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2.2.1 Young’s inequality

Lemma 2.2.1. (Young’s inequality) 1. Let a function f be real-valued increas-
ing and continuous on [0,00), and f(0) = 0. Then for all a,b >0

a

b
abé/fda:%—ff‘ldx, (2.2.1)
0

0

where f~1 is the inverse function. Moreover, the equality holds if and only if

b= f(a).
2. Let a function f be real-valued increasing positive and continuous on (0,00)
satisfying

z—+04

1
lim f(z) =00, wli)xrolof(:(:)zo, ffdsc<oo.
0

Then for alla > 0,b>0

a O
ab}/fdx—/f’ldx. (2.2.2)
0 b

Moreover, the equality holds if and only if a > 0 and b= f(a).

The geometric meaning of inequality (2.2.1) is the following.
Note that

a
ab = meas (OACB) < meas§); + meas{ly = /fdas + / ftdz.
(Equality holds only if b = f(a).) Next we give an analytic proof of (2.2.1) based

on these geometric considerations.

Proof If b < f(a) (< f~1(b) < a), then

a b £ () b a b
ab:/dm/dy: / dx/dy-{— / dx/dy.
0 0 0 0 F-1(b) 0

Since f(z) < bforall 0 < z < £71(b) and f(z) < b for all f~1(b) < z < a, we have

7)) f®) P ) b a fz a fz
/ da:/ dy + / dch dy + / da:/dy— / da:/dy.
0 0 0 f(=) f=(b) 0 P () b

By combining the first and the third integrals in the right-hand side and inter-
changing the order of integration in the second one, we get

a (=)

a-fie o[ / w [

1) b
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a

a b
= [1@as+ [war- [ (@) -vas.
0 0 f=1(b)
Hence inequality (2.2.1) holds. Moreover, the equality holds if and only if

[(f(w)—b)dw=0<==>f“(b)=a<=>b=f(a)-
F-1(v)

If b > f(a), then by a similar argument

a b b
ab = 0] f(z)do + 0/ IS0 dy—-f (/) (f(y) - a)da.

a b
< 0/ f(z)dz + O/ f ) dy.

O

Exercise 2.2.1. Give the geometric interpretation and an analytic proof of in-
equality (2.2.2).

For —oo < p < oo, the quantity p’ satisfying
1 1
-+ = =1
p P
is called the conjugate. If p = 1, it is assumed that p’ := oo; if p = 0o, then p’ := 1.

Corollary 2.2.1. 1. If 1 < p < oo, then for alla,b> 0

p P
%+?° (2.2.3)

2. If0<p<1, then for alla > 0,b> 0

ab <

p o
@>%+?. (2.2.4)

3. In both inequalities the equality holds if and only if a? = »w (In the second
case also a > 0.)

Idea of the proof Set in Lemma 2.2.1 f(z) = 2P~ L. O

Next we note some other equivalent forms of inequality (2.2.3). We assume here
that 00 := 1.
Foral0 <y<1landa,b>0

a1 -9 (a+D). (2.2.5)

The equality holds if an only if (1 — v)a = 7b.
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Forall0<y<1landa,b>0
a"b'™" < ya+ (1 —9)b. (2.2.6)

The equality holds if an only if a = b.

Inequality (2.2.3) implies inequalities (2.2.5) and (2.2.6) if to replace —@E by a,
Qpr by b and % by 7, by va, (1 — ¥)b and + respectively.

In its turn inequality (2.2.6) is equivalent to

ylna+ (1 —y)b< In(ya+ (1 —7)d). (2.2.7)

where a,b > 0,0 < v < 1, which is the property of concavity of the logarithmic
function.

Exercise 2.2.2. As shown above inequality (2.2.3) can be proved as a corollary of
inequality (2.2.1) and as a corollary of the concavity of the logarithmic function.

Give one more proof by reducing it to the one-dimensional inequality £ IP_ 4+ B“% >1
for all z > 0.

Exercise 2.2.3. State and prove by induction the generalizations of inequalities
(2.2.3), (2.2.5) and (2.2.6) for the case of the product of m multiples in the left-hand
side. Find in which cases the equality holds.

2.2.2 Holder’s inequality for integrals

Theorem 2.2.1. (Hoélder’s inequality) Let Q C R™ be a measurable set, func-
tions f and g be measurable on 2 and 0 < p < 0.
1. If 1 < p< o0, then

/!f!ﬂ dz < HfHLp(Q) ”g“Lp,(Q) . (2.2.8)
Q
2. If 0<p< 1, then

[ 1151 42 > 17110 9l @ - (2:2:9)
Q

If one of the factors in the right-hand sides of (2.2.8) or (2.2.9) is equal to zero,
we assume that the product is also equal to 0 even if the second factor is infinite.
See also Remark 2.1.4, explaining how to treat the factor [|g||, o) in (2.2.9) if g

b
vanishes at some points z € Q. If 1 < p < oo and f € Ly(R),9 € Ly () then
inequality (2.2.8) implies, in particular, that fg € L1(9).

Idea of the proof Integrate over ) the inequality obtained from Young’s inequal-
ity (2.2.3) by setting

N i G I [ C) 1
M’ " Tol@ (2210

O
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Proof Step 1. If p =1 hence p’ = oo, or p = 0o hence p’ = 1, inequality (2.2.8) is
already proved in Lemma 2.1.9.

Step 2. Next let 1 < p < oco. If either HfHLp(Q) or Hg[[Lp,(m is equal to 0 or oo,
then inequality (2.2.8) is trivial. Assume that 0 <||f||. (q), Il L@ <00

Inequality (2.2.3) with a and b defined by (2.2.10) implies that for all z € Q

f@o@] 1 UE@P | 1 s
ey 191z, ~ 2 W 7 6l (2.2.11)

Since both parts of the inequality are measurable on €2, by Theorem 1.3.4

[If@g@) e [If@)Fdz [ lg(z)[P" dz
Q Q 4o Q : _
4 HQHII)JP,(Q)

+ =1,

1
'3

=N

< =
“f”Lp(n) “gHLp;(ﬂ) Sp “f”’ip(ﬂ)

which implies the desired inequality (2.2.8).
Step 3. If 0 < p < 1, then by a similar argument starting with inequality (2.2.4)
instead of (2.2.3), we obtain inequality (2.2.9). O

Remark 2.2.1. The proof above is one of the implementations of the general
idea: each numerical inequality gives rise to an integral inequality if its entries are
replaced by the values of some functions and integration is carried out.

If p =2, then p’ = 2 as well and inequality (2.2.8) takes the form
[ 1781 dz < U0 sl -
Q

This is the Cauchy—Bunyakovskii inequality.* It is a particular case of the gen-
eral Cauchy—Bunyakovskii inequality (1.1.4) for semi-inner-product spaces, since

[ fgdz is a semi-inner product on Lz(Q2), and hence can also be proved as in

Q
Exercise 1.1.4. See Section 3.1.1.

Corollary 2.2.2. Let 2 C R™ be a measurable set, functions f and g be measurable
O’H,Q, O<p<001 —00 < P1,P2 <007p1 7&091727&0 and

1,1 1 (2.2.12)
P p2 P
(We assume that = :=0.)
1. If p < p1 € o0, then
“fg“Lp(Q) < ”fHLm () HQ“L,,Z(Q) . (2:2.13)

2. If —oo < p1 < p,p1 # 0, then

1f9llz,@) 2 1z, @) 19llz,,@) - (2.2.14)

* Also known as the Schwarz inequality or the Cauchy—Schwarz inequality.
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If p = 1, then the corollary coincides with Theorem 2.2.1. Thus, the corollary
is, in fact, a generalization of Theorem 2.2.1. However, this is a generalization
which is equivalent to the initial statement.

Idea of the proof If p < oo, apply the following particular case of equality
(2.1.48)

1
1£9llL, @ = P19 117, @)
and Theorem 2.2.1. O

Proof Stepl. If p < oo and p < p1, then applying equality (2.1.48) and Hélder’s
inequality (2.2.8) with the exponent %’- > 1, and taking into account that, by

(2.2.12), (%)’ = B2, we get
1P 19PNz, @) < IHIFIP “L%L(Q) I lgl? ”L%(Q) = If1IZ,, @ 191I%,, @) -

which implies inequality (2.2.13). Inequality (2.2.14) is proved similarly.
Step 2. If p = oo and p; < oo, then, by (2.2.12), ps = —p1, and by inequality
(2.2.8) with p = co we get

“f“Lpl(Q) = H(fg)g—_IHLpl(ﬂ) < “fg”Loo(Q) ”9_1“111)1(9) ’

which implies inequality (2.2.14) since, (2.1.48), ||g~|| Ly @)= HgHEi2 @

Step 3. Finally, if p = co and p; = oo, then, by (2.1.48), also p; = co. In this
case inequality (2.2.13) takes the form

1£9llz @) S NNl IFllL. @) - (2.2.15)

which can be proved similarly to inequality (2.1.52) taking into account that
Qaran, (179]) © Qan, (IF]) U Qs (lg]) where My = || fll, ) and M2 = |lgll,_ (q)-
]

Exercise 2.2.4. Prove inequality (2.2.15) by passing to the limit in (2.2.8) and
applying Theorem 2.1.2.

Exercise 2.2.5. Derive inequality (2.2.9) from inequality (2.2.8) by applying the
argument used in the second part of the proof of Corollary 2.2.2.

Corollary 2.2.3. Let Q C R"™ be a measurable set of finite measure and let 0 <
p<q<o0. Then
Ly(Q) C Ly(Q) (2.2.16)

and for all f € Ly(S2)

11
1£llz, (@) < (measQ)777 [|If]l, ) - (2.2.17)
(In the notation of Section 2.1.6 this is inequality (2.1.59).)

Idea of the proof Apply Hélder’s inequality to [ |f|P dz = [|f|’ - 1dz. O
) )
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Proof If ¢ = oo, the statement was proved in Corollary 2.1.3. Let 0 < P < g < o0.
By applying Holder’s inequality with the exponents 2 > 1 and (% >1) = o we
get

/lfl’” dz < || |f HLQ(Q) 1 flLﬁ;(Q) = ”f“zf,q(g) (mea,sQ)g%z )
Q

and inequality (2.2.17) follows. It also implies inclusion (2.2.16). Indeed, if f €
Lq(§2), then [|f]|; (@) < oco. Hence by (2.2.17) ||f|l; @) < oo which means that

f e Ly(Q). O

Remark 2.2.2. If f = 1 on (, then inequality (2.2.17) turns into an equality.

