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Next we consider functions f, defined on the direct product € x GofQCR"
and G C R™. We shall also denote them as f(-,-). Theorem 1.3.11 implies the
following Theorems 1.3.13 — 1.3.16.

Theorem 1.3.13. (Measurability of integrals depending on a parameter)
Let Q be a measurable set in R™ and G be a measurable set in R™.
Assume that a function f is measurable on Q X G and for almost ally € G the

functions f(-,y) are integrable on Q. Then the function [ f(z,-)dz is measurable
Q
on G.

Theorem 1.3.14. (Passing to the limit under the integral sign for inte-
grals depending on a parameter) Let Q) be a measurable set in R™ and G be
an infinite set in R™.

Assume that a function f is defined on Q@ x G and that yo € R™ is a limit point
of G. Furthermore, assume that for almost all z € Q there exists a finite limit

lim f(z,y) and that, for some § > 0, for ally € G N B(yo,6) the functions
y—+y0,yEG

f(-,y) are measurable on Q. If there ezists a function g non-negative and integrable
on G such that for all y € G N B(yo,0) for almost all z € G

|f(z,9)| < g(=), (1.3.23)
then the functions f(-,y) and the limit function lim _f (x,y) are integrable on
y—y0,y€G
Q for all y € G N B(yo,06) and

li ,y)de = li ,y)dz .
yﬁytrzec}'/f(x y) /y»ylox,rzl;EGf(x y) v
Q Q
If G is unbounded, then yo = oo is admissible. In this case B(yo,d) should be
everywhere replaced by °B(yo,0) -

Theorem 1.3.15. (Continuity of integrals depending on a parameter) Let
Q be a measurable set in R™ and G be a set in R™.

Assume that a function f is defined on Q@x G, for ally € G the functions fG,y)
are measurable on Q and for almost all € G the functions f(z, -) are continuous
on G.

If there ezists a function g, non-negative and integrable on G, such that for all
y € G for almost all x € G inequality (1.3.23) is satisfied, then for all y € G the

functions f(-,y) are integrable on Q and the function [ f(z,-)dz is continuous on
Q
G.

Theorem 1.3.16. (Differentiation of integrals depending on a parameter)
Let Q be a measurable set in R and G be an open set in R™.

Assume that a function f is defined on Q x G, for all y € G the functions
f(-,y) are integrable on Q and, for some j € {1,...,m}, for almost all z € G for
all y € G there exist the derivative %(m, Y).

If for all compacts K C G there exist functions gk, non-negative and integrable
on G, such that for all y € K for almost all z € Q

1%<m,y>] < ox(@),



32 CHAPTER 1. PRELIMINARIES

then for all y € G the functions a%%(-, y) are integrable on Q and for ally € G

-é-%(ﬂff(w,y)dw) =Q[§-§;<x,y>dx.

Corollary 1.3.10. Letl € N, Q be a measurable set in R™ and G be an open set
in R™.

Assume that a function f is defined on 2 x G, for ally € G the functions f(,v)
are measurable on Q and for almost all z € G f(z,-) € CHG).

If for all compacts K C G there exist functions gk, non-negative and integrable
on G, such that for all « € N} satisfying |a| < 1 and for ally € K for almost all
z €Q

(DS ) (2,)| < 9k (),
then for all y € G the functions g—?f(.,y) are integrable on Q, [ f(z,-)dr € CHG)
! Q
and for all o € N? satisfying |a| <1 for ally € G

D;( ! f(w,wdm) - ! (D2 F)(z,y) da.

Exercise 1.3.12. Prove theorems 1.3.14 — 1.3.16 by applying Theorem 1.3.11.

Theorem 1.3.17. (The Fubini theorem) Let Q be a measurable set in R”, G
be a measurable set in R™, and let a function f be integrable on Q x G.

Then for almost all x € Q) the functions f(x,-) are integrable on G, for almost
all y € G the functions f(-,y) are integrable on X and

/ f(z,y) dody = / ( / f(ac,y)d:v) dy = f ( / f(x,y)dy) dz.  (1.3.24)

QxG G Q Q G

Corollary 1.3.11. Let Q be a measurable set in R", G be a measurable set in R™,
a function f be measurable on Q X G, and at least one of the integrals

G[(g[lf(ﬂ:,yﬂdw) dy, /(/If(:l:,y)[dy) dz

Q G
be finite. Then all three integrals in (1.3.24) are finite and equalities (1.3.24) hold.

Corollary 1.3.12. Let Q be a measurable set in R", G be a measurable set in R™,
a function f be non-negative and measurable on 2 X G. Then equalities (1.3.24)
hold. (In this case the integrals may be infinite.)

Corollaries 1.3.11 and 1.3.12 are most commonly used sufficient conditions en-
suring the possibility of interchanging the order of integration:

/(/f(x,y) dx) dy = / (/f(:z:, y) dy) dz. (1.3.25)

G Q Q G
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This equality may also be considered as the formula of integration under integral
sign for integrals depending on a parameter.

We would like to emphasize that the assumptions concerning integrability of a
function f on Qx G in Corollary 1.3.11 and measurability of f on 2 x G in Corollary
1.3.12 are essential, though not necessary, for the validity of equality (1.3.25).

If a function f is not integrable on Q x G, then the integrals in (1.3.25) may
not exist or they may exist but be not equal. (See Exercise 1.5.10.)

If a function f is non-negative but not measurable on  x G, then it may
happen that one of the integrals in (1.3.25) exists and the other one does not.
Let, for example, n = m = 1, @ = G = (-1,1) and f(z,y) = zx(y) + 1 for

z,y € (—1,1), where x is the characteristic function of a non—mea,surable subset of
1

the interval (—1,1). Then [ (f f(z,v) da:) dy = 4 whilst [ (flf(m,y) dy) dz

1\
does not exist because for all z € (—1,1) except = 0 the functions f(z,-) are not
measurable on (—1,1).

Finally, note that if f is defined not on a direct product 2xG but on an arbitrary
measurable set F' C R”, then one can choose appropriate 2 and G satisfying F' C
Q x G, extend f by 0 outside F' and then apply equality (1.3.12) for interchanging
the order of integration.

Theorem 1.3.18. (The Lebesgue theorem on differentiation of integrals)
Let Q be an open set in R™ and a function f be locally integrable on €, i.e.
integrable on all compacts K C Q. Then for almost all x € Q

- 1.3.26
rg%l-r meas B(w T) / fdy=f(z). (1.3:26)
B(z,r)
If n =1, Q = (a,b), then (1.3.26) takes the form: for almost all z € (a,b)
z+r

In this case a slightly stronger statement holds: for almost all z € (a, b)

z ’ T+r
([rav) = im 7 [ rau=s),

where z is a fixed point of the interval (a,b) (see Section 1.4), which explains the
name this theorem bears.

Theorem 1.3.19. (Substitutions in the Lebesgue integrals) Let ) be a mea-
surable set in R, G an open set in R", and Q C G. Assume that a transforma-
tion © = g(y) is of class 51(G) i. e for all j € {1,...,n} z; = g;(y) where
: Q — R™ are of class ct (@), and is a one-to-one map of G onto g(G).
Then a function f is integrable on g(Q) if and only if the function f(g)Jac(g)

is integrable on S, where Jac (g) is the Jacobian determinant of g. Moreover, the
equality

/ fdz = / £(9) 13ac (g)] dy (1.3.27)

9(%2) Q
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holds.

Note that, since the transformation g € c (G) is one-to-one, either forallz € G
Jac(g)(z) > 0 or for all z € G Jac (g)(z) < 0 (Nikol'skii 1983).

Equality (1.3.27) also holds for non-negative measurable functions f and trans-
formations g € C(@), given that the other conditions of the theorem are satisfied.
In this case the integrals may be infinite.

Ifn=1, Q=G = (a,b), equality (1.3.27) takes the form

/fdx: [f(g)lg’ldy-

g(a,b) (a,b)

Since by the assumptions of Theorem 1.3.19 g is one-to-one, hence either g’ () =20
for all z € (a,b) or g’(x) < 0 for all z € (a,b), this equality is equivalent to

g(b) b
/ fdz = / £(9)d' d.
g(a) a

For conditions ensuring the validity of this formula without the assumption that g
is one-to-one, see Section 1.4.

