 k—»o0
Q

Q

Exercise 1.3.8. It is clear that inequality (1.3.15) implies that

/lim frdx < sup/fkdx (1.3.17)
k—o0

Q

Prove that, if in the statement of Theorem 1.3.9 inequality (1.3.15) is replaced by
this inequality, then the amended theorem implies inequality (1.3.15).

Theorem 1.3.10. For all k € N, let functions fi be non-negative and measurable

on a measurable set Q. Assume that for almost all © € Q there exists a finite or

infinite limit klim fr(z) =: F(z), and fr(z) < F(z) for all k € N and for almost
-3 00

all z € Q. Then
lim /fkdazzf lim frdz. (1.3.18)
k—00 k—o00
Q

Q
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It is not ruled out that both parts of this equality are infinite.
Exercise 1.3.9. Prove Theorem 1.3.10 by applying Theorem 1.3.9.

Corollary 1.3.7. (Monotone Convergence Theorem*) For all k € N, let
functions fr, be non-negative and measurable on a measurable set Q). Assume that
for all k € N and for almost all z € Q fix(x) < feq1(z). Then equality (1.3.18)
holds.

Corollary 1.3.8. For all k € N, let functions fi be non-negative and measurable
on a measurable set Q2. Then

[ () o= ([ )

Corollary 1.3.9. For all k € N, let functions f be measurable on a measurable

set Q2. If
Z/|fk[dm<oo.

o
then the series Y. fr(x) converges for almost all x € Q.
k=1

Next we formulate one of the most usable sufficient conditions ensuring the
possibility of passing to the limit under the integral sign.

Theorem 1.3.11. (Dominated Convergence Theorem) For all k € N, let

functions fr be measurable on a measurable set Q. Assume that for almost all

z € ) there exists a finite limit klim frx(z) and there exists a function g non-
—00

negative, integrable on ) and such that for all k € N and for almost all z € Q

|fr(x)| < g(z). (1.3.19)

Then for all k € N the functions f and the limit function klim fx(z) are integrable
—00
on Q and equality (1.3.18) holds.

Note that the smallest function g satisfying inequality (1.3.19) is the function
go defined for all z € by go(z) := sup | fe(z)|-
keN

Example 1.3.4. Let n =1, p > 0 and, for all k¥ € N, functions fx be defined by:

fe(z) :=k*if0 <z < % and fr(z):=0 if £ <z < 1. In this case, for all z € (0,1)

klim fe(z) =0 and 27Fz# < go(z) < z7#. If 0 < p < 1, then the function gg is
—00

1
integrable on (0, 1) and, by Theorem 1.3.11, one can state that klim [ fedz =0.

-3 OO0 0
If u > 1, then the function go is not integrable on (0, 1). One can easily verify
directly that in this case it is not possible to pass to the limit under integral sign.

* Known also as the Levi theorem.
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Remark 1.3.10. If a sequence {fi}cy of functions fi, measurable on a mea-
surable set  of finite measure, converges uniformly on € to a function integrable
on £, then there exists a function g, non-negative and integrable on €2, for which
inequality (1.3.19) holds, hence so does equality (1.3.18). The converse is not true
as shown by the above example with 0 < p < 1.

Exercise 1.3.10. Prove the statement of Remark 1.3.10.

Condition (1.3.19) implies that there exists A > 0 such that for all k € N
/ 1| do < A. (1.3.20)
Q

Condition (1.3.20) is not sufficient for the validity of equality (1.3.18), as shown by
example 1.3.4 with g = 1. However, a condition slightly stronger than (1.3.20) is
already sufficient for the validity of equality (1.3.18). This is shown by the following
theorem.

Theorem 1.3.12. (The Vitali— Vallée Poussin theorem) For all k € N,

let functions fi be measurable on a measurable set Q. Assume that for almost all

xz € Q) there exists a finite limit klim fr(z). If there exist A > 0 and a positive
—$00

non-decreasing function ® defined on [0,00) satisfying tlim ®(t) = oo, such that
o0
forallk € N

[ 15 @sDds < 4 (1.3.21)
Q
then the functions fi and the limit function len;o fx(z) are integrable on Q, and
equality (1.3.18) holds.

Under some additional assumptions, condition (1.3.21) is also necessary for the
validity of equality (1.3.18). See (Natanson 1974) for details.

Remark 1.3.11. Condition (1.3.21) is clearly satisfied if there exist A > 0 and
€ > 0 such that

C e ;‘g;% /lfk[1+e dz < A. (1.3.22)
T £ Q

Exercise 1.3.11. Let n =1, x> 0 and, for all £ € N, functions f; be defined by:
fe(z) == p(k) if 0 < z < ¢ and fi(z) := 0 if % < z < 1, where ¢ is a positive non-
decreasing function on [1,00) such that lim ¢(z) = co. Clearly, lim fi(z) = 0 for
k—oo k—oco
1
all z € (0,1) and lim f frdz =0« lim ﬂ;’—) = (. Prove that the assumptions
k—oo T—00
o0
of Theorem 1.3.11 are satisfied if and only if [ %f—l dz < oo (not always when
1

1
klim [ fedz = 0), whilst the assumptions of Theorem 1.3.12 are satisfied if and
- 00 0

1
only if lim %—@— =0 (always when lim [ fydz =0).
L300 k—oo g