Hence the factor (meas Q)%_% is not replaceable by a smaller one. Following the
tradition we call it a sharp constant in inequality (2.2.17), thus emphasizing that
it is independent of f € L4(€), though clearly it is a function of Q, p and ¢. This
fact may be stated also in the following way. Consider the identity operator I as an
operator acting from L4(Q) to L, (), which is possible due to inclusion (2.2.16).
Then the operator I: Ly(Q2) = Lp(Q) is bounded and, moreover,

1

ﬂ'ﬁ'&@_ = (meas Q)74 . (2.2.18)

0 =
Lq(Q2)—Lyp(R2) FELL(),f#0 ”fHLq(Q)

Inclusion (2.2.16) and, in general, any inclusion Z; C Z3 of function spaces Z; and
Z, is often called an embedding. Also the identity operator I: Ly(2) — Lp(Q),
in general case I: Z; — Zs, is called an embedding operator. If this operator is
bounded, as in the case under consideration, then the corresponding embedding is
called a continuous embedding.

Exercise 2.2.6. Prove that for Q := R™ embedding (2.2.16) does not hold for
g > p and for ¢ < p. Prove also that if Q := B; and ¢ < p, then again embedding
(2.2.16) does not hold.

In the notation of Section 2.1.6 inequalities (2.2.8) and (2.2.9) in the case 0 <
meas () < oo take the form

191z, @) < HfHZ,,(g) Hglizp,(g) y 1< p<oo, (2.2.19)

and
1£9llL, @ 2 £z, l9lL, @ » 1<P<o0, 0<p<I. (2.2.20)

Under additional assumptions of monotonicity type these inequalities can be
improved as the following statement shows.

Lemma 2.2.2. (Chebyshev’s inequality) Let —oco < a < b < 0o and let func-
tions f, g be non-negative on (a,b).

1. If f is non-decreasing and g is non-increasing on (a,b), then fg € L1((a,b))
and

1£9llz, @) < 1L, @) I1911L, 0 - (2.2.21)

2. If both f and g are non-decreasing or both are non-increasing on (a,b), then

1£9llz @) = I1£112, @) 119112, () - (2:2.22)
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b b
Idea of the proof Prove that [ pgdz < g(c) [ ¢dz = 0, where for all z € (a,b)
a a

o(z) == f(z) - (b - a)‘lfbfdy, and c € (a,b) is such that ¢(z) < 0 if z € (a,c)
and ¢(z) > 0 if z € (¢, b). O
Exercise 2.2.7. Prove the lemma by applying the above hint.

Next we continue to derive corollaries of Holder’s inequality.

Corollary 2.2.4. (Multiplicative inequality) Let Q C R™ be a measurable set
and 0 < p1 < p<py <00. Then

Lpy () N Ly, (Q) C Ly(R) (2.2.23)

and
1l < IFIE, oy IF1E %0y (2.2.24)

for all f € Ly, (2) N Ly, (), where o € (0,1) is defined by

o l-e (2.2.25)
P N p2
Idea of the proof Apply inequality (2.2.13) with exponents p,f—’— and 82— Ty to
F1= 151 11, O

4 (—’-’L)_l = p~!, inequality (2.2.13) and equality

-

Proof Since by (2.2.25) (%)
(2.1.1) imply that

Iz, @) < A Nz, @l Vi “L%(m I£I1Z,, @ ”fHL,,z(sz)
O

Remark 2.2.3. Inequality (2.2.24) is the simplest of the so-called interpolation
inequalities.

Corollary 2.2.5. (Inequality with a parameter) Let Q C R™ be a measurable
set and 0 < p; < p < ps < oo. Then for alle >0

1£1lz,@ < @*(L =) (" fllz,, @+ I1fllz,, @) (2.2.26)

for all f € Ly, (2) N Ly, (), where a € (0,1) is defined by (2.2.25).
Idea of the proof Apply inequalities (2.2.24) and (2.2.5) taking into account that

— —_ —a l1—a
I£I1Z,, @) “f”i,,l o= I£llz,, @) )% (e 1flz,, @) -
]

Exercise 2.2.8. For a fixed f € Ly, () N Ly, () inequality (2.2.26) holds for
all e > 0. So the right-hand side as a function of ¢ is greater than or equal to
Il L,(e)- Hence, the minimum of the right-hand side with respect to £ > 0 is also

greater than or equal to ||f|| ). Taking into account this observation prove, by
minimizing the right-hand side, that inequality (2.2.26) implies inequality (2.2.24).
(Thus, inequalities (2.2.26) and (2.2.24) are equivalent.)
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Inequality (2.2.26) implies, by taking € = 1, the so-called additive inequality:

£z, < @*( =) (Ifllz,, @ + Iz, @) (2.2.27)

Exercise 2.2.9. Inequality (2.2.27) holds for all measurable sets {2 and for all
functions f € Ly, ()N Ly, (). Given £, f and § > 0, apply it, taking into account
formulae (2.1.53) and (2.1.55), to the set 62 and the function f5 defined for z € 6Q2

by: fs(x) := f(éz). Put ¢ := 8317 7:) to obtain inequality (2.2.26).

Remark 2.2.4. Let 0 < p; < p2 < oo be fixed. The above argument shows
that 1) inequality (2.2.24) for all measurable 2 and f, 2) inequality (2.2.26) for all
measurable Q and f, and for all ¢ > 0, and 3) inequality (2.2.27) for all measurable
Q and f, are equivalent. Next, assume that a measurable set €2 is such that eQ2 = Q
for all € > 0 be fixed. (For example, 2 = R™.) A similar argument shows that 1)
inequality (2.2.24) for all measurable f, 2) inequality (2.2.26) for all measurable f
and for all ¢ > 0, and 3) inequality (2.2.27) for all measurable f, are equivalent.

Corollary 2.2.6. Let  C R™ be a measurable set, m € N, functions f1,..., fm

be measurable on 2, 1 < p < p1,...,Pm < 00, and
m
1.1 (2.2.28)
k=1 P p
Then
m m
H H kaLP(Q) < H “fk“Lpl Q) (2229)
k=1 k=1
Idea of the proof Apply Corollary 2.2.13 and induction. O

Exercise 2.2.10. Prove the corollary.

Sometimes it is convenient to apply the variant of inequality (2.2.29) withp =1
obtained by replacing px by ax and |fi| by |fx|**: ifax > 0and ey +---+ox =1,

then m ~ )
f (H Ika“") do <[] ( / lfkldx) : (2.2.30)
Q k=1 k=1 *q

Finally we discuss the cases in which equality is attained in Holder’s inequality,
its variants and corollaries. We say that complex-valued functions f and g are
almost proportional on  C R™ if there exist A, B € C satisfying |A|+|B| > 0 such

that A |f(z)[P = B|g(z)|F’ for almost all z € Q.

Lemma 2.2.3. Let Q C R™ be a measurable set, 0 < p < 0o, f € Ly(Q) and
gc Lp! (Q)

1. For1l < p < oo equality is attained in inequality (2.2.8) if and only if | f|?
and |gP’ are almost proportional on Q.

2. For 0 < p < 1 equality is attained in inequality (2.2.9) if and only if a)
Iz, @ =0, b) HgHLP,(Q) =0 and f ~ 0 on the set {x € Q: g(x) # 0} or c) both

1z, @) HgIle, @ > 0 and |f[P and lg|* are almost proportional on Q.

3. For p = 1 equality is attained in inequality (2.2.8) if and only if a) f ~ 0
on Q orb) f£0onQ andl|gl = |gllp o almost everywhere on the set {z €

Q: f(z) # 0}.

4. For p = oo in the previous statement f and g should be swapped.
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Idea of the proof If p # 1 and p # oo, the proof is based on part 3 of Corollary
2.2.1. If, say 1 < p < 00, and |f|? and |g|? are not almost proportional, verify that
in the proof of Holder’s inequality in inequality (2.2.11) strict inequality holds on
a subset of positive measure and apply part 2 of Theorem 1.3.4. If p = 1 apply
inequality 2.1.23 and again part 2 of Theorem 1.3.4. O

Proof Step1l. Let 1 <p < oo. If f ~0or g~ 0 on {2, inequality (2.2.8) takes the
form 0=0. Assume that f £ 0 and g # 0 on Q. Then the functions |f|” and |g|°
are almost proportional if and only if, for F(z) := ”—ﬂ’%g’—)(;—) and G(z) := m]——g—@——,

the equality |F(z)|” = |G(z)|” holds for almost all z € Q.
Indeed, if there exist A, B € C satisfying |A| + |B| > 0 such that A|f(z)|’ =

B|g(x)[' for almost all z € ©, then A, B # 0 and A [ |f(z)|P dz = B [ |g(z)" dz.
Q Q

Hence
IF(x)lp — lf(.’l;‘)lp _ 5 Ig(x){p _ |G($)|p'

[1f@)Pdy A [lg)F'dy
Q Q

for almost all z € Q. Conversely, if |F ()|’ = |G(z)” " for almost all z € Q,
then A|f(z)[P = B|g(z)” for almost all z € Q, where A = [|g(y)P dy and

Q
B = [|f(y)Pdy.
Q

So, first assume that |F(z)[P = |G(z)[P for almost all z € Q. Then |g(z)| =

1

llgll. () 4
—2— | , and both parts of

C|f(@)[P~" for almost all z € Q, where C = (Hfﬂz,,,m)

inequality (2.2.8) are equal to C'[| |7 q)-

Next assume that |F(z)[" # |G(z)[F " on a subset of positive measure ;. Then
by parts 1 and 3 of Corollary 2.2.1 inequality (2.2.11) holds and is strict on ;.
Hence by Theorem 1.3.4

[1f@e@) e [lf@Fd | [lg@F do
= ¢ Il R

< = 7
171l @ l9llz, @ P I£IIZ, @) P’ l{gl{ﬁp,(m

S| =

Therefore

[ 151 ¢z <1715, (@ ol e -
Q

Step 2. The case 0 < p < oo is similar to the case 1 < p < oo.
Step3. Let p=1. If f ~0on Q, or f £ 0 on 2 and |g| = |lg/|;__ () almost

everywhere on the set {z € Q: f(z) # 0}, then clearly inequality (2.2.8) turns to
an equality. If f 4 0 on Q and |g]| < ||g||;__ (o) on a subset Q1 of {z € Q: f(z) # 0}
of positive measure, then the inequality

|f(@)g(2) < 1f(@)] - llgllz .0 »
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which by inequality (2.1.23) holds for almost all z € €, is strict on ;. Hence by
part 2 of Theorem 1.3.4

/ gl dz < / 12 19l @ 4 = 1711z, @ 19l -

Q Q

Step 4. If p = 0o, then p’ = 1 and the statement follows by swapping f and g
in Step 3. O

Exercise 2.2.11. By applying this lemma prove, assuming that meas {2 > 0, that
in inequality (2.2.24) equality is attained if and only if |f| ~ Ax on Q, where A > 0
and Y is the characteristic function of a measurable subset of 2 of positive measure.