Example 1.3.5. (Generalized spherical coordinates) If n > 2, the transfor-
mation z := g(y), where y := (0, ¢1, ..., ¥n—1), defined by

4

Ty = psinynp_1

Tp-1 = QCOSPp_1SINQPp_2
9 :

o = 0 COS P,—1 COS Pr—2 - * + COS 2 81N Y1
| 71 1= 0 COS (P —1 COS P32 * * * COS P2 COS Y1

is a one-to-one map of the set
1 T
{(97(1017"'7(/911—1) € Rn: 0< 0 < 0070 < Y1 < 2’”"’5 g @250y Pn-1 < ‘é‘}

onto R™ \ {0}, and

1cos™ 2 pp_1cos™ 3 o -+ COS P2

Jac(g) = "~
For all > 0 and r = oo, for all functions f integrable on B, (B = R") or
non-negative and measurable on B,, the equality

2

r 27 5
/fdmz/g"”ldg/dcpl /cosgogdgoz'--/chpn._l (1.3.28)
Br 0 0 ——%

—
2

n—2

holds, where F := f(gcos@p—1 - C0OS¥1,...,08n Pn—1)COS" "% Qp_1.
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Exercise 1.3.13. By applying equality (1.3.28), prove that if 0 < r < oo, the func-
tion g(p)o™ ! is integrable on (0, 7) or the function g is nonnegative and measurable
on (0,7), then

T

[ 9(|z]) dz = op / g9(0)e" *do, (1.3.29)

B, 0

where o, := nv,, is the surface area of the unit sphere S,,_; in R".

Exercise 1.3.14. Let a € R, r > 0. By applying equality (1.3.29), prove that

the integral [ |z|* dz converges if and only if @ > —n, whereas [ |z|* dz if and
B, °By
ondef:measurable function, steply if @ < —n. Moreover,

/Im]“ de = -T0 potn o5 gy / |z|* dz = In_patn o< p.
oa+n la+ n|
B, °By,

Exercise 1.3.15. Prove Theorem 1.3.13 by reducing it to the case of bounded
measurable functions defined on bounded measurable sets, and applying Definition
1.3.12, Dominated Convergence Theorem (see Theorem 1.3.11 and the closedness
of the space of measurable functions with respect to passing to the limit.

1.4 Absolute continuity and the Lebesgue integra-
tion

In this section we consider, unless specifically stated, complex-valued function of
one real variable defined on a bounded closed interval. Proofs of the statements
below and further results can be found in (Natanson 1974).

Definition 1.4.1. Let —oc0 < a < b < 0o. A function f is absolutely continuous

on [a,b] if for all € > 0 there exists § > 0 such that for all finite families of disjoint
m

intervals (a1,b1), ..., (am,bm), contained in [a,b] and satisfying > (bx — ar) < 6,

k=1
the inequality

> If(bk) — flar) < e (1.4.1)
k=1

holds.

The assumption that the intervals (ag, bx) are disjoint is essential. (See Exercise
1.5.16 below.)

Clearly each function absolutely continuous on [a, b] is uniformly continuous on
[a,b]. Converse does not hold. For example, the function f defined by: f(z) :=
zsinl if z € (0,1], f(0) := 0, is uniformly continuous on [0,1] and infinitely
differentiable on (0, 1], but is not absolutely continuous on [0, 1].

If a function f satisfies the Lipchitz condition on [a,b], i.e. there exists M > 0
such that for all z,y € [a, b]

[f(z) = fW)l < Mz -yl
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(in particular, if f is continuous on [a, b] and has a bounded derivative on (a,b)),
then f is absolutely continuous on [a, b].

If functions f and g are absolutely continuous on [a, b], then the functions f+g,
fg and, if for all z € [a,b] g(z) # 0, ‘f:‘ are also absolutely continuous on [a, b].

Theorem 1.4.1. If —oo < a < b < 0o and a function f is absolutely continuous on
[a,b], then for almost all x € [a,b] there exists the derivative f'(x), the derivative
f! is integrable on [a,b] and for all x € [a,b)

f(z) = f(zo) + f f'dy, (1.4.2)

where g is a fized point of [a,b].

Theorem 1.4.2. If a function f is integrable on [a,b], zo € [a,b], then the function

T

[ fdy, z € [a,b], is absolutely continuous on [a,b] and for almost all z € [a, b]

(/wfdy), = f(z). (1.4.3)

In particular, the equality holds in all points of continuity of f.

Corollary 1.4.1. A function f is absolutely continuous on [a,b] if and only if it
is continuous on [a,b], the derivative exists almost everywhere and is integrable on
[a,b], and for all x € [a,b] equality 1.4.2 holds for any fized xy € [a,b].

Corollary 1.4.2. Let a function f be continuous on [a,b] and let the derivative
ezist everywhere on (a,b). Then f is absolutely continuous on [a,b] if and only if
the derivative f' is integrable on (a,b).

Corollary 1.4.3. (The Newton— Leibnitz formula) Let a function f be in-
tegrable on [a,b]. If a function F absolutely continuous on [a,b] is an almost
antiderivative of f on [a,b] (<= F'(z) = f(z) for almost all z € [a,b]), then

b
/ fdz = F(b) - F(a). (1.4.4)

The assumption about the absolute continuity of F' is essential as the following
example shows.

Example 1.4.1. (Cantor’s function) Let D be Cantor’s set constructed in Ex-
ample 1.3.1. On the constituent interval of the open set [0, 1]\ D of length 3 we set
f(z) := 1. On the first of the constituent intervals of length 35 we set 0(z) = 1,
on the second §(z) = 2. In general, on 2~ intervals of length 37%, we set 6(z) to
be equal successively to 2%, 327 ... (2¥ —1)27*%. Next 6(0) := 0, 6(1) := 1 and
for all z € D, except 0 an 1, O(z) := sup 6(y). The function 6 is Cantor’s
y€[0,1\D,y<z

function. It is non-decreasing and continuous on [0, 1]. Moreover, #'(z) = 0 for al-
most all z € [0, 1]. It is not absolutely continuous on [0, 1] because equality (1.4.2)
does not hold. The function # is an almost antiderivative for f = 0, but equality
(1.4.4) with a = 1,b =1 is not valid.
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Theorem 1.4.3. (Integration by parts) If functions f and g are absolutely
continuous on [a,b], then
p b
- f flgdz.
e a

Theorem 1.4.4. (Substitutions in the Lebesgue integrals) Let —co < a <
b < oo and let a real-valued function g be locally absolutely continuous on (a,b)
(<= g is absolutely continuous on every closed interval [a, B8] C (a,b)) and there
exist finite or infinite limits g(a+) = mg%l+ g9(z), g(b—) = ml_lgl g(x). Moreover,

/bfg’dz = fg

let a function f be integrable on g((a,b)) and the function f(g)g' be integrable on
(a,b). Then

g(b—) b
/ fdo = / f(o)d dy. (1.4.5)
gla+) a

The assumption about local absolute continuity of g is essential. If for example
(a,b) := (-1,1), f:=1, g := 6, then g'(x) = 0 if z # 0, both integrals in (1.4.5)
exist, but equality (1.4.5) does not hold.

Note also that local absolute continuity of g on (a,b) and integrability of f
on g((a, b)) does not imply integrability of the product f(g)g’ on (a,b) as shown
by Example 1.4.1 below. Under the assumption that the product f(g)g’ locally
integrable on (a,b) equality (1.4.5) holds in the integral in the right-hand side is
understood in the improper sense:

b b—g2
/ _ . /
/f(g)g dy=_ lim / fl9)g'dy.
a ate;

(See Remark 1.3.6.)

Let a real-valued function g be absolutely continuous on [a,b] and f be abso-
lutely continuous on g([a,b]). If, in addition, f satisfies the Lipschitz condition
or g is monotonic, then the composition f(g) is absolutely continuous on [a, b].
In general, the composition f(g) would not necessarily absolutely continuous. See
Exercise 1.5.16.

Furthermore, for any real-valued function h continuous on [a, b], there exist real-
valued functions gj absolutely continuous on [a, b] and real-valued functions f; ab-
solutely continuous on gy ([a, b]), k € {1, 2, 3}, such that h = f1(g1)+ f2(g2)+f3(g3),
with number 3 not being replaceable by a smaller number (Bari 1930a,1930b).

However, if functions g and g’ are both absolutely continuous on [a, b], then the
product f(g)g’ is absolutely continuous on [a,b], albeit the factor f(g) might be
not absolutely continuous (Burenkov 1975).

Exercise 1.4.1. Let f(0) := g(0) := 0 and for all z > 0 set f(z) = %, g(z) :==
26 (sin & + 2). Prove that function g is absolutely continuous on [0, 1], f is inte-
grable on g ([0, 1]) but f(g)g’ is not integrable on [0, 1].