2.2.3 Holder’s inequality for sequences

By considering step-functions one can obtain inequalities for sequences analogous
to the appropriate inequalities for integrals.

Corollary 2.2.7. (Holder’s inequality for sequences) Let 0 < p < 00, a € [,

and g € L.

1. If 1 < p< o0, then* ab € l; and
oo
> larbr| < llalls, l1Blle,, - (2.2.31)
k=1

2. If0<p<1, then
oo
> larbr| > llalls, lblls,, - (2.2.32)
k=1

(If at least one of by = 0, we assume that ||b]|;, = 0.)

Idea of the proof In Theorem 2.2.1 consider Q = (0,00) and step-functions f
and g defined by f(z) = ax,g(z) = by for z € (k—1,k],k € N. O

Proof Since

/\fgl dz = Z |akbk| , ”f“z,p((o,oo)) = |lallz,, Ilg”Lp,((O,oo)) = 1Bl » (2.2.33)
0 k=1

inequalities (2.2.31) and (2.2.32) follow from inequalities (2.2.8), (2.2.9) respec-
tively. O

Remark 2.2.5. Note that one might have started with an arbitrary measurable
set Q C R™ of positive measure. Indeed, by Exercise 1.5.5 €2 can be represented
as () = G Q. where i, k € N, are disjoint subsets such that measQ =1 for all
keN ifkmlea,sﬂ = 00, and meas QY = 2~ % measQ for all k € N if measQ2 < co. If,
in the first case, f(z) = ax on Q, and, in the second case, f(z) = 2%(meas Q)"%ak
on Q, then [|f]], (q) = llal,-

* Given a = {a }ren and b = {bg }ren, here we assume that ab := {arbi }ren-
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If m € N and sequences a and b are such that ax = by = 0 for k¥ > m, then
inequalities (2.2.8) and (2.2.9) imply corresponding inequalities for finite sums, for
example for 1 < p <

1
14

g |axbr| < (é Iaklp) % (é lbkl”') : (2.2.34)

In its turn, inequality (2.2.31) can be obtained from (2.2.34) by passing to the
limit.

Exercise 2.2.12. Give a direct proof of inequality (2.2.34) similar to the proof of
inequality (2.2.8) given in Section 2.2.2.

Remark 2.2.6. If m = 2, it is also possible to give a simple proof of inequality
(2.2.34), which takes the form

1

laa] - |az| + 1] - |b2| < (|a1]? + |az[P)? (|b1]P + |ba|? )'51’ , (2.2.35)

by reducing it to the one-dimensional inequality. Indeed, if asb; = 0 it is trivial.
Let azb; # 0. Dividing (2.2.35) by |ag| - |b1| and setting = := Jl%i;%,y = %—} we

see that (2.2.35) is equivalent to the inequality (z + y)(z? + 1)_% < (7 + 1)517,

which is easily proved by finding, for a fixed y > 0, the maximum of the function
1

(z+y)(z? +1)"7 on [0,00).

Exercise 2.2.13. Prove inequality (2.2.34) by induction starting with inequality
(2.2.35).

Exercise 2.2.14. By applying Definition 1.3.18 deduce inequality (2.2.8) from
inequality (2.2.34).

Corollary 2.2.8. Let m € N and aq,...,a, > 0.
1. If 1 < p < o0, then

A+ +al, <(ar+ - +an)? <mPHal +---+ab,). (2.2.36)
2. If0<p<1, then
mP Yl 4+ +al) < (a1 +- - +am)P <al +---+aP,. (2.2.37)

Idea of the proof Apply inequality (2.2.34) and its variant for 0 < p < 1 with
by = -+ = by, = 1, and inequality (2.1.5). O

Proof The left of inequalities (2.2.36) is inequality (2.1.5). The right one follows
by (2.2.34) since

1

i PO\ L3 »
a1+-‘-+am=a1-1+-~-+am-1g(Zaﬁ) (Zl) :ml”i(zaz) .
k=1 k=1

k=1

The case 0 < p < 1 is treated similarly. U
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Let 0 < p < g < 0co. Replacing in the second of inequalities (2.2.36) p by 1% and
ax by af yields

@+ +ab)s <mp w(ad+-- +al)7, (2.2.38)

which in the notation of Section 2.1.2 is inequality (2.1.15). Next we give a useful
generalization of inequality (2.1.49), the simplest particular case of the right of
inequalities (2.2.36).

Lemma 2.2.4. Let 1 < p < co. Then for all a,b>0 and v > 1
(@ +b)? < vaP + Cp(y)b? (2.2.39)

where L
Cp(y) = (L—477) ", (2.2.40)

Moreover, the equality holds if and only if b = ('ﬁ"}f - 1)a.

The important point about this inequality is that the coefficient at aP? can be
arbitrarily close to 1 at the expense of the coefficient at b which tends to co as
v — 1+,

Idea of the proof Reduce inequality (2.2.39) to the equivalent one-dimensional
inequality. O

Proof If b = 0, the inequality is trivial. Let b > 0. Then, by dividing by b
and putting z = ¥, we see that inequality (2.2.39) is equivalent to the inequality
(14 z)? — yzP < Cp(v) for all z > 0. The first statement follows since

max ((1+2)? - ya?) = (1-777)" 7,

and the second one since z = (fy?-l'-T - 1)'~1 is the only point of maximum. O

Remark 2.2.7. Note that if v = 2P~!, then Cp(vy) = 2P~1 and (2.2.40) coincides
with (2.1.49). Note also that if a > 0, then

I%Hll (va? + Cp(7)b*) = (a + b)P (2.2.41)

and vy = (2£2)P ~! is the only point of minimum.

2.2.4 Converse Holder’s inequality

Assume that  C R” be a measurable set, 1 < p < oo, f € L,(2) and ”f“z,p(sz) <
M. Then by Holder’s inequality

ffgdx
Q

for all g € L, (2). This statement may be inverted as the following theorem shows.

<M HQHLP, @) (2.2.42)
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Theorem 2.2.2. (Converse Holder’s inequality) Let Q C R™ be a measurable
set, a function f be measurable on 2 and M > 0.

1. If1 < p < 0o and for all functions g € Ly (Q) the functions fg are integrable
on  and inequality (2.2.42) holds, then f € L,(Q) and ||f]| L@ SM.

2. If 0 <p <1 and for all functions g € L (Q) the functions fg are integrable
on Q and the inequality

l / fgdw] > M lglly @ (2.2.43)
Q

holds, then Hf]le(Q) > M.

f@)P .

Idea of the proof Consider the functions h,, defined by* h,(z) := J——f((—_;g— if

f(z) # 0 and hy(z) = 0 if f (:c) = 0, and the characteristic functions xj of
the sets O 1= {z € Q: |z| < k, § < |f(z)| < k}, k € N. If p =1 take in (2.2.42)
g = hq, otherwise take in (2.2.42) or (2.2.43) g = h,xx and pass to the limit as
k — oo. O

Proof The case f ~ 0 being trivial, assume that f # on Q. Hence || f|| L@ > 0
1. If p =1, then hy € Lo(?) and [|h1]|;_ ) = 1. Hence, one may take g = h;

in (2.2.42), and the statement follows because f fhidz =||f HLI(Q).

2. Next let 1 < p < oo. If it were known that f € L,y(f2), then inequality
(2.2.42) with g = hy, would imply the statement because

Iole oy = 11ty [ Sy = 11, oy -
Q

In order to prove that f € L,(Q2) and simultaneously obtain the desired inequality
we take g = hpx; with any £ € N. Note that measQ; > 0 for some ky € N.

o

Otherwise, meas{z € Q: f(z) # 0} = meas |J Q = 0, hence f ~ 0. Note that the
k=1

functions h,xx are measurable on 2 and for k > ko

- _1

0 < k'"P(meas Q)" "7 < ||hpxall, L@ = Il (Q) < kP~ (meas Q)77 < 0.

Therefore inequality (2.2.42) with g = h,x; implies that for all k € N
Xkl ) < M I FXRIE o)

and, hence, ||fxllz, ) < M for k > ko. Since |f(z)[” xx(x) < |f(@)| Xk+1(2)
for allz € Q and k € N and limk — oo |f(z)[F xx(z) = |f(z)|F for all z € Q by
Monotone Convergence Theorem (see Corollary 1.3.7)

111z, = Jim 1 xelz, ) < M.

3. If 0 < p < 1, the argument is similar.

*If f is real-valued, then hp(z) := |f(z)[P~!sgn f(z).
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4. The case p = oo can be reduced to the case 1 < p < oo. Indeed, inequality
(2.2.42) with p = oo and inequality (2.2.17) imply that for all 1 < p < oo, for all
k € N and for all g € L (2 N By)

Q/ fodz

Hence, by Step 3

1
<M “g“Ll(Q) < M (meas($2N Bg))» ”g“Lp:(Q) .

1
17112, @nBy) < M(meas(QN By))? .

Passing to the limit as p — co we get, by Theorem 2.1.2, that ||| _ ong,) < M-
Finally, passing to the limit as k¥ — oo and taking into account Lemma 2.1.12, we
obtain the desired inequality. O

Corollary 2.2.9. Let Q C R™ be a measurable set and a function f be measurable
on Q. If [ fgdz =0 for all functions g € Loo(Q), then f ~ 0 on Q.
Q

This is a particular case of the theorem corresponding to M = 0 and p = oo.

Corollary 2.2.10. (Duality formula) If Q C R" is a measurable set, a function
f is measurable on Q and 1 < p < oo, then

/ fgdx

Q

Idea of the proof Denote the right-hand side of this formula by M. Apply
Holder’s inequality to prove that M < [|f||, (q), and the definition of a supre-

mum and the theorem to prove that M > || f|| L) O

. (2.2.44)

Hf”L,,(Q) = sup
g |Lp’ (Q):l

Proof By inequality (2.2.8)

M < sup HfHLp(Q) “g”Lp,(Q) = H‘f“Lp(Q) :
”9”Lp:(n)=1

If M = oo, this implies that ||f||; ) = oo, hence formula (2.2.44) holds. As-
sume that M < oco. Then, on the other hand, by the definition of a supremum,

[ fgdz
Q

trary h € L, (Q2) which is not equivalent to 0, take here g := m. Since
pI

< M for all g € Ly (Q) satisfying Hgl]Lp,(m = 1. Given an arbi-

llall Ly@ =1 this implies that

/fhd$' <M Al @ (2.2.45)
2

for all h € L, (£2). Hence by the first part of Theorem 2.2.2 || f|| L@ S M, and
formula (2.2.44) follows. O
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Remark 2.2.8. At a first glance formula (2.2.44) does not seem to be useful,
because || f|| L,(«) is represented via an expression, more complicated than the ini-

tial one, which involves integrals [ fgdz for all functions g € L, () satisfying
Q
lgll r,(e) = 1 and, moreover, taking supremum with respect to all such functions.
However, the advantage, which can be exploited, is that the integral [ fgdz is, in
Q

contrast to || f|| L,(¢)> linear with respect to f.

Remark 2.2.9. Let us consider the linear functional on L,(2) where 1 < p < o0
associated with a measurable function f, defined for all functions g € L,(2) by

l¢(g) :::/fgdaz. (2.2.46)
Q

The right-hand side of formula (2.2.44) is the norm of this functional if p’ is replaced
by p. (See formula (1.1.5).) Hence

el = IFNz,, @) - (2.2.47)

Exercise 2.2.15. Prove the following variant of formula (2.2.44)

”f”Lp(Q) = sup /ffgl dz. (2.2.48)
g“Lp/(Q)zln

2.2.5 Further exercises

Exercise 2.2.16. Let 1 < p < oo, f € Ly(0,00) and F(z) := [ fdy for z € (0,00).
0

Prove that F(z) = 0(3:517) as z — 0+ and F(z) = O(:):EI") as T — 00.

Exercise 2.2.17. Let Q@ C R" be a measurable set, and let functions f,g, w be
measurable on Q and w > 0. Prove that if 1 < p < oo, then

Q/!fglwd:c< (Q/Iflpwd:c) (Q/}glp wd:z:) : (2.2.49)

State and prove a similar inequality for 0 < p < 1.

Exercise 2.2.18. In development of Exercise 2.2.6 prove, by applying Exercise
1.5.5, that 1) for any measurable set 2 C R” of infinite measure embedding (2.2.16)
does not hold for ¢ > p and for ¢ < p, 2) for any measurable set QO C R™ of non-zero
finite measure embedding (2.2.16) does not hold for ¢ < p.

Exercise 2.2.19. Prove that if

Pip2

j— P2—p
meas ) < (W) . )
ep2(p — p1)
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then inequality (2.2.26) is strict. Otherwise the equality in (2.2.26) is attained if
and only if |f| ~ Ax on 2, where A > 0 and x is the characteristic function of a
measurable subset Q; of € satisfying

_P1P2

meas )y = w P2—P1
1 epa(p —p1) .

(If p2 = oo, then (%ﬁl) Pah should be replaced by the limit of this expression

as pa — 0o equal to (B )m

Exercise 2.2.20. Prove that if the entries of a determinant A of order m are
functions in L, () where 2 C R™ is a measurable set, then A € L;(Q).

Exercise 2.2.21. Let  C R™ be a measurable set, m € N, functions fi,..., fm
be measurable on 2, 0 < p < p1,...,pm < 00, and let equality (2.2.28) be satisfied.
If all py > 1, then by Corollary 2.2.6 inequality (2.2.29) holds. What happens if
one of py is less that 17 two or more of pg are less that 1?7

Exercise 2.2.22. Let Q C R™ be a measurable set, 1 < py,p2,p3 < 00, o + +
- =1 and let fi € Ly, () for k € {1,2,3}. Prove that

/Iflfzfsl dz < (fif2llp,, @ I1f2f5llz,, (@) If1fsllz, , @ )%
Q

< fillz,, @ HfzuL,,2 ) “f3“Lp3(Q) ’

where pil L pl State and prove the generalization of this inequality for the
product of m factors where m > 3.

2.3 Minkowski’s inequality

231 Casel<p<o
Inequality (2.1.51) proved in Section 2.1.5 and (2.1.6) imply that for 1 < p < co

1—1
If+9llp,@ <277 ( 1 llz, @) + lgllz, @ )- (2.3.1)

If p =1, then the numerical factor in the right-hand side of (2.3.1) is equal to 1. In
Section 2.1.5 it is proved that for p = oo this inequality also holds with the factor
1. (See inequality (2.1.52).) So is the case 1 < p < co: one can obtain a better

estimate in which the factor 2177 is replaced by 1.

Theorem 2.3.1. (Minkowski’s inequality) Let Q C R™ be a measurable set
and 1 <p<oo. If f,g € Lp(R), then f+ g € L,(N) and

If +9llL,@ < IFllL,@ +119llL,@) - (2.3.2)

Idea of the first proof Apply inequality (2.2.39) with an arbitrary v > 1 to
|f(z) + g(z)|?, integrate over  and next minimize the right-hand side over v. O
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First proof By inequality (2.2.39) we get that for all z € Q and for all v>1
[f(z) +9(=)I" < (If @)+ lg(@)])” < vIf(@)F + Cp() lg ()P . (2.3.3)

Since the function in the right-hand side of this inequality is integrable on  and
the function in the left-hand side is measurable on 2, by Theorem 1.3.4 the function
in the left-hand side is also integrable on (2, hence f + g € Ly(R2), and

J17 40 dz <y [11@F ds+ ) [ls@Paz. (34
Q Q Q

Therefore by formula (2.2.41)

I +g“LP(Q) < ({%Hll (’Y”f”ip(n) +Cp(7) HQHII),,,(Q) ))% = ”f“Lp(gz) + HQHLP(Q)’ 0

Next we give a standard proof of Minkowski’s inequality, based on application
of Holder’s inequality.

Idea of the second proof Note that

1F+ 9P = 1f + gl 1f +aP 7 < (F1HaD If + 9P~ = |£11f + gl +1gl-If e '35)

and apply inequality (2.2.8). [J

Second proof Since the entries of inequality (2.3.5) are measurable on 2, by
Theorem 1.3.4 and Hélder’s inequality

/ F+glde< / I 1f+ 9P do + / o 1f + 9P de (23.6)
Q Q

Q

<Ml 117 + 9P~ Iz, @ * l9ll, o | 1f +gl"~ Iz, @ -

So,
|lf+9”§,,<m < ||f+glzz),—(lﬂ) (Hf”L,,(n) +llgllz, @) ) (2.3.7)

If “f+g“Lp(Q) = 0, inequality (2.3.2) is trivial. Assume that ”f+gHLp(Q) > 0.
By inequality (2.3.1) ||f +gl|; gy < 0o. Therefore (2.3.7) implies (2.3.2). O

Remark 2.3.1. One can complete the second proof without referring to the sep-
arately proved inequality (2.3.1). The important point is that inequality (2.3.6)
implies inequality (2.3.2), but under the assumption that || f + g|| L@ < oo. Let xk

be the characteristic function of the set {z € Q: |z| < k, |f(z) + g(z)| < k}, k € N.

Then || fxx +9xkllp, @) < oo. Since |f(z)xx(z) + g(z)xk(z)| = |f(z) + g(x)| as
k — oo for all z € Q, by the Fatou theorem 1.3.9

If+ 9“1‘,,(9) < sup || fxe +9Xk”z,,,(n) < sup ( ”ka'“Lp(Q) + “ng“Lp(Q) )
keN keN
<z, @) + lgllz, g -
Corollary 2.3.1. Let1 <p< oo and a,b € l,. Thena+be€l, and
la+blli, < llally, +[18]ls, - (2.3.8)
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Idea of the proof The same as the idea of the proof of Corollary 2.2.7. O

Corollary 2.3.2. Let Q C R™ be a measurable set, 1 < p < oo and m € N. If
m

Jisooos fm € Lp(Q), then Y- fi € Ly(R) and
k=1

m m
f ka ”L,,(Q) < Z I f&llz, @) - (2.3.9)
k=1 k=1
Idea of the proof Apply induction. O]
m
Corollary 2.3.3. Let1<p<oo andm € N. Ifay,...,am €1, then Y ai, €1,
k=1
and
m m
1> arll, < llaxll, - (2.3.10)

Idea of the proof Apply induction starting with inequality (2.3.8) or the idea of
the proof of Corollary 2.2.7. ]

Next we investigate the cases in which Minkowski’s inequality turns into an
equality. We say that two complex numbers z and w are positively proportional
if there exist A, B > 0 satisfying |A| + |B| > 0 such that Az = Bw, which is
equivalent to zw # 0 and argz = argw, or zw = 0. (Geometrically, the position
vectors corresponding to z and w have the same direction.) If z and w are real,
this means that they have the same sign. Note that

|z4+w| = |z| + |w| <= 2z and w are positively proportional. (2.3.11)

Moreover, we say that two complex-valued functions f and g are positively almost
proportional on 2 C R™ if there exist A, B > 0 satisfying |A| + |B| > 0 such that
Af(z) = Bg(z) for almost all z € . Note that f and g are positively almost
proportional on 2 if and only if |f| and |g| are almost proportional on © and
f(z) and g(x) are positively proportional for almost all z € Q. If f and g are
real valued, the second part of the statement means that they have the same sign
almost everywhere on .

Pay attention to the distinction in statements ‘f and g are positively almost pro-
portional on 2’ and ‘f and g are positively proportional almost everywhere on €2’.
The second one is much weaker, because it requires that for almost all z €  there
exist A(x) and B(z) satisfying |A(z)|+|B(z)| > 0 such that A(z)f(z) = B(z)g(z),
whilst the first one requires that A(z) = A and B(z) = B are independent of z.

Lemma 2.3.1. Let @ C R™ be a measurable set, 1 < p < 0o and f,g € Ly().
The equality is attained in Minkowski’s inequality (2.3.2) if and only if

1) forp = 1, the functions f and g are positively proportional almost everywhere
on €2,

2) for 1 < p < oo, the functions f and g are positively almost proportional on
Q.
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Idea of the proof If p = 1, apply (2.3.11). If 1 < p < o0, consider inequality

(2.3.3) with "
_ 1Fllz, @) + 19llz, @) Pl
B ( 1z, @ ) ’ (23.12)

the choice being explained by Remark 2.2.7. Apply the second statement of Lemma,
2.2.4 and 2.3.11 to find in which cases it turns into an inequality. O

Proof Step 1. Let p = 1. If f and g are positively proportional for almost
everywhere on €, then by (2.3.11) |f +g| = |f| + |g| almost everywhere on .
Hence, integration over {2} implies (2.3.2) with the equality. Otherwise |f + g| <
|f]+|g] on a subset of 2 of positive measure. Hence, by Theorem 1.3.4 integration
over ) implies (2.3.2) with the strict inequality.

Step 2. Let 1 < p < co. By the second statement of Lemma 2.2.4 the second
inequality in (2.3.3) with + defined above turns into an equality for almost all z € 2

| . 1 [T
if and only if | f(z)| = (y71 —1)~ Yg(@)] = liglz ::;

if and only if | f| and |g| are almost proportional on Q. By 2.3.11 the first inequality
in (2.3.3) turns into an equality for almost all z € Q if and only if f(z) and g(z)
are positively proportional for almost all z € . So, both of inequalities in (2.3.3)
turn into equalities if and only if f and g are positively almost proportional on 2.