Exercise 1.4.2. Let f(0) := ¢(0) := 0 and for all z > 0 let f(z) := ¢z and
g(z) := z° (sin & + 2). Prove that g is absolutely continuous on [0,1] and that f
is absolutely continuous on g([0, 1]) but f(g) is not absolutely continuous on [0, 1].
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1.5 Further exercises

Exercise 1.5.1. Prove that if @ C R" is a bounded set and a function f is
uniformly continuous on §2, then f is bounded on .

Next, let 2 be an unbounded set, and let a function f be, for all 7 > 0, uniformly
continuous on 2N B,. Prove that if there exists a finite limit gnéeﬂ f(y), then

f € C(2). For any unbounded set 2, give an example showing that the converse
does not hold.

Exercise 1.5.2. Let f be uniformly continuous on R”. Prove that there exist
A, B > 0 such that for all x € R™

[/ (z)] < Alz| + B.

Exercise 1.5.3. Let

2
rony < | D aia e
12) = 0’ 2 g2 =
0 if z{+ 25 =0.
Prove that 52 92
f /
0,0)=1, 0,0) = -1
Bxlé)xg( ) 0x20z (0,0)
Exercise 1.5.4. Let
e e o Bt -4
fene) =4 ¢ 7 (" nre ) oo 70,
1 -
0 if z129 = 0.

Prove that
1) if z122 # 0, then for all o € N2

1428y 1428 1 _
prroen= (¥ qua( B 1)HH) (),

Ty Ty
BEN: 8=l 12

where Qs are some polynomials,
2) if z129 = 0, then for all @ € N2 D*f(zy,22) =0,
3) f is discontinuous at (0, 0).

Exercise 1.5.5. Let 2 C R™ be a measurable set.
1. If meas {2 = oo, prove that there exist disjoint subsets 0, k € N, such that
o<
Q= Q and measQ; =1 for all k € N.
k=1
2. If 0 < meas§) < oo, prove that a) there exist disjoint subsets £; and 9
such that Q = Q; UQy and measQ; = meas(),, and hence b) there exist disjoint
o0
- subsets (0, k € N, such that Q = |J Q and measQy = 2% meas) for all k € N.
k=1
Exercise 1.5.6. By appropriately modifying the method described in Example
1.3.1, for all @ € (0, 1) construct a subset of [0, 1], which is perfect, nowhere dense
in [0, 1] and whose measure is equal to a.
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Exercise 1.5.7. Prove that there are no subsets of [0,1], which are perfect,
nowhere dense in [0, 1] and whose measure is equal to 1.

Exercise 1.5.8. Let  C R™ be an unbounded set. Assume that a property is
satisfied almost everywhere on QN By, for all kK € N. Prove that it is satisfied almost
everywhere on 2.

8
Exercise 1.5.9. Prove Theorem 1.3.7 by applying the equality N(z) = 3 xi(z)
k=1

8
forallz € |J Q,, where xi denotes the characteristic function of the set Q, and
m=1

Corollary 1.3.8.

Exercise 1.5.10. Prove that

11 11

z? —y? ™ z? -y T
/( ($2+yz)2d$)dy“—5’ /(/($2+Z/2)zdy)dx_z
0 0 0

Exercise 1.5.11. By applying equality (1.3.28), or otherwise, prove that for all
r >0 measB, = v.r", where *

n
m2

r(2+1)

Vp =

the volume of the unit ball in R™. In particular, for all m € N

,R.m

m.:

Exercise 1.5.12. Let the set  C R™ be defined with the help of the spherical
coordinates by the inequalities

0< 0< ®(p1,--50n-1),

T ™
0< o1 <27r,—§ S P2y---3Pn-1 < 3

where @ is a function non-negative and measurable on the unit sphere S,_;. Then

@"(wl, ceey €0n-1) cos™ 2 Yn-1dpn—1.

\mw

meas{) = — /d<p1 /cosc,ozdcpz

4 —
2

[SE]

Exercise 1.5.13. Let 0 < @ < b < oo and let a non-negative function f be
measurable on (0,00). By applying Theorem 1.3.7 prove that

/fda: /fdx

where p is the smallest integer greater than or equal to 10g2 . Prove also that u
cannot be replaced by a smaller number.

k*--oo

o0
* T is the Euler gamma-function: for & > 0 I'(a):= [e %z~ ldz.
0
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Let a function f be integrable on a measurable set Q& C R". For 6 > 0 set

/fda:

Theorem 1.3.8 can be reformulated in terms of this function in the following way:
for all functions f integrable on 2 5lir£1+ A(8) = 0. The following exercise show
—

Af(0) := sup

wC: measw<d

. (1.5.1)

that Ay can tend to 0 arbitrarily slowly.

Exercise 1.5.14. Let a positive function 9 defined on (0, 1) is such that 51_1)1(1)1+ P(d) =
0. Construct a function f integrable on (0, 1) such that

5
[ fdz
lim

0 —
60+ '0,1)(5) B

oo .

Exercise 1.5.15. Let a function f be defined on [a,b] and a < ¢ < b. Prove that

if f is absolutely continuous on [a, c| and [c, b], then it is absolutely continuous on
[a, b].

Exercise 1.5.16. If f : [a,b] — C and for all € > 0 there exists 6 > 0 such that for
any family of intervals (a1,b1), ..., (@m,bm), m € N, contained in [a, b}, for which
m m

S (bg — ag) < 6, the inequality Y |f(bk) — f(ax)| < € holds, then f satisfies the
k=1 k=1

Lipschitz condition.

Exercise 1.5.17. Prove Theorem 1.4.3 under the following weaker assumptions:
the derivatives f’ and ¢’ exist almost everywhere on [a, b], at least one of the prod-

ucts f'g or fg' is integrable on [a,b], and the product fg is absolutely continuous
on [a, b].

Exercise 1.5.18. Using Exercise 1.5.17 and the theorem on absolute continuity
of the product f(g)g’ quoted in Section 1.4, prove that, given a > 0, u € C?([a,b])
such that for all z € (a,b) u(z) # 0,

b b

/uau" dz = u"u’\Z - ae/u""l(u’)2 dz.

a a

If 0 < a < 1, one cannot apply Theorem 1.4.3, since the function u® is, in general,
not absolutely continuous on [a, b]. (See Exercise 1.4.1).



Chapter 2

Spaces Ly(€2)

2.1 Definitions and basic properties

2.1.1 Spaces L,(2),0 < p < o0

Definition 2.1.1. Let 0 < p < oo, Q be a measurable set in R™, and a function
f: Q — C. The function f € Ly(Q) if f is measurable on Q@ and

£z, = (/ I dx)% < oo. (2.1.1)
2

Note that if meas () > 0, then the conditions f € L,(€2) and || f|| L, (@) < 0o are
not equivalent. If, for example, f := 1 on a non-measurable subset ((J of the set
QN B, where r > 0 is such that meas (2N B,) >0, f:=—1on (2N B;) \ G, and
f:=0o0nQ\ B,, then f is not measurable on 2, hence does not belong to L,(2)
for any 0 < p < oo, but [|f[|;_(q) < oo

Example 2.1.1. Let 0 < p < 00, ¥y € R, 0 < 7 < co. The function |z|” € L,(By)
if and only if ¥ > —3. The same function |z|” € Ly(°By) if and only if v < —%
(see Exercise 1.3.14). Moreover,

7y —1 3 44z n
="l 5,y = (n+p) " Porr" 7, 7>

S n n
ol Ly e,y = In+ 6l F o773,y <=2
Exercise 2.1.1. Let 0 < p < 00, 6,7 € R, 0 < r < co. Prove that
y 5 n n 1
lz|" (1 + |In |z|]) ELp(Br)<:=>'y>-—1;, oryz—g a.nd5<—-—5

and
1

lz|” (1 + |In|z||)? € Lp(°B,) &= v < -g , ory= ~——Z— and § < s

41



42 : CHAPTER 2. SPACES Lp(Q)

Let 0 < p < oo and f € L,(R*)NC(R™). This clearly implies that the function
f should be ‘small’ at infinity. However, without additional assumptions, one
cannot claim that f(z) — 0 as z — co. Moreover, along a fixed sequence of points
Tk, k € N, satisfying zx — 0o as k — oo, it may tend to infinity arbitrarily quickly
as the following example shows.
Exercise 2.1.2. Let 0 < p < oo, {or}ren be a sequence of positive numbers
or satisfying Iim or = 00, and let {zx}ren be a sequence of zj € R™ satisfying
lim zp = oo. Moreover let h € C§°(R™) be the function defined by (1.2.4). Prove

k—o0

that for sufficiently small positive 0y, k € N, the function f defined for all z € R™

by
> T — Tk
f(z) :=329kh( )
k=1
is such that f € L,(R™) N C*(R™) and f(zx) > o for all k € N.

A similar example can be constructed if klim Tr = x9 where zg € R™ and
—00

f € Ly(R™) N C®(R™ \ {zo}).
Under additional assumptions of monotonicity type the condition f € L »(R™)
implies that f(z) — 0 as £ — co. Moreover, f must tend to 0 not too siowly

Exercise 2.1.3. Let 0 < p < o0, f € L,(R") and f(z) = g(|z|) for all z € R"
where g is a positive non-increasing function on (0, 00). Prove that f(z) = o(|z|” 7)
as r — oo and as x — 0.

Finally, let us consider the set Lp( (0,1)) consisting of all function f € L,,((O 1))

which are positive and non-increasing. The following exercise shows that in Lp((O 1))
with 0 < p < oo there are no ‘extreme functions’, i.e. functions f such that any
function g positive non-increasing and satisfying

g9(z) _

does not belong to Zp((O 1)).
Exercise 2.1.4. Let 0 < p < oo, f € Lp((O 1)), and 0 < € < 1. Define for all

z € (0,1)
2 e (M0 \°
o) = (nfan«o m») (&)

Prove that g(z) > f(z) for all z € (0,1), condition (2.1.2) is satisfied, but g €
L,((0,1)). (Iffe > 1, then g ¢ L,((0,1)).)

2.1.2 Spaces of sequences [,. Jensen’s inequality

A definition, similar to Definitions 2.1.1, can be introduced also for sequences
a := {ak }ken, where a; are complex numbers.

Definition 2.1.2. Let 0 < p < co. A sequence a € Iy if

lal, = (i l”) oo (2.1.3)
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Exercise 2.1.5. Let 0 < p < 0o and 6§,y € R. Prove that

1 1 1
K'(InkY el, < ~y<—=, ory=—-andd < —-.
(Ink) P Y P Y P D

Example 2.1.2. If ) C R" is a measurable set and f :  — C is a simple function:
oo

Q = | Qk, where Qi are disjoint measurable subsets of Q, and f(z) = aj for
k=1
x € Oy, then [|f|l,, ) = [Iblls,, where b := {bi}xen and by = ax(meas )7,k € N.

If, in particular, Q = (0,00) and Qi = (k — 1,k],k € N, then Hflle(ﬂ) = ||alls,.

Theorem 2.1.1. ( Jensen’s inequality) Let 0 < p < ¢ < o0 and a := {ak}ren
where a, € C, k € N, then
I, Clg (2.1.4)

and

lall, < llalli, - (2.1.5)
Moreover, for a € l, equality holds if and only if all ay, ezcept possibly one are equal
to 0.

Idea of the proof If ||a||;, = 1, apply the implication |ax| <1 == |ak|? < |ax|P.

If ||al;, < 1, consider the sequence b := {b }xen, where by := ﬁf{—, ke N. O
P

Proof If all a; except possibly one are equal to 0, then clearly inequality (2.1.5)
turns into an equality.
Assume that at least two of ax are non-zero. If ||al|;, = 1, then |ag| < 1 for all

oo o0
k € N. Hence, ) |ax|? < ) |ax|’ = 1 and ||al|;, < 1, which was required to prove
k=1 k=1

in this case.
If |lall;, = oo, then inequality (2.1.5) is trivial. If |lal|;, # 1,00, then ||b]|;, =

(lall,) ™ ( 5 louP”) 1

P -
= 1. Hence, [|b]l;, = (llalli,) 1Halllq < 1 by the previous
argument, which implies (2.1.5) with the strict inequality. O

Note the following simplest particular case of inequality (2.1.5): if 0 < p < 1,
then for all a,b >0
(a+bP <aP +bP. (2.1.6)

(It is equivalent to the one-dimensional inequalities %%Plﬁ <land (z+1)P—2P < 1

for > 0, which are easily proved by finding the maximum of %2%)11, (x+1)P — 2P
respectively.)

Exercise 2.1.6. Prove that for 0 < ¢ < p inclusion (2.1.4) does not hold.

Lemma 2.1.1. For finite sequences

lim ||al|;, = sup |ag|. (2.1.7)
p—roo keEN

If ||lalli.. = oo, this equality also holds. If ||al|i,, < oo, it holds if and only if a € I4
for some ¢ > 0.
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Idea of the proof For finite sequences apply the inequality

S (0P g - 2.1.8
< < mp ) 1.
keglf)fm} ‘ak‘ h (,;‘%I ) S me ke{ml?)fm} Iak‘ ( )

For infinite sequences a € I, deduce that for all p > max{1, g} and for allm € N

1 & '
< <mpr 4 . 2.1.9
ké{rnlflfm} ‘akl “a“l” me ke{?ffm} lak‘ " (k.—.zmzuiakl ) ( )

O

Proof Let m € N and ax = 0 for all £ > m + 1, then the statement follows by
1
passing to the limit in (2.1.8) since l'gn mr = 1.
m—ro0
If, in the case of infinite sequences, ||alli,, = 00, it follows that also klim llalli, =
—00

oo since the left inequality in (2.1.8) holds for all m € N. Assume that ||lalji, < o0
and equality (2.1.7) holds. Then, by the properties of limits, there exists ¢ > 0 such
that a € ;. Conversely, let a € Iq for some g > 0. Taking into account inequality
(2.1.6), we get

(gtaklp)% <lalh, = (S + 3 o)

k=m+1

3 e

1

< (f:taknp);—*-(ki lakip)%

k=1 =m-+1

for all p > 1 and for all m € N. Assume also that also p > ¢. Then by applying
inequalities (2.1.5) and (2.1.8), we arrive at inequality (2.1.9).
Since [lall;, < oo, inequality (2.1.5) implies that the limit 1_i+m llall;, exists.
p—ro0

Therefore, passing in inequality (2.1.9) to the limit as p — oo, we get

o 1
q
max |ax| < lim < max _|a E:aq'
ke{1,...,m}t Kl < p—l—mo Hanl” = Iee{l,...,m}l el ¥ (k:m+1| ¢ )

Finally, passing to the limit as m — o0 and taking into account that

oo 1
q
lim max |ag| = suplax, lim( E Iak!q) =0
m—oo ke{l,...,m} keN m-»00 ket 1

because a € I, we arrive at equality (2.1.7). O

Note the following simplest particular case of (2.1.7): for a,b > 0

lim (a? + bp)% = max{a, b} . (2.1.10)

Pp—ro0

Lemma 2.1.1 justifies the following definition of loo.
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Definition 2.1.3. 4 sequence a € lo if

llalli, = sup|ax| < oo, (2.1.11)
keN

t.e. if it is bounded.

Note that if at least two members of a sequence a are non-zero, then liré1+ lla]|
p—>r

0o. Furthermore, llall;, makes sense for negative p. If at least one of a; = 0, we
assume that ||al|;, = 0. With this convention each sequence a € ly, |lalli, < |lall;,
ifg<p<0,and

lp

(2.1.12)

|l-c>o "

i, el = o o =

. . _ -1 1yl .
This follows since [|al|;, = (llalli,)”" and (?Elg m) = ézelg |ak]| .

For finite sequences a = {a)}_; of non-zero complex numbers ay, it is also of
interest to consider the following expressions

lall; = (?}i > laklp) ’ , (2.1.13)
k=1

where p # 0. In particular,
ol = 2o 3 ol ol = m( 3 L)
' m k=1 k=1 !ak‘
are arithmetic, harmonic respectively, means of the collection lai],...,|am].

Lemma 2.1.2. For a sequence a = {ar}il, of non-zero complex numbers ay

numbers
m i
s lalli, = ( I lak{) = llalf, (2.1.14)
the geometric mean of the collection a4, ..., |G|

Idea of the proof Write lall, as exp (In (llall}))) and apply the equivalences
In(1+2z)~z, ”:“le1110&537—+0(0>0). O

Proof Indeed,

fzy ll, = e (11 (£ S0 )

k=1
= exp (gi_%%ln (14—%2(!%{?-1))) = exp (%%g(@%ﬁ))
= exp (%giﬂfﬂlk‘) = (’ﬁlaki)%
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Note that for finite sequences a

llallz, < llallz, (2.1.15)

if —0o < p < g < 0o. (See (2.1.15) below.) In particular,

lall_, < llallz, < llallz, - (2.1.16)

This means that the harmonic mean does not exceed the geometric mean which in
its turn does not exceed the arithmetic mean.

2.1.3 Properties of essential infima and suprema

In order to extend Definition 2.1.1 to the case p = oo in the spirit of Definition
2.1.3, one would need the notion of the essential supremum.