If this holds, then integrating (2.3.3) we obtain (2.3.2) with the equality. If it
does not, then by Theorem 1.3.4 we obtain (2.3.2) with the strict inequality. O

lg(z)]| for almost all z € Q, i.e.

Exercise 2.3.1. State and prove an analegue of Lemma 2.3.1 for sequences.

Remark 2.3.2. Inequality (2.3.3) with v defined by (2.3.12) takes the form

|f(1:)lp N lg(:c)lp
(Kl () lgliZ, ¢ »(Q)

. (2.3.13)

)+ < ) (W7ley 0+ 9,00

It can also be proved directly by applying inequality (2.2.34) with m = 2. Indeed,

@)+ l9@)] = (F@IIFIL e ) IFIZ. o + (19@) 19l % ) 191

<(Uﬂ@MﬂgiﬁV+Uﬂﬂmﬂgaﬂﬂiﬂﬁhmn+mmum)ﬁ

Raising this inequality to the power p we arrive at (2.3.13). This gives one more

proof of Theorem 2.3.1 since integration of (2.3.13) over Q yields inequality (2.3.2).

This proof is shorter than the first proof of Theorem 2.3.1. However, it contains
1

the trick of dividing and multiplying by HHI;; () Suggested by that proof. Com-
pared with the second proof of Theorem 2.3.1, the advantage is that it does not
require proving separately that ||f + gl o) < oo or applying the approximation
procedure like the one described in Remark 2.3.1.

Minkowski’s inequality is the triangle inequality for the spaces L,(£2). As in the
case of general normed spaces (see Section 1.1) it implies the reverse Minkowski’s
inequality

1f = 9z, @) > [I£1lz, @ — l9llz, @ (2.3.14)
for f,g € L,(Q2).
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232 Casel<p<1

Theorem 2.3.2. Let Q C R™ be a measurable set and 0 <p<l If f,g € Ly,(D),
then f+g € Ly(Q) and

1 +9llzy 0 < 257 (U, + gl ) - (2.3.15)
‘Idea of the proof Apply first inequality (2.1.6) and then inequality (2.1.49). O
Proof By inequality (2.1.6) for all z € Q

@) + 9@ < (If @)+ lg(@)))" < |F ()P + lg(=)[. (2.3.16)

Since both parts of the inequality are measurable on © by Theorem 1.3.4 and
inequality (2.1.49)

15+ ollz, 00 = ( Q/ Falas) < ( Q/ P do+ ! oPas)” (@317

<2((fise dx)% +( f1or dz) ) =251 fll g + ol ) -
Q Q

(2.3.18)
O
Corollary 2.3.4. Let0<p<1 anda,bc lp. Thena+bel, and
lla +bll, < 25~ (llalls, + [16ll,) (2.3.19)
Idea of the proof The same as the idea of the proof of Corollary 2.2.7. O

Corollary 2.3.5. Let Q C R™ be a measurable set, 0 < p < 1andm € N. If
m
k=1

m m
1_
H Zf"’ ”L,,(Q) <mr Z “fk”Lp(Q) . (2.3.20)
= =1
Idea of the proof Apply inequalities (2.2.36) and (2.2.37). O

Exercise 2.3.2. Prove the corollary.

m
Corollary 2.3.6. Let 0 < p < 1 and m € N. Ifai,...,am €1y, then 3" ay € Iy

k=1
and
m - m
1> a l, <m==1 Y " Jlaxlls, - (2.3.21)
k=1 k=1
Idea of the proof The same as the idea of the proof of Corollary 2.2.7. O

Lemma 2.3.2. Let Q C R" be a measurable set, 0 < p <1 and f,g € L,(Q).
The equality is attained in inequality (2.3.15) if and only if fg ~ 0 on Q and

Ifllz, @ = ll9llz, ) -
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Idea of the proof By applying (2.3.11), the description of the cases of equality in
(2.1.6) and (2.1.49), and Theorem 1.3.4, investigate in which cases all inequalities
in (2.3.16) — (2.3.18) turn into equalities. U

Exercise 2.3.3. Prove the lemma.

Similarly, the equality is attained in inequality (2.3.19) if and only if agbr = 0
for all k € N and ||al|;, = ||blls, -

The above statements imply, in particular, that the factor 2s"1>1in inequal-
ities (2.3.15) and (2.3.19) is sharp, i.e. the smallest possible one.

Remark 2.3.3. Each integral inequality involving arbitrary measurable functions
implies an analogue for sequences, which can be obtained in the spirit of the proof
of Corollary 2.2.7. The converse implication is not always true. In some cases it
is possible to derive an analogues integral inequality. See, for example, Exercise
2.2.14. In some other cases it is not possible. For example, Jensen’s inequality
does not have a reasonable integral analogue, which follows by Corollary 2.2.3 and
Exercise 2.2.6.

Finally we note the following useful generalization of inequality (2.3.15).

Lemma 2.3.3. Let Q2 C R™ be a measurable set and 0 < p < 1. For all v > 1

1 + 9l < VIl @ + @ =77 lgls, @) (2:3.22)
Jor all f,g € Ly(Q2).

The important point about this inequality is that, similarly to inequality (2.2.39),
the coefficient at || f|| L,(q) can be arbitrarily close to 1 at the expense of the coef-

ficient at [|g|, gy which tends to co as y — 1+.

Idea of the proof Apply first inequality (2.1.6) and then inequality (2.2.39). O

If v = 2P~1) then inequality (2.3.22) coincides with (2.3.15).
Exercise 2.3.4. Prove the lemma.

Corollary 2.3.7. Let 2 C R™ be a measurable set and 0 < p < 1. Provided
0<y<l,

1
! »’
1 = gllz,@ =Y Iz, @ = (¥ = 1) l9llz,)

for all f,g € L,(Q).

2.3.3 Further exercises

Exercise 2.3.5. Let Q C R” be a measurable set, 0 < p < 1 and f,g € L,(Q).
The equality is attained in inequality (2.3.22) if and only if fg ~ 0 on Q and

lgllz, @ = 0% =17 lIfll1, -
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Exercise 2.3.6. Let ) C R™ be a measurable set, 0 < p < 1 and m € N. If
fi,-.o, fm € Lp(Q), then for all y > 1

m m
1 1_
I3 fally oy < Vil ey + (1= 707 0m = D3 il e -
k=1 k=1
and forall0 <y <1
m y 1 1y m
1Y fellz, @) > 1fillz, @ — (¥ =1 (m—1)7"1 ) 1fellz, @) -

Exercise 2.3.7. Let 0 < p < co and m € N. Moreover, let Q4,...,Q, C R” be
m m

measurable sets and f € () Ly(Q%). Prove that f € L,( J %) and
k=1 k=1

m
U Q%

1 m
11,0y < 00037 30
k ==

Exercise 2.3.8. Let ! C R" be a measurable set and 0 < p < co. Prove that for
non-negative functions f,g € L,(£2)

min{1, 277"} (”f”z,p(g) +9llz, ) < If+9llz,@ - (2.3.23)

Exercise 2.3.9. For 1 < p < oo give another proof of Lemma 2.3.1 based on the
second proof of inequality (2.3.2) and Lemma 2.2.3.

Exercise 2.3.10. Let @ C R" and functions f,g be bounded on . Prove that

equality || f+9llc@) = I flle)+l9llc) holds if and only if there exists a sequence

{zr}ren of points z1, € Q such that the limits klim flzg) = klim g(zr) exist, are
—00 —00

positively proportional and
| fim f(x)| = o | Jim g(ew)] = lgllow -

Exercise 2.3.11. Let Q C R™ be a measurable set and f,g € Lo (f2). Prove that

equality (2.1.52) holds if and only if there exist functions F and G equivalent to

f, g respectively, such that ||Fllci) = [|fllz_ (o) and |Gllc@) = 195, () and a

sequence {zx}ren of points zx € Q such that the limits klim F(zg) = klim G(zg)
00 —00

exist, are positively proportional and
| Jim F@)| = 1l | Jim G@n)] =gl -

(Hint Consider the set w := Qar(|f)) UQN(l9]) UQL(|f +g|) where M := £z @)
N :=|glly () and L = ||f + gll,_ (), and the functions F, G defined by F(z) :=
f(z),G(z) :=g(z) for z € @\ w and F(z) := G(z) := 0 for € w.)

Exercise 2.3.12. Given sequences a,b € I, state and prove the conditions on a
and b ensuring that ||a + b||;_, = ||ali + ||0]li..-
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Exercise 2.3.13. Let m € N, a = {ax}%,, b= {bx}}*, and a1,b1,...,Gm, bm = 0.
Prove that
lla+bliz, = llally, + bll7, - (2.3.24)

Moreover, prove that the equality is attained if and only if the sequences a and
b are proportional. (Hint Apply the convexity of the function ¢ defined for all

m
0<t<1by o) := [] (tar + (1 — t)bg)=.)
k=1

Exercise 2.3.14. Let Q be a measurable set, 0 < meas{) < oo and let functions
f and g be non-negative and measurable on . Prove that

I +9llzo) 2 1F1Zo@) + l9llLoe) - (2.3.25)

2.4 Convergence in L,(f2). Completeness of the
spaces L,(Q)

In this section we discuss the notion of convergence of a sequence of functions in
L,(Q) and compare it with other types of convergence. The main result of the
section is the proof of the completeness of the spaces L,(2).

Lemma 2.4.1. (Uniqueness of a limit) Let Q@ C R" be a measurable set and
0 < p < 00. Moreover, let f,g € Lp(Q), fr € Lp(),k € N and frp — f in L,(Q)
as k — oo, i.e.

Jm | fx = Fllz, @ =0- (2.4.1)
Then fr = g in Ly(Q) as k — oo if and only if g is equivalent to f on Q.
Idea of the proof Apply inequalities (2.3.2) and (2.3.15) to || f — ¢|| L(9)" O

Proof By (2.3.2) and (2.3.15)

If - 9|pr(9) =|f - frx+ fr - gHLp(Q) < 4p ( |l fe — f“LP(Q) + |fe — QHL,,(Q))

where A, := ma,x{l,2?15“1}. Passing to the limit as & — oo we obtain that
Ilf = 9llz, @) = 0. Hence by Lemma 2.1.10 f ~ g on Q. O

Lemma 2.4.2. (Boundedness of a convergent sequence) Let 2 C R™ be a
measurable set and 0 < p < co. Moreover, let { fx}xen be a convergent sequence of
functions fr € Ly(Q2), i.e. there exists a function f € L,(2) such that fr, — f in
Ly(Q2) as k — co. Then the sequence {fx}ren is bounded.