Definition 2.1.4. Let Q C R" and f : Q — R. Then

sup vrai f = sup vrai f(z) := mf ( sup f(z)). (2.1.17)
Q z€Q

mea,s w:—O €W

(The infimum is taken with respect to all subsets w C ) of zero measure.)

The essential infimum is defined similarly:

inf vral f= mf vrai f(z) := sup ( inf f(2)). (2.1.18)
€N wC GQ\w
meas w-—O
Clearly
sup vrai f(z) < sup f(z). (2.1.19)
z€EQ

However, it may be that the inequality is strict.

Example 2.1.3. Let e C R” be a set of zero measure, and let f: R® — R is such
that f(z) > 0 for all z € e, and f(z) =0 for all z € e. Then

sup f(z) = sup f(z) >0, supvraif(z)=0.
zER zER

The second equality follows, since

0<supvraif(z)= inf ( sup f(x)) < sup f(z)=0.

Tz€R™ n(;)egggwéo zeER™\w z€R"\e

Note that sup vrai f, finite or infinite, is defined for all @ C R™ and f: Q@ — R.
Q
If supvrai f < oo, then the function f is called essentially bounded above. Note
Q
also that if measQ = 0, then for all functions f: 2 — R

sup vrai f(z) = sup f(z) =sup @ = —o0
zEQ z€d

For a real-valued function f defined on 2 C R™ and a € R, define

Qo =U%(f) ={z€Q: f(z)>a}. (2.1.20)
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Definition 2.1.5. Let Q C R™ and f : Q — R. Then
sup vrai f(z) := inf {a € R: measQ, = 0}. (2.1.21)
zE€EQ

Lemma 2.1.3. Definitions 2.1.4 and 2.1.5 are equivalent.
Proof Let M := {a € R: measQ, = 0} and M := inf M. Since M; := sup vrai f(z)
Q

z€
in the sense of Definition 2.1.4 is defined for all f: Q — R, it suffices to prove that
M, =M.
First, let 9 # 0 and 9 # R. The definition of infimum implies that for all
o

k € N there exist ar, € 9 such that M < ax < M + . So Qu = U Qa,,
k=1

hence measQps = 0, because for all k¥ € N meas(2,, = 0. Consequently, M; <
sup f(z) < M, because, by the definition of the set Qps, f(z) < M on Q\ Q.

mEQ\QM

On the other hand, if M; < M, then there exists w; C (2 satisfying measw; = 0

such that o7 := sup f(z) < M. This implies Q,, C w;. Hence measQ,, = 0.
€N
Therefore o1 € 9, which is impossible as M = inf 9.

Now let 9t = 0, then inf M = +oo. On the other hand, My = +oco as well.
Indeed, if M; < 400, then there exists we C 2 satisfying measws = 0 such that

o3 := sup f(z) < 4oo. This implies Q,, C we. Hence meas(2,, = 0. Therefore
(L‘GQ\WQ

o2 € M, which is impossible as M = 0.
Finally, let 9t = R. Then inf 9 = —co. Note that @ = |J Q_; and measQ = 0

k=1
since for all kK € N measQ_; = 0. So, M; = —o0 as well. O

Corollary 2.1.1. Let Q C R", measQ # 0 and * f: Q —- R.
1. If M := supvrai f < oo, then
Q

meas{ly =0, (2.1.22)
which is equivalent to
for almost all z € Q f(z) < M, (2.1.23)
and
foralle >0 measQp_.#0. (2.1.24)
2. If M = oo, then
forall N >0 measQn #0. (2.1.25)

Proof The equality (2.1.22) was obtained in the first part of the proof of Lemma

2.1.11. Inequality (2.1.24) holds because otherwise sup vrai f(z) < M — ¢ which is
e

impossible. Similarly, if M = oo, then inequality (2.1.24) holds because otherwise
sup vrai f(z) < N. Finally, inequality (2.1.23) is equivalent to equality (2.1.22)
z€Q

because the set of all z € Q for which this inequality is not satisfied is exactly
Q. O

*In Definitions 2.1.4 and 2.1.5 it is not assumed that €2 is measurable. For this reason we write
meas ) # 0 rather than meas Q) > 0, which means that either  is measurable and measQ > 0 or
€ is non-measurable.
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Remark 2.1.1. The equality meas Qs = 0 implies that in (2.1.21) inf may be
replaced by min if measQ # 0 and sup vrai f(z) < 00.
zEN

Equality (2.1.22) together with Definition 2.1.5 provide convenient tools for
proving the properties of the essential supremum and they will be used in the
proofs below.

We start with some properties of the essential supremum similar to the appro-
priate properties of ‘ordinary’ supremum.

Lemma 2.1.4. Let Q4,95 C R® and f: 2 UQy -3 R. Then

sup vrai f = max{sup vrai f,sup vrai f} . (2.1.26)
QU0 Q4 Q2

Idea of the proof Apply the equality

(21 UQ2)a(f) = (21)a(f) U (Q2)a(F) (2.1.27)
where a € R. O

Proof If (Q1)a(f) and (21 U Qy)4(f) are measurable, then (2.1.27) implies that

max{meas ((Q1)a(f)), meas((Qs)a(£))} < meas (@ U Q2)a(f))
< meas ((21)a(f)) + meas((Q2).(f) . (2.1.28)
Let M = su%vraif,k = 1,2, and let, say, M; < M,. Assume that M, <

k
oo. Equality (2.1.22) and the second of inequalities (2.1.28) with a := M, imply
that meas (21 U Q2)a,(f)) = 0. Also, for all ¢ > 0, the first of inequalities
(2.1.28) with a := M, — ¢ implies that meas (2 UQ2)a,—e(f)) # 0. Indeed, if
meas ((21 U Q) a,—e(f)) = 0, then by (2.1.28) meas((Q2)ar,—(f)) = 0. Hence
by Definition 2.1.5 M, = sup vrai f < M — e. Consequently, by Definition 2.1.5
Qo

sup vrai f = M,.
Q1UQ,
The case My = 0o is considered similarly. O
Corollary 2.1.2. Let G C Q C R” and f: Q> R. Then

sup vrai f < supvrai f. (2.1.29)
G Q

Idea of the proof Apply the lemma with =G, Q%=0\G. O

Lemma 2.1.5. Let f and g be real-valued functions defined on a set Q Cc R™. If
f < g almost everywhere on Q, then

sup vrai f(z) < sup vraig(z). (2.1.30)
z€EQ €N

Idea of the proof Apply equality (2.1.22) and Definition 2.1.5. O

Proof Let M := supvraig. The case M = 0o is trivial. Let M < co. Then by
Q

Corollary 2.1.1 meas Qy/(g) = 0. Let w := {z € Q: f(z) > g(z)}, then measw = 0.

Since Qar(f) C Qar(g) Uw, it follows that meas m(f) = 0. Hence, by Definition

2.1.5, supvrai f < M. O
Q
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The following several statements deal with the case of equality in inequality
(2.1.19).

Lemma 2.1.6. Let Q C R®, meas$2 # 0 and f: Q@ —- R.
1. There exists a subset G C €2 such that meas G = meas{) and

sup vrai f(z) = sup f(z).
zEQ z€G
2. There exists a function g equivalent to f on Q) such that

sup vra,i flz) = sup g(z).

Idea of the proof If M = oo, then by (2.1.19) sup f(z) = oco. If M < oo, then
take G := Qs and set g(x) := f(z) for x € G and g(:v) Y forz € Q\G. O

Lemma 2.1.7. If Q@ C R"™ is an open set and a real-valued function f € C(Q2),
then
sup vraif(:c) = sup f(z). (2.1.31)

Idea of the proof Let M := sup f(z). By (2 1.19) sup vrai f(z) < M. To prove
eQ

the converse m the case M < +oo choose for all k € N balls B(zg,d;) on which
fl@)>M-1% O

Proof First, let M < 4o00. Then for all k¥ € N there exists xx €  such that
f(zx) > M — %. Since Q is open and f € C(R), there exists d; > 0 such that
B(zy,0;) C Q and f(z) > M — for all x € B(mk,dk) Therefore, by inequality

(2.1.29), bup Vral f(z) > sup vral f(z) > M — £. Passing to the limit as k — oo,
a:GB(:z:k,ék)
we get sup vrai f () > M. Hence sup vrai f(z) = M.
z€EQ z€EQ

Next, let M = +oo. Then for all £ € N there exists zx € Q such that f(zg) > k.
Since  is open and f € C(2), there exists dx > 0 such that B(zg,dr) C Q and
f(z) > k for all z € B(xg,dx). Hence sup vrai f(z) = +o00. O

zEQ

Remark 2.1.2. Since inf vggai f(z) = —supvrai(—f(x)), the above properties of
TE Q

the essential supremum imply similar properties for the essential infimum.

Exercise 2.1.7. Let Q C R", f: O — R and f(z) # 0 for all z € Q. Prove that

inf vrai f(z) = -——-————}--——-—- (2.1.32)

z€Q sup vrai
P 7@
Inequality (2.1.23) implies the following variant of the mean value theorem
stated in Corollary 1.3.4.

Lemma 2.1.8. (Mean value theorem) Let Q C R™ be a measurable set, a real-
valued function f be measurable on 2, and a real-valued function g be non-negative
and integrable on Q). Then

infg\{ra,if/gdxé/fgdxgsupvraif/gdm.
Q
Q Q Q
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Idea of the proof Apply inequality (2.1.30), a similar inequality for inf vrai and
Corollary 1.3.4. ]

2.1.4 Space L ()

Definition 2.1.6. Let Q be a measurable set in R™ and a function f: @ — C. If
meas ) > 0, then the function f € Loo(Q) if f is measurable on ) and

1o, @) = su}c)evgai |f(z)| < o0. (2.1.33)

If measQ = 0, then any function f: Q — C belongs to Lo (<), and Il @ =O-
(In this case sup vrai|f(z)| = —o0.)
z€Q

Note that for any non-decreasing function ¢ : [0,00) — [0, 0)

le(fDNlz.. @) = UL 0)) - (2.1.34)
This follows since sup @(|f(z)|) = ¢( sup |f(z)|) for all w C € satisfying
TEQN\wW

zEQ\w
measw = 0.

Lemma 2.1.9. Let Q C R™ be a measurable set and functions f,g be measurable

on ). Then
l/fgd:n
Q

Idea of the proof Apply inequality (2.1.23). O

< [[1£91 4 <l iy lolz,co0- (2.1.35)
Q

Proof The statement follows by Theorem 1.3.5, Definition 2.1.6, and Theorem
1.3.4 since, by (2.1.23), |f(z)|lg(z)| < Ifll_ (o) 19(z)| for almost all z € Q. O

Corollary 2.1.3. Let Q C R™ be a measurable set, meas ) < 0o, a function f be
measurable on 2, and 0 < p < co. Then

”f”Lp(Q) < (measQ)? Hf“z;w(g) . (2.1.36)
Idea of the proof Apply inequality (2.1.35) and equality (2.1.34). O
Proof Indeed, by (2.1.35) and (2.1.34) with o(t) := t?

Iz, = (/lﬂp : 1d-’13)%
Q

i
P

i 1
< (APl @) * (Nllz, @) ? = (meas@)? [Ifllz_ ) -
The following theorem justifies Definition 2.1.6.

Theorem 2.1.2. (The Riesz theorem) If Q C R" is a set of finite measure and
a function f is measurable on Q, then

plglolo HfHL,,(Q) = “f“z,oo(g) . (2.1.37)
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Idea of the proof Let M := ||f|| Loo(9)* For 0 < M < oo, by passing to the
upper limit in inequality (2.1.36), obtain that limsup, ,o [|Ifll;, @) < M. For
a > 0 we consider the sets G, := Q.(|f]) = {z € Q: |f(z)| > a} and by passing
L

to the lower limit in the inequality [|f||; q) 2> (M —¢)(meas Gp—c)” obtain that
hpf_f_l)glfﬂfur,p(m =z M. 0
Proof If measQ = 0, then ||f|l, ) = Ifllz. (@ = 0, and equality (2.1.37) is
trivial. Let measQ > 0. If M = 0, then by Lemma 2.1.10 f ~ 0 on £, and equality
(2.1.37) is again trivial.

Next let 0 < M < oo. By passing to the upper limit in inequality (2.1.36) we
get, taking into account that meas{) < oo, that*

limsup || f||z, (@) < M limsup (meas Q)% =M. (2.1.38)
p—+00 P00

By Corollary 1.3.4

1fllz, @) = ( f \fIP m); > (M ~5)(measGM_E)'15. (2.1.39)
GM—¢

Since by (2.1.24) meas Gp—. > 0 for all € > 0, we have

3 |

lgﬁg}f 1fllz, @) = (M —¢) llzr)xgg}f (measGp—e)? =M —¢. (2.1.40)
Passing here to the limit as € — 0+ we get
hprgg.}f “f“z,p(sz) =M. (2.1.41)

Inequalities (2.1.38) and (2.1.41) imply equality (2.1.37).
Finally, let M = oo. Then by (2.1.25) measGy >0 for all N > 0. Therefore,
similarly to the first part of the proof,

Ifllz, @ 2 ( / IfIP dﬂ?)p > N(measGN)%
GnN

and
lgggflifllz,p(m 2z N.

Since this inequality holds for all N > 0, it implies that lirginf il L@ =
p—00

Consequently plggo 1z, @) = oo O

*In the case under consideration limsup ¢(p) = limsup ¢(p) is the upper limit of ¢(p) as
P00 p—r+00

p — 400, i.e. the greatest of the partial limits of ¢(p) as p — +oo (<= limsup ¢(p) is the

p—-+4o0
supremum of all ¢ for which there exist pr > 0 satisfying kl_i_}m()g pr = +oo and kli)néo p(pr) = €.)

Recall that lim ¢(p) exists if and only if liminf ¢(p) = limsup ¢(p), and if this equality holds,
p—r+oo p—++o0 p—++o0

then }iril ©(p) is equal the common value of the lower and the upper limits.
D =)
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Exercise 2.1.8. Assume that Q ¢ R” and meas = co. In this case, in general,
equality (2.1.37) does not hold. For example, it does not hold for f =1 on Q.
Prove that if || f|,_ o) = 00, then equality (2.1.37) holds. If || f||_ () < o0, then

it holds if and only if limsup || f||;_(q) < o©-
p—300 P

Theorem 2.1.3. If Q C R" is a measurable set, 0 < meas{2 < oo, and a function
f is measurable on €, is not equivalent to 0 and ||f||; (q) < oo for all sufficiently
large p, then

SIfIP* dz

lim &—— = ||7|| . (2.1.42)
j amges] f |flp dz Lo (S2)
Q

Idea of the proof Let M := ||f||; (o) and G, have the same meaning as in the
proof of the previous theorem. By applying Lemma 2.1.9 prove that

S de
liminf &——— < M. (2.1.43)
P00 f |flp dz
Q

For 0 < § < € < M obtain the estimate

?d
g 1 de 1[/6\Pmeas(Q\ Gs) meas(Gs\ Ge)
R— + +1]. (2.1.44)
f ‘f‘pﬁ—l dz €1l\e¢ meas G, meas G,

Q

By passing here to the limit as, successively, p — oo, § — e— and € — M — prove
that

[P+ dz
liminf &——— > M. (2.1.45)
P00 f U:lp d.’E
Q

|

Proof The assumptions of the theorem imply that there exists po > 0 such that
0 < [|fIP dz < oo for all p > po and that M > 0.
Q

Assume that p > po and M < co. By Lemma 2.1.9
[17 o <l [ 117 do =1 [ 15P e
Q Q Q

Hence inequality (2.1.43) follows.
Further, let 0 < 6 <e < M. Then

/iflpH dw?/lflpﬂ d$>€/{flp dz, /lflpdx>spmeasG€
Q G. G. G.
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flfl” dz = / 7P do + / T dm+/|f{p dz
Q Ge

Q\G,s G;S \Gs

and

g:6pmeas(Q\G5)+6”meas(G5\Gs)+/|fip dz.
G,

Consequently, taking into account that by (2.1.24) measG. > 0 for all 0 < e < M,
we get

g{lflp“ dz € J1r de |

which implies inequality (2.1.44).
Now we pass to the upper limit in this inequality as p — oo. Since 5:; <1, we
get

J1fP dz

limsup ——— <
pooo  [|fPTrdr €
Q
Next we pass to the limit as § — e—. Since G5, \G: D Gé, \ G¢ for §; < 02 < € and

N (Gs\Ge) = 0, it follows that lim meas(Gs \ G:) = 0. (See Section 1.3.1.)
0<d<e o—e—
Therefore

<L [me&S(Gé \Ge) 1} .

meas G

JIFPT de
lim sup LI
pooo  [|fIP dx

Q

™ | =

Finally passing to the limit as ¢ — M —, we establish

[IfP o

limsup —— < —.
pooo  [|fPY d M
Q

Consequently, by equality (2.1.32) inequality (2.1.45) follows which, together with
inequality (2.1.43), implies the desired statement. O

Exercise 2.1.9. Complete the proof by considering the case M = oo.