The proof is similar to the standard proof for a sequence of complex numbers.

Lemma 2.4.3. Let 2 C R™ be a measurable set of finite and 0 < q < p < o0.
Moreover, let f € Ly(Q), fx € Lp(2),k € N and f — f in Lp(Q) as k — oo. If
meas () < oo, then fr — f in Le(R?) as k — co. Otherwise, fr, — f in Ly(Q N B;)
as k — oo for allrT > 0.

So, for sets of finite measure the convergence in L,(Q) is ‘stronger’ than the
convergence in L,(€2) with ¢ < p.
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Idea of the proof Apply inequality (2.1.36). O
Proof If meas) < oo, then by (2.1.36)

| fx — f“Lq(Q) < (meas Q)%~% I fx — f“L(Q) . (2.4.2)

Passing to the limit as k — oo we obtain that klim Ife = fllz, (@ = 0, hence
—00

Jfr = fin Ly(Q) as k — oo. If measQ = oo, in (2.4.2) one should replace Q by
QN B, with an arbitrary r > 0.

O

Example 2.4.1. Let 0 < p < ¢ < o0 and fi(z) := kilnkif0 <z < 3, fr(@) :
0if + <z < 1. Then f — 0 in Ly((0,1)) as k — oo since 1 fellz, (0,1))

i1

ki~ Ink — 0, but fi do not converge in L4((0,1)) since “fk”L,,((o,1)) =Ink — oo.
Note also that klim fre(z) =0 for all z € (0,1).
—00

Exercise 2.4.1. Let 0 < p,q < oo0,p # ¢. Consider the set (0,00) of infinite
measure and construct a sequence {fi}ren of functions fr € L,(Q) such that it
converges in L,(£2) but does not converge in L,().

Example 2.4.2. Fork € Nand! € {1,...,2*} consider the characteristic functions
of the intervals (1, %’l Put f; := x11, f2 := X12, f3 := X22 and so on. Hence
fm = X1, where m = 25"14+1—1. Givenm € N, k = k(m) and | = [(m) are defined
by this equation uniquely and k(m) — oo as m — oo. The sequence {fm}men
converges to 0 for any 0 < p < oo because HmeL,,((o,l)) = “Xk(m),l(m)“Lp((o,l)) =

27k(m) 5 0 as m — co. On the other hand, lgn fm(z) does not exist for any
m—00

x € (0,1) because for any z € (0,1) and for any s € N there exist mg > s and

my > s such that f, (z) =0 and f,, (z) = 1.

So, Examples 2.4.1 and 2.4.2 show that pointwise convergence on 2 does not
imply convergence in L,(£2) for any 0 < p < oo and that it may happen that a
sequence of functions converges in L, () for some 0 < p < oo, but does not converge
at any point of 2. In particular, convergence in L,(£2) where 0 < p < oo does not
imply convergence almost everywhere on 2. However, the situation changes if one
looks at subsequences as the following statement shows.

Theorem 2.4.1. Let Q C R™ be a measurable set and 0 < p < oo.  Moreover,
let f € Lp(Q) and fr € L,(),k € N. If the sequence {fi}ren converges to f
in Ly(Q), then there exists its subsequence {fr, }sen which converges to f almost
everywhere on €.

Idea of the proof Choose k; in such a way that
ez, @) < 27> (2.4.3)

and apply Corollary 1.3.4. O

Proof Equality (2.4.1) implies that for all s € N there exist k, such that inequality

o0
(2.4.3) holds. Consequently > [ |fx, — f|° dz < 0o. Therefore by Corollary 1.3.4
s=1Q

> | fx.(x) = f(z)[P < oo for almost all z € Q. Hence Ii)m fr,(x) = f(x) for almost
=1 §—00
all € Q. O
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Exercise 2.4.2. Let Q C R™ be a measurable set. Moreover, let f € Lo, (Q) and
Jt € Lo(2),k € N. If the sequence { fr}ren converges to f in Lo (Q), then it
converges to f almost everywhere on €.

Corollary 2.4.1. Let Q C R" be a measurable set and 0 < p,q < 0o. Moreover,
let f,9 € Lp(Q) and fr, € Ly(Q) N Ly(Q),k € N. If fx = f in L,(2) and frr — f
in L,(Q), then f ~ g on Q.

Idea of the proof Apply the theorem twice. O

Proof If p = ¢ this is Lemma 2.4.1. Assume that p # ¢q. By the theorem there

exist a subset (2; and a subsequence {fx,}sen such that meas(Q\ ©;) = 0 and

sl_i)'m fr, () = f(z) for all z € Q. Since fy, — g in L,(Q1) as s — oo, by the

theorem there exist a subset {22 and a subsequence {f, }ren such that meas (€ \

Q22) =0 and &m fr,, (z) = g(z) for all z € Qp. Hence f(z) = g(z) for all z € Q.
T—>00

Since meas(2 \ Q2) = meas (Q\ Q1) + meas (2; \ Q) = 0, it follows that f ~ g on
Q. O

Next we pass to proving the main result of the section, the completeness of the
spaces Ly(€2). We start with proving the completeness of the spaces [p.

Theorem 2.4.2. Let 0 < p < oo and let ag, := {aki}tien € Uy, k € N. If {ax}ren is
a Cauchy sequence in l,, i.e.

lim ||ax — amHlP =0, (2.4.4)

k,m—»0c0
then there ezist a € I, such that a — a in .

Idea of the proof Deduce from (2.4.4) that for all I € N the sequences {ax;}xen
are Cauchy sequences of complex numbers and apply the completeness property of
complex numbers. O

Proof Since |ag — ami| < |lax — amli, for all [ € N equality (2.4.4) implies that

. lim |ag; — @mi| = 0. Hence all {ag; }ren are Cauchy sequences of complex num-
;M —$00

bers. By the General Principle of Convergence there exist b; € C such that arr — by
as k — oo. Set a := {bl}lEN-
Equality (2.4.4) means that for all ¢ > 0 there exist N € N such that for all
k,m>N
llak — am|li, <e. (2.4.5)

We want to pass to the limit here as m — co. Since the sum consists of an infinite
number of summands, first we note that for all s € N

8
1
(D lakt — ami?)? < |lag — amlli, <. (2.4.6)
=1

This sum being finite, by passing to the limit as m — oo, we get that

8

(3 Jaw —bifP)? <. (2.4.7)

=1

Finally, passing to the limit as s — oo, we have |lax —al|;, < € for all k > N. Hence
ax — a in I, as k — oo. O
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Theorem 2.4.3. (The Riesz—Fisher theorem on the completeness of the
spaces L,(f2)) Let Q C R" be a measurable set, 0 < p < oo and fi, € L,(Q),k € N.
If {fx}ren is a Cauchy sequence in L,(Q), i.e.

k,}rigloo 1fx = fmllz,@ =0, (2.4.8)

then there exist f € Ly(Q2) such that fr — f in L,(Q).

Preliminary discussion Compared with the previous proof, the general plan
of the proof of this theorem is similar. However, there are important distinctions.
First of all one cannot prove, excluding the case p = oo, that there exists a finite
limit kl_l_)rgo fr(z) for almost all z € Q. (See Example 2.4.2.) However, as in the

case of Theorem 2.4.1, it is possible to prove that this holds for a subsequence
{fx.}sen. Equality (2.4.8) means that for all £ > 0 there exists N € N such that
forallk,m > N

| fx — fm“Lp(Q) <Eeg. (2.4.9)

One can take here m = k, and pass to the limit as s — co. However, the argument
used in the proof of Theorem 2.4.2 cannot be applied and one should use instead
one of the Fatou theorem.

Idea of the proof Choose k, in such a way that
”fks.;_1 - fks

By applying Jensen’s and Hélder’s inequalities prove that this implies that

/ (Z i.fks—}-l - fks
Q k=1

and also, if measQ) < oo, that

/ (Z lfks—f-l - fks
Q k=1

If meas§) = oo, here Q should be replaced by Q N B, with an arbitrary r > 0.
Deduce from (2.4.11) and (2.4.12) that for almost all z € Q

lim fi, (z) =: f(2). (2.4.13)

<27, (2.4.10)

Lp(©)

P
) dr <oco, 0<pg<l1, (2.4.11)

)dx<oo, l1<p<oo. (2.4.12)

Taking m = k; in inequality (2.4.9) and applying Theorem 1.3.9, prove that f — f
in L, (). O

Proof Step 1. First, let 0 < p < co. Condition (2.4.9) implies that for all s € N
there exist k; € N such that k; < k2 < --- and ||fx "fm”l:p(ﬂ) < 2% for all
k,m > ks. Taking here k := ky1,m := ks we obtain inequality (2.4.10).

Step 2. If 0 < p < 1, then by Jensen’s inequality (2.1.5) and Corollary 1.3.8

!(glfkm ~ [k, )pdxg!(glfkm . p)dx
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k

o0 o0 o0
> / [ frors = oo [P dz = 3" || fruss — o Ty <2 27T <oo. (24.14)
=i
<

1 k=1 k=1
If1 < p< oo and measQ < oo, then by Corollary 1.3.8 and Holder’s inequality
(2.2.8)
oo o0
/(Z’fks,,_l—fks )dm:Z/‘}fksn}—-l—.fks dz

1 e 1 o
< (measQ)?” Z | Foors — F., L@ < (meas Q) ¥ 22"3 < 00. (2.4.15)

k=1 k=1

If meas ) = oo, this inequality holds if  is replaced by Q2 N B, with an arbitrary
r > 0.
Step 3. Conditions (2.4.14) and (2.4.15) imply that the series

fk1 (3)) + Z(fks-u (33) - fks (x))
k=1

converges for almost all z € , which is equivalent to the existence of a finite limit
(2.4.13). If meas Q = oo this first follows for almost all z € QN B, and, since r > 0
is arbitrary, for almost all z € Q. (See Exercise 1.5.8.)