Remark 2.1.3. Recall that if, for a sequence {ax }xen of positive numbers ay > 0,
the limit lim 2%+ exists, finite or infinite, then lim (ax)* = lim 2. There-
k—oo Ok k—oo k—oo Ok

_}
fore (2.1.42) implies (2.1.37) where p is replaced by k¥ € N. Furthermore, the
existence of the limit in (2.1.37) can be established independently since ||f|| ) =

(mea,sﬂ)'lz? “f”z,,(n) if meas{) > 0, where Hf”}:,,(gz) defined by (2.1.58) is a non-
decreasing function of p. (See (2.1.59).) Hence the limit in (2.1.37) is equal to its
partial limit when p is replaced by k¥ € N. So, Theorem 2.1.2 can be derived from
Theorem 2.1.3. However, the straightforward proof of Theorem 2.1.2 given above
is much shorter.
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Remark 2.1.4. Expression (2.1.1) makes sense also for —oco < p < 0. However,
in this case, if f vanishes at some z € 2, we should agree how to understand

1fllz, ) Let N := {r € Q: f(z) = 0}. We assume that [IfPdz= [ |fI dzif
Q O\N

meas N = 0 and [ |f|” dz = 4o if meas N > 0. We also assume that (400)? = 0.
Q

With these conventions ||f|[; (q) makes sense for all functions f measurable on

Q. Thus, L,(Q) for all —oo < p < 0 is the set of all functions f measurable on
Q. Furthermore, [|f||; ) =0 if and only if meas N > 0, or meas N = 0 and the

integral [ |f|P dz diverges.
o\N

Exercise 2.1.10. Let @ C R*, 0 < meas( < oo and a function f be measurable
on Q. Then

m £z, @) = inf vzal |f(z)] - (2.1.46)

Taking into account equality (2.1.46) and the above comments we may de-
fine L_oo(f2) as the set of all functions measurable on Q and set || fllz__ () =

infgxzrrailf{ if measQ > 0. (If measQ = 0, we assume that ||fl|l;__ ) =0.)

2.1.5 Basic properties of the spaces L,(2),0 <p < 00

By Definitions 2.1.1 and 2.1.6 it follows, for all 0 < p < o0, that if f € Ly(2) and
a € C, then

lefllz, @ = o - 1 fll 2, ) - (2.1.47)
Moreover, if 8 > 0, then

117

— B
Ly(Q) ”f“Lﬁp(Q) : (2.1.48)

If p = 0o, this is a particular case of much more general equality (2.1.34). It also
follows that if measQ = 0, then ||f|l; ) = 0 for all 0 < p < oo and for all
f: Q—C.

Lemma 2.1.10. Let Q C R be a measurable set, meas{) > 0, a function f be
measurable on Q and 0 < p < co. Then || f]| L@ = 0 if and only if f is equivalent
to 0 on Q.

Lemma 2.1.11. Let Q@ C R" be a measurable set, 0 < p < 0o and f € L,(Q). If
g~ f onQ, then g € Ly(Q) and ||gllz, @) = Il @)

Lemma 2.1.12. Let Q C R™ be an unbounded measurable set, a function f be
measurable on Q and 0 < p < co. Assume that measurable sets Q) are such that

(o0}
Q C Q1 and kgl Q = Q. Then lim |[fllz,(,) = IfllL,@)-

Exercise 2.1.11. If 0 < p < oo, then Lemmas 2.1.10, 2.1.11 and 2.1.12 follow by
the properties of the Lebesgue integral. See Theorem 1.3.2, Corollary 1.3.3 and
part 3 of Definition 1.3.18. Prove them for p = co.



2.1. DEFINITIONS AND BASIC PROPERTIES 55

Lemma 2.1.18. For all 0 < p < oo and all measurable sets Q@ C R™ the space
L,(R) is a linear (vector) space with respect to point-wise addition and multiplica-
tion by complex numbers.

Idea of the proof If p < oo, apply the elementary numerical inequalities (2.1.6)
and*

(a+b)P < 2P~ 1 (a? + bP), (2.1.49)
where 1 < p < oo and a,b > 0. If p = co apply equality (2.1.22) of Corollary 2.1.1
and Definition 2.1.5. O

Proof Step 1. Equality (2.1.47) implies that af € L,(2) for all f € L,(Q) and all
aeC.
Step 2. Let 0 < p < oo and f,g € L,(Q). By (2.1.6) and (2.1.49) we get that

for all z € Q)
1f (@) + 9(@)° < Ap (IF(@)IP +19(2)F), (2.1.50)

where A, ;= 2P71if 1 < p < coand A, = 1if 0 < p < 1. Since the function
in the rlght hand side of this inequality is integrable on  and the function in the
left-hand side is measurable on €2, by Theorem 1.3.4 the function in the left-hand
side is also integrable on €2, hence f1 + f2 € L,(2), and

/lf—!—glp d:ngp(/lf(x)Ip da:-%—/}g(x)lp dm). (2.1.51)
Q Q Q

Step 3. Let p = 00, f,g € Loo(Q2) and M := HfiILoo(m,N = |lgllz (@)
Note that by Corollary 2.1.1 measQp(|f]) = meas{z € Q: |f(z)] > M} =
0, measQn(|f]) = meas{z € Q: |g(z)| > N} =0 If |f(z) + g(x)| > M + N, then
either |f(z)| > My or |g(x)] > N. (Otherwise |f(z) + g(z)| < [f(z)| + |9(z)| <
M + N.) Therefore

Qun(If + ) € Qu () U QN (gl),
hence meas Qar4n(|f + g|) = 0. So, by Definition 2.1.5 ||f + gl (o) < M + N.
Thus f + g € Loo(Q2) and
If+9llo. @ <Nfllp @+ 9l @ - (2.1.52)
O

Remark 2.1.5. A similar argument shows that the spaces [,,0 < p < oo, with
term by term addition and multiplication by a scalar are linear spaces as well.

Lemma 2.1.14. If Q C R” is a measurable set, 0 < p < oo, f € Ly(R), and
h € R", then

1f (@ + M)z, @) = IFf @)L, @+n) » (2.1.53)
* The inequality is equivalent to the one-dimensional inequalities (e£1)? < 2P~ 1and (z+1)P—

. zP+1

2P—12P L 2P—1, which are easily proved by finding the maximum of @ﬂ)f—, (x+1)P —2P~12P
2P=1 respectively. It may also be treated as the simplest particular cases of Holder’s inequality
for sequences. (See Section 2.2.3). Since (in both cases) the only point of maximum is z = 1,
inequality (2.1.49) turns into an equality if and only if a = b.
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where Q + h := {z + h: z € Q} is a translation of the set . In particular
1@+ M), &y = IF @)L, @n) (2.1.54)
(translation invariance of || fl|L gn))-

Lemma 2.1.15. IfQ C R" is a measurable set, 0 <p < oo, f € Ly,(), ande > 0,

then
Hf(s"l")“Lp(Q) =g ? ”f(x)“Lp(EQ) s (2.1.55)
where eQ := {ex : x € Q} is a dilation of the set Q. In particular
Hf(S:U)HLp(Rn) = ”f“Lp(Rn) . (2.1.56)

Exercise 2.1.12. If 0 < p < oo, the statements of Lemmas 2.1.14 and 2.1.15 are
simple particular cases of the general Theorem 1.3.19. Prove them for p = oo.

2.1.6 Space Ly(Q)

In the previous section passing to the limit in || f| L,(@) @ P — 00 Or p — —00
was discussed in detail. Another limiting case arises if p — 0+. This case differs
essentially from the previous one though also makes a certain sense if the setting of
the problem is slightly altered. Amendments are required for the following reason.
First note that if f € Ly, (€2) for some po > 0, then

p{i_)x&_[lf‘p dzr = meas(Q2\ N) (2.1.57)
Q

where N := {z € Q: f(z) = 0}. Indeed, this follows by Theorem 1.3.11 because
Ergl+|f(x)lp =1forallz e Q\N, lir(x)1+ |f(z)|P =0 for all z € N, and |f(z)° <
P p—

|f(z)|P° + 1 for all z € Q and for all 0 < p < po. Consequently,

2Dl_i}r(x)1+ Ifllz,@ =0 if meas(Q2\N) < 1, pl_iq)t(z)l+ 1fllz, @ =0 if meas(Q\N) > 1.
With this in mind, it is natural to consider, for measurable sets  C R™ satisfying
0 < meas {2 < 00, the quantity

) 1 »
”f“Lp(Q) = (m /(f]p dIE) R (2.1.58)
Q

which differs from || f{| (o) only by a multiple. Another reason for considering this
quantity is that for p = 1 it is the mean value of |f| over 2, an integral analogue
of the arithmetic mean, and for p = —1 it is an integral analogue of the harmonic
mean.

m
Example 2.1.4. Let m € N, Q = |J O where Q; C R” are disjoint measurable
k=1
sets of equal measure, and f(z) = ay, for all z € Q where aj, are positive numbers.
Then

i B . -”_1_ m . . Ml . m i_ -1
1Az, = llallf, = m 1g2=:1 ky Wz = llalli_, = (Z ak) '

k=1
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Note that
HfHZ,,(m < Hf“;,,(g) (2.1.59)

if 0 < p < ¢ < co. (See Corollary 2.2.3 below.)