Step 4. Let a function f be defined by (2.4.13) for those z € Q for which a finite
limit in (2.4.13) exists, and in an arbitrary way for all other points z € ). Being
an almost everywhere limit of a sequence of measurable functions, it is measurable
on {). By (2.4.9) with any k > N and m = ks, where s > N hence k; > N because
ks > s, we get || fi — fx, || L) < €- By applying the Fatou theorem, in particular
inequality (1.3.17) we get

e = Al = | Jim (f = )|

< su — Jk, <e.
@ S5 15 = fr.llz, 0
This means that f € L,(1), because fx € Ly(Q) and f — f; € L,(£2), and that
Je = fin Ly(Q) as k — oo.
Step 5. Finally, let p = co. By Corollary 2.1.1 for all k,meN

[fi(®) = fm(@)] < 1fi = Fmll ) (2.4.16)
for almost all z € €, i.e. there exist sets Wrm C  of zero measure such that
(2.4.16) holds for all 2 € Q \ wiym. Let w := U wikm. Since w is a union

k,meN

contains of countable number of sets of zero measure, measw = 0. Moreover, for
all z € Q \ w inequality (2.4.16) holds for all k,m € N. Hence condition (2.4.9)
with p = oo implies that {fx(z)}xen are Cauchy sequences of complex numbers for
all z € Q\w. Therefore, by the General Principle of Convergence, there exist finite
limits kl-l-glo fe(@) =t f(z) for all z € Q\ w. For € w we may define f (z) in an
arbitrary way.

Inequalities (2.4.5) with p = oo and (2.4.16) imply that |f¢x(z) — fm (z)| < € for
all z € Q\ w and for all k,m > N. Passing to the limit as m — oo we get that
|fx(z) — f(z)| < e for almost all z € Q. So, by Definition 2.1.4 Ife—Ffllo o <€
for all £ > N, which means that f € Loo(Q) and fix — f in Leo() as k — co. O
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Let functions f and fx, k € N, be measurable on a measurable set 2 C R”. It is
said that the sequence {fx}xren converges to f in measure on 2 77 if for all o > 0

kl_iigomea,s{x €Q: |fx(x)— f(z)| 20} =0.

Example 2.4.3. The sequence {f;}ien of Example 2.4.2 converges to 0 in measure
on (0,1) because meas{z € (0,1): |fi(z)| > o} < 27*® for all ¢ > 0.

Exercise 2.4.3. By estimating the integral [ |fx — f|° dz below via the integral

Q
of the same integrand over the set {z € Q: |fx(z) — f(z)| > o}, prove that if for
some 0 < p < 0o a sequence {fi}ren of functions fi € L,(Q) converges in L,(£2)
to a function f measurable on 2, then it also converges to f in measure on 2.
Construct an example showing that the converse is not true.

2.5 Classification of the spaces L,(2)

In this section we summarize the basic information about L,-spaces from the point
of view of the classification of various spaces in the functional analysis, briefly
describes in Section 1.1.

We start with the spaces of sequences I,. If 1 < p < oo, then [, are linear
(vector) spaces and ||a||;, are norms. Moreover, they are Banach spaces. Indeed,
properties 1 — 3 of a normed linear space are clearly satisfied. Property 4, the
triangle inequality, is proved in Corollary 2.3.3, and the completeness in Theorem
2.4.2.

If 0 < p < 1, then properties 1—3 of a normed linear space are satisfied, but
the triangle inequality is not as proved in Section 2.3.2. It should be replaced by
inequality (2.3.19) in which the factor 951 > 1 is the smallest possible. As for
Theorem 2.4.2, it is valid for 0 < p < 1 as well. Hence in this case [, are complete
quasi-normed spaces.

Next, let  C R™ be a measurable set and let measQ > 0. If 1 < p < oo, then
by Lemma 2.1.13 the spaces L, (2) are linear spaces, and for the quantity ||f||z, )
properties 1, 3 and 4 are satisfied. Minkowski’s inequality (2.3.2) is the triangle
inequality for these spaces. Moreover, by the Riesz-Fisher theorem, they are com-
plete spaces. This important property holds because the Lebesgue integration is
considered, and this is the main reason why the Lebesgue integral is used in the
theory of L,-spaces.

However, property 2 is not satisfied, since the condition || f||,@) = 0 does not
imply that f = 0 on £, i.e. f(z) =0 for all z € Q. By Lemma 2.1.10 this holds
if and only if f(z) = 0 for almost all z € Q. In other words, in the notation of
Section 1.1, the set # is the the set of all functions f equivalent to 0 on 2. So,
L,(€2) are semi-Banach spaces and || f||, () semi-norms respectively.

One of course should note that the distinction from being Banach spaces is
‘very tiny’, since functions equivalent on Q from point of view of applications in
the majority of cases may be treated as equal because in applications of L,-spaces
normally various integrals are considered and, by the properties of the Lebesgue
integration, integrals involving equivalent functions have the same value. _

In many cases, together with the spaces L,(f), the factor-spaces L,(Q) =
L,(2)/ 6 are considered, consisting of the disjoint classes f of all functions which
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are equivalent to each other on € fi, fe € f = fi—fa € 6 <> f1 ~ fa on Q.
For them, by definition, || f|| i@ = |11z, («), where f is any function in the class

f. The spaces L,(2) are Banach spaces, and || 1l £, () Dorms respectively. (The

class 0 is a zero element in L,(£2).)

If 0 < p < 1, then the triangle inequality for the spaces L,(€2) does not hold
and should be replaced by inequality (2.3.15) in which the factor 2571 > 1 is the
smallest possible. In this case L,(f2) is a semiquasi-normed space and Ly(Q) is a
quasi-normed space.

If 1 < p < oo, then the spaces L,(€) are complete semi-metric linear spaces if
the semi-distance of f € L,(Q) to g € Ly(Q) is defined by

d(f,9) = IIf = 9llz, @) -

(This is a standard way of defining the semi-distance for any semi-normed space.)
Respectively, the spaces L,(£2) are complete metric linear spaces.

Exercise 2.5.1. Prove that for 0 < p < 1, the spaces L,(2) are also complete
semi-metric linear spaces with the semi-distance of f € L,(€2) to g € Ly(€2) defined
by

A(5,9) =117 = ol @ = [ 1f ol da.
Q
The case p = 2 is a very special case, because the expression

(f,9) = / fgdz (2.5.1)
Q

is a semi-inner product on Ly(Q) satisfying v/(f, f) = |fllz,)- So; L2(Q) is a
semi-Hilbert space and Ly(f) is a Hilbert space.
If p # 2, then it it not possible to define a semi-inner product on L, (2) satisfying

V(I F) = £l @) as the following example shows.
Example 2.5.1. Let 0 < p < 00, p # 2. For Q = (—1, 1) consider f := Xx(-1,0] and
g = X(0,1)- Then
2 2
If+ glﬁ,,(m +If - 9”?:,,,(9) =21, 2( “f”f’,p(g) + ”gHLp(Q)) =4.

Therefore, the parallelogram identity is not satisfied and hence the statement fol-
lows. (See Section 1.1.)

Moreover, the following stronger assertion holds.

Lemma 2.5.1. Let Q C R™ be a measurable set, meas§) > 0, 0 < p < co_and
p # 2. Then there does not exist a semi-inner product on Ly(S2) such that / (f, f)
is equivalent to || f|| L, ()’ i.e. for some c1,ce > 0 the inequality

e llfllz,@ < VI <eallfli,@
for all f € Ly().
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Idea of the proof Assuming the converse deduce that there exist cg, cs > 0 such
that

C3(I|f”i,,(a)+“91|i,,(g)) 17 +9ll7 @+If - g”Lp(Q ca(I1£17 p(Q)+”g“LP(Q))
for all f,g € Ly(9). O

Moreover, Lo(2), being a linear space, is not a semiquasi-normed space. In-
deed, if = Q; U Qq, where €; and €, are disjoint measurable subsets of Q of
positive measures, f = x(21) and g = x(Q2), then [|f||7, 0y = l9llL,q) = 0 whilst

IIf + gll7 Lo() = 1. Hence property 4’ in Section 1.1 does not hold for any ¢ > 1.

Remark 2.5.1. It should be noted that in many books L,(9) is understood as
p(Q) in our book, or the same notation L,(f2) is used both for the spaces L, ()

and for the spaces LP(Q) sometimes without stating this explicitly. One can often
come across the statement ‘For 1 < p < oo the spaces L,(£2) are Banach spaces’, the
actual meaning of which being ‘For 1 < p < oo the spaces ZP(Q) are Banach spaces’.
As explained above the distinction of L,({2) and L,(R) is, in fact, not essential,
nevertheless the formulations of some theorems depend on this distinction, and one
should be certain of what is meant by L,(2), the spaces L,(2) or the spaces Lp ()
of their equivalence classes.



Chapter 3

Solutions and hints to
exercises

In this chapter we give detailed solutions to exercises included into the main text.
As for other exercises we mostly give hints.

3.1 Exercises in Chapter 1

3.1.1 Exercises in Section 1.1

Exercise 3.1.1. If z € 0, i.e. € X and ||z|| = 0, then |laz| = |a|- ||z]| = O for all
a € C, hence az € 0. If T1,Ty € 6, then 0 < ||z1 + z2|| < ||z1|| + ||z2|| = 0, hence
”371 +$2” =0and 21 + 22 € 9

Exercise 3.1.2. Assume that x,, x5 € Z, then, by the triangle inequality,
[@2]] = [lo2 — 21+ 21]| < |lz2 = 21| + [|21]] = [J2a | -

Similarly, ||z1]| < ||z2||, hence ||z1]| = ||z2]|.
Property 1 is clear. Properties 3 and 4 are proved similarly. We prove, for
example, property 3. Let x € Z, then

laz|l g = llaz|| g = llaz|lx = lal - lzllx = lal - |2]| % -

Finally, to prove property 2 we first note that 6 is the null element of X, since for
alic X i+60=z+6=4% and 6]l = 116l x = 0. Furthermore, if [|&||z = 0,
then for all z € £ ||z||x = ||Z||x = ||Z|lg = 0, hence z € 6. So z C . Since,

by Exercise 1, 6 is a linear space, it follows that for allz € £ -z € 6. By the
deﬁmtlonofgc @=z+ (—z)cFandforallyecd y=60+yeci. HencefCz
and Z = 6.

Exercise 3.1.3. By applying the reverse triangle inequality we have

llewll = llzll] < llzx — 2l

and the statement follows by passing to the limit in this inequality.
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Exercise 3.1.4. Since z — %ﬁ} y Ly, by the Pythagoras theorem

ol g &) 2 (@) o oo @Y w2 e |@y)
el = e =i v+ g v = Nl = ol = el = S

Since the left-hand side is non-negative, it follows that

(@ o)l < [l - llyll

for y # 0. (If y = 6, then the inequality is trivial.) Also

(@, )] = llall - ly]] <= [}z - %‘-‘@}yn —0es o= (””;;") Y,

which, for y # 6, is equivalent to the proportionality of z and y. (Again the case
y = 0 is trivial: the equality holds for all z € X and all z € X are proportional to
6.)