Definition 2.1.7. Let Q be a measurable set in R, 0 < meas{) < oo, and a
function f: Q — C. The function f € Lo(Q) if f is measurable on Q and

e J Inlfldz

11z = e a <o0. (2.1.60)
(We assume that eT>° := +o00, e”* :=0.)

The quantity ||f |{20(Q) is an integral analogue of the geometric mean as the
following example shows.

Example 2.1.5. Under the assumptions of Exercise 2.1.4

11 = llall, = (I_Ik) "

Note that
[{f”zo(g) =0 <= /lnl‘fl dr = —00.
Q

In particular, [|f||7 ) =0 if measN >0 and [(In|f|);dz <oo.
Q

Exercise 2.1.13. Prove that Lo(2) is a linear space.

Example 2.1.6. Let v € R and 0 < r < co. The function e/®I” belongs to Lo(By)
if and only if v > —n. Moreover,

| etV =ew ", y>-n.

1205,

If, in particular, —n < v < 0, then el*I” ¢ L,(B,) for any 0 < p < oo, but
el*l” € Lo(B,).

Exercise 2.1.14. Prove that Hlx{"’[]zo(Br) =e nr? for ally € R and r > 0.
The following theorem justifies the notation used in (2.1.60).

Theorem 2.1.4. If Q C R" is a measurable set, 0 < measQ < co and f € Ly, (2)
for some pg > 0, then f € Lo(Q2) and

pﬁf& 111z, @) = 1fllZec) - (2.1.61)

Idea of the proof Follow the proof of Lemma 2.1.2. Consider, together with the
subset N introduced above, the sets N; := {z € Q: 0 < |f(z)| < 1} and N3 :=
{z € Q: |f(z)| > 1}. Apply Theorem 1.3.10 and the Dominated Convergence
Theorem 1.3.11 to justify passing to the limit under the integral sign over N1, Nj
respectively. O
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Proof First of all note that the existence of the limit in (2.1.61) follows by the
monotonicity of || f||7 - (See (2.1.59).)

Step 1. Assume that meas N = 0. Denote a(p) :=

meas ) f lf ip dz. Equa,lity

Q
(2.1.57) implies that a(p) — 1 as p — 0+. Hence Ina(p) = In[1 + (a(p) — 1)] ~
a(p) —1 as p — 0+ and

i, 115, = o0 i, 00 ) = exp (i, 2O )

p—0+ p—0+ p p—0+ p

_ IfP-1
= exp (mea,sﬂ p—>0+/ dx) (2.1.62)

is for @ > 1 increasing and for 0 < a < 1 decreasing on

af—1

The function
2" =1 — Inq. Therefore

a?—1 aPo -1 1—aP
<\i 70<p\<~.p07a’>1;
p Do

<|n|f]|, 0<p<oo, 0<a<l.

Consequently for all x € N; U N,

o H@F -1
p

e =In|f(z)|, (2.1.63)

forallz € Ny and 0 < p < po

|f(@)[P -1 < |f(z)[ —1 , (2.1.64)
p Po

and for allz € N; and 0 < p < o©

L VOE s (2.1:65)

Since the function ——Li)——— is non-negative and integrable on (), equality (2.1.63)
and inequality (2.1.64) imply, by Theorem 1.3.11, that

p
MH/ ’f(“’)‘ -—-/Ilnf(ac)l dz < +00.
N2

Moreover, equality (2.1.63) and inequality (2.1.65) imply, by Theorem 1.3.10, that

hm/ ‘f(“’) dx—-—/|1nf(a:)|dm- /llnf(:c)|da:

p—0+
Ny

the limit being finite of equal to +o00. Thus,

p_
pgr&/l—f-(—%——ldxzfllnf(xﬂ dz,
Q Q
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the limit being finite or equal to —oo, which together with (2.1.62) implies the
desired equality (2.1.61).

Step 2. If meas N = meas(}, then f ~ 0 on Q2 and equality (2.1.61) is trivial:
0 =0. If 0 < meas N < meas 2, then equality (2.1.61) again takes the form 0 = 0
because

R 11z, @ = Jtim,

(meas((l \N)

meas ) ) ”fHZp(Q\N) =0.

This follows since the first factor is equal to 0 whilst the second is finite by the first
part of the proof. O

Exercise 2.1.15. Prove the statement of Exercise 2.1.14 by applying Theorem
2.1.4 and Example 2.1.1.

Finally we note that Theorem 2.1.4 implies that inequality (2.1.59) holds for all
—00 < p< g < oo. (See Corollary 2.2.3 below.) In the extended version it implies,
in particular, that

A1) S 1o S 111z, @) »

which is an integral analogue of the numerical inequality (2.1.16).

2.1.7 Further exercises

Exercise 2.1.16. Let 0 < p < oo and let {rg}ren be an ordered sequence of

all rational points in R™. Moreover, let a function p € Li(R*) n C(R™ \ {0}) be

non-negative and such that li_g% p(x) = oo. Prove that the function f, defined by
x

(o) = (k}zrku(x - rk))%

for all z € R™ for which the series converges and f(z) := 0 otherwise, belongs to
L,(R") and is essentially unbounded on all balls in R™, i.e. 1Nz (B, = oo for
allz € R” and r > 0.

Exercise 2.1.17. Prove that in inequality (2.1.5) the equality is attained if and
only if all as, are equal to 0 or only one of them is non-zero.

Exercise 2.1.18. Let Q C R™. Prove that equality (2.1.31) is satisfied for all
real-valued functions f € C(€) if and only if measQ N B(z,r) # 0 for all z € Q
and r > 0.

Exercise 2.1.19. Prove that for —oo < M < oo Definitions 2.1.4 and 2.1.5 are
also equivalent to the following one: sup vrai f = M if and only if
Q

for almost allz € Q@ f(z) < M,
and for all € > 0 there exists a subset G C Q such that measG # 0 and

for almost allz € G f(z) > M —e¢.
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Also sup vrai f = oo if and only if for all N >0 there exists a subset G C Q such
Q
that meas G # 0 and
for almost allz € G f(z) > N.

This definition is closer to the definition of sup f. However, Definitions 2.1.4 and
Q

2.1.5 are more convenient for applications.

Exercise 2.1.20. By applying formula (2.1.42) with p € N to f(z) = sinz on
Q = [0, 5] prove the Wallis formula

T — (2k)?
2 “g (2k—1)(2k+1)°

Exercise 2.1.21. Let Q C R™ be a measurable set, a function f and a non-negative
function g be measurable on . Prove that if g € L1(Q), then

i ! lf\”gdx)% =iy

Next assume that g ¢ L1(Q). If || f|lL_ () = o0, prove that this equality holds. If
1

11l @) = oo, prove that it holds if and only if limsup (f |f§pgdx) ’ < 0.

p—+00 Q

Exercise 2.1.22. Let —oo < a,b < 0o, a function f € C([a,b]) be non-negative,
and let o € [a, b] be a point of strict absolute maximum of f on [a,b]. Prove that

fbxf(m)p dz
[ f(z)Pdz

Note that the above ratio is the z-coordinate z, of the centre of mass of the

curvilinear trapezium T, = {(z,y) € R?*:a <z <b,0<y < |f(z)[P}. Therefore,

the statement means that lim z, = zo, which is geometrically understandable,
p—0o

because the assumption that f has only one point of strict absolute maximum Zg
implies that for large p the major part of T}, is concentrated around the vertical
line £ = zo. For similar reasons one can expect that the statement will remain
valid if z and o are replaced by g(z), g(zo) respectively, where g € C([a, b)).

2.2 Holder’s inequality
Holder’s inequality is the main inequality in the theory of Ly-spaces. One may say,

without exaggeration, that it, or its corollaries, are in that way or other used in
proofs of all main inequalities related to Ly-spaces.