Exercise 3.1.5. By Exercise 1.1.3 there exists a finite limit klim llyxl| (equal to
—>00

llz]|), hence the sequence {||yk ||}y is bounded, i. e. for some M > 0 for all k € N
llyxll < M. By applying the Cauchy—Bunyakovskii inequality (1.1.4) we get

|(@ro yk) = (.9)] = (@ — 2, 45) — (296 — 9)| = |(@k — 2, 38)| + |(z, & — )|
< llwe =2l - Nlyell + =1l - llye = yll < M- lyell + ) - lye — ]l -

The statement follows by passing to the limit as k& — oo.
3.1.2 Exercises in Section 1.3

Exercise 3.1.1. The proof follows from the equality

i/fdx:lg/kgmxkfdxzfo o (;xk)fdxzfg Qkadx,

k=1 Qp k=1 = k=1

8
because 1 < N(z) < >« forall z € U Q.
m=1

Exercise 3.1.2. Definitions 1.3.16, 1.3.17 and parts 2 and 3 of Definition 1.3.18
of the Lebesgue integral, together with Definition 1.3.12 imply that it suffices to
prove the theorem for the case of bounded 2 and non-negative bounded functions
[, because the difference of measurable functions is measurable and existing almost
everywhere on G limit of a sequence of functions measurable on G is a measurable
function.

So, let  C R™ and G C R™ be measurable sets, {2 be bounded, and let a
function f be measurable on Q x G and for some M > 0 the inequality 0 <
f(z,y) < M be satisfied for all z € Q,y € G. By Definition 1.3.12 there exist
step-functions fi defined on R™*™ such that f(z,y) = klggo fr(z,y) for almost all

(z,y) € Q2 x G. Here

M
fr=Y aux(AY x AD),
=1
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where my € N,ag; > 0, and x(A(l) A(z)) is the characteristic function of the

direct product of cuboids AM C R™ and A(Z) C R™, whose faces are parallel
to the coordinate planes. Moreover, without 1oss of generality, one may assume
that 0 < fx(z,y) < M for all k € N and for all z € Q,y € G. Otherwise, one
may replace the functions fi by the functions fk defined for all z € Q,y € G by
frx(z,y) := max{min{fx(z,y), M},0}. Therefore by the Dominated Convergence
Theorem (see Theorem 1.3.11) for almost ally € G

mg
[ 1@y do= tim [ i) do = Jim > oumeas (A (A ).
Q Q =

Hence, by Definition 1.3.12, the function [ f(z,-)dz, being an almost everywhere
Q

limit of step-functions, is measurable on G.

3.1.3 Exercises in Section 1.5

Exercise 3.1.3. Let m(r) := meas (2N B,). Since (J (RN B,)=0and Y (2N
r>0 r>0
B,) = Q, by the properties of measurable sets (see Section 1.3.1) 1_i)r(1)1+ m(r) =0

and Em m(r) = meas{). The function m is continuous on (0,00). Indeed, if say
700

Ar > 0, then 0 < m(r + Ar) —m(r) = meas (RN Byyar \ QN B,.) < meas (Bryar \
By) = vp((r + Ar))™ —r™) = 0 as Ar — 0+.

1. If meas{) = oo, we choose £ > 0 such that meas (2N Bg, ) = k, and obtain
a required sequence of subsets by setting ; := QN Be, and Q = QN (Bg, \ Be,)
for k > 2.

2. Let 0 < measQ < co. a) We choose n > 0 such that m(n) = 1 meas(.
Letﬂl :-QﬂQnandﬂg—-Q\Ql Then Q = 91UQQ,Qlﬂ92-—-—@aﬂd
meas Q; = meas () = 3 meas (.

b) We choose n, > 0 such that meas (2N B,,) = 27%, and obtain a required
sequence of subsets by setting ; := QN By, and O = QN (By, \ By,) for k > 2.

Exercise 3.1.4. The desired set D, is constructed similarly to Cantor’s set D
(corresponding to the case a = 0). The only distinction i 1s that, in the first step,
from the closed interval [0, 1] an open interval centered at 1 of length o := =2 is
cut out. In the second step from each of the two remammg closed intervals, open
intervals centered at their midpoints of length o2 are cut out, and so on. Hence
oo
meas D, =1— Y 2k~ 1gF = q.
k=1

Exercise 3.1.5. Assume that such set D; exists. Then the open set [0,1]\ D =
(0,1) \ D; is of zero measure, hence empty. Consequently D; = [0, 1], which
contradicts the assumption that D; is nowhere dense in [0, 1].

3.2 Exercises in Chapter 2

3.2.1 Exercises in Section 2.1

Exercises in Section 2.1.2
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Exercise 3.2.1. Given ¢ < p < 00, define a; = k™% for k € N. Then
R o N3
foll, = (7)<l = (L47) = e
k=1 k=1
Hence [, Z 1,.

Exercises in Section 2.1.5

Exercise 3.2.2. The statement follows since by taking the spherical coordinates

(see formula (1.3.29))
4 r R
]1111:1:17 dz = ﬂ/gn‘llngdgx zﬁ(g"lng —/ o™t dg) ::'ylnr-—l.
UpT™ o J n
B, 0

U™ rn

3 =

Exercise 3.2.3. By Example 2.1.1 |[|z|"[} 5, = (7155)

i *
Since (1+ 12)? — e~ Theorem 2.1.4 implies the equality Nz 25,y = e~ w7,

r7f0r0<p<f;7.

3.2.2 Exercises in Section 2.2

Exercises in Section 2.2.5

Exercise 3.2.4. First let 0 < measQ < oo and ¢ < p. Consider a measurable
subset G of positive finite measure, and let the subsets Gy, k € N, be constructed
as in the part 2 b) of Exercise 1.5.5. Assume that f(z) = 25 on G and flz)=0
on 2\ G. Then

1£1;, ) = (meas G)} ( zz(%-l)k) " <00, Il = o
k=1

Hence Ly(Q2) ¢ L,(Q).

If measQ = oo and ¢ > p, then we consider the subsets . constructed in part
1 of Exercise 1.5.5. Let f(z) = ax on Q,k € N. Then “f“z,,,(g) = |la|ls,, and the
statement follows by Exercise 2.1.6.



Appendix

Axiom of choice and determination axiom

The existence of sets 2 C R™ which are not Lebesgue measurable and of non-
measurable functions f: Q — C is based on the axiom of choice. We recall the
formulation of the axiom and one of the methods of proving of the existence of
non-measurable sets.

Definition 3.2.1. (Axiom of choice AC) For each family S = {Sy}aca of non-
empty sets S, of any kind, where A is a non-empty set of indices o, there exists a
function of choice f: A — S, i.e. a function satisfying f(a) € Sy for all a € A.

In other words it is stated that there exists a rule f allowing to choose an
element f(a) in each of the sets S,, @ € A. On one hand, the statement seems to
be ‘clear’ enough to be accepted as an axiom. On the other hand, A is assumed to
be an arbitrary set of indices, whilst our intuitive understanding of clearness is, in
fact, not reliable for sets which are not countable.

The countable aziom of choice AC, is a weakened form of the axiom of choice
stating the existence of a function of choice only for countable sets A. The axiom
AC,, is, in fact, used to prove that the union of a countable family of countable
sets is countable, to prove the countable additivity of the Lebesgue measure (1.3.3)
etc.

The axiom AC is used to prove the Zermelo theorem on possibility to partially
order any set and the Zorn lemma. (In fact, these three statements are equivalent.)
Moreover, it is used to prove the existence of non-measurable sets. This can be
done, for example, in the following way.

Let 2 C R™ be an arbitrary measurable set in R of positive measure. Choose
R > 0 such that the subset Q; := QN By is also of positive measure. Consider
disjoint subsets of ;, such that two points z and y belong to one such subset if
and only if all coordinates of the difference x — y are rational. By the axiom AC
one can choose one point in each of such sets. The subset 3 C Q, consisting of all
such ‘chosen’ points is non-measurable. Indeed

2 C |J (Q2+7) C Bag,
reQ,

where Qg is the set of all points in the ball B with rational coordinates. If Qs is
measurable, then by the properties of measurable sets (see Section 1.3.1)

0 < meas); < meas U (Qa+r) = Z meas (Qo+7) = Z meas )y < meas Bap,
reQy r€Qr r€Qgr
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which is impossible. If measQ, = 0, then the left inequality does not hold. If
meas {}y > 0, then the right one does not hold.

The axiom AC also allows proving the existence of even more ‘paradox’ sets. For
this reason the axiom of choice was criticized as being non-constructive, because
only the existence of a function of choice is stated, and there is no information
how to construct it. On the other hand replacing it by axiom AC,, appears to be
too restrictive. Therefore the question arose of replacing the axiom AC by another
axiom, which on one hand would imply the axiom AC,, and on the other hand would
lead to opposite statements in the cases in which the axiom AC implies undesirable
consequences. In 1962 Mychelski and Steingaus suggested an axiom satisfying these
requirements, which states a countable analogue of the law of excluded third ??

Definition 3.2.2. (The determination axiom AD) For each set A of sequences
a = {ax}ken of natural numbers ay,

either JaiVasdaz--- such thatae A or VaydasVaz--- such thata ¢ A.

The axiom AD implies the axiom AC,. Moreover, it implies that each set
£2 C R" is Lebesgue measurable, hence each function f: Q — C is measurable.
This is the content of the Mychelski—Sverchkovski theorem.

It also implies the positive solution of the continuum problem (in formulation
of Cantor): each uncountable set of real numbers has cardinality continuum. (This
follows by the Davies theorem.) Further consequences of the axiom AD and other
axiomatic approaches are still under investigation. Details and further results can
be found in 7?7

The exposition in the present book is based on the traditional assumption that
the Zermelo—Fraenkel system of axioms of the theory of sets is considered together
with the axiom AC. It has been established by Hodel that this does not lead to
a contradiction. (If the Zermelo—Fraenkel system of axioms of the theory of sets
is considered together with the negation of the axiom AC, it also, as has been
established by Cohen, does not lead to a contradiction. Thus, the axiom AC
cannot be either proved or disproved.)

Finally, we note that if the axiom AD were considered instead the axiom AC,
then the exposition of the theory of L,-spaces would be considerably simplified
without changing its actual contents. Sections 1.3.1 and 1.3.2 could be completely
omitted, and also Theorem 1.3.13. Moreover, it would be possible to integrate the
inequality f < g for non-negative functions f and g defined on any set {2 C R
without reserve, which in its turn would simplify a number formulations of theorems
and proofs.

The same refers to real analysis in general and some other mathematical disci-
plines such as, say ordinary and partial differential equations, where L,-spaces and
other function spaces are widely used. On the other hand in some other mathe-
matical disciplines, say general topology, this would lead to essential changes in the
content. The problems related to the final choice in favour of the axiom of choice,
the determination axiom or some other axiom are currently still open.
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