Esame di Geometria (laurea in Fisica)

prova di accertamento del 12 febbraio 2009

ESERCIZIO 1. [7 punti] Nello spazio euclideo, E^3 , si considerino le rette, r ed s, di equazioni

$$r: \left\{ \begin{array}{ll} x-z=1 \\ y+z=0 \end{array} \right. \quad e \quad s: \left\{ \begin{array}{ll} x-y=0 \\ y-z=1 \end{array} \right.$$

- (a) Si dica se r ed s sono incidenti, parallele o sghembe e si calcoli la distanza tra le due rette.
- (b) Si determini una retta t, se esiste, ortogonale ed a distanza 2 da entrambe le rette r ed s.

Svolgimento. (a) La retta r passa per $P=\begin{pmatrix}1\\0\\0\end{pmatrix}$ ed è parallela al vettore $v=\begin{pmatrix}1\\-1\\1\end{pmatrix}$. La retta s passa per $Q=\begin{pmatrix}0\\0\\-1\end{pmatrix}$ ed è parallela al vettore $w=\begin{pmatrix}1\\1\\1\end{pmatrix}$. Dunque le due rette non sono parallele. La loro distanza è $d=\frac{|\overrightarrow{PQ}\cdot(v\times w)|}{\|v\times w\|}=0$ e quindi le due rette sono incidenti nel punto $R=\begin{pmatrix}1/2\\1/2\\-1/2\end{pmatrix}$.

(b) Un vettore ortogonale ad r ed s è $n=\begin{pmatrix} 1\\0\\-1 \end{pmatrix}$. Ci sono quattro rette che soddisfano alla condizione data e sono le intersezioni dei piani paralleli ad r ed n e ad s ed n a distanza 2 dalle rette date. I piani paralleli ad r ed n hanno equazione cartesiana $\pi_h: x+2y+z=h$ ed hanno distanza 2 da r se, e solo se, $|1-h|=2\sqrt{6}$, ovvero $h=1\pm 2\sqrt{6}$. I piani paralleli ad s ed n hanno equazione cartesiana $\tau_k: x-2y+z=k$ ed hanno distanza 2 da s se, e solo se, $|1+k|=2\sqrt{6}$, ovvero $k=-1\pm 2\sqrt{6}$. Presa una qualunque coppia π_h, τ_k si ottengono le equazioni cartesiane di una delle rette cercate.

ESERCIZIO 2. [7 punti] (a) Nello spazio euclideo, E^4 , si determinino le equazioni cartesiane del piano, σ , passante per $P = \begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \end{pmatrix}$ e parallelo ai vettori $v = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix}$ e $w = \begin{pmatrix} 1 \\ -1 \\ 0 \\ 1 \end{pmatrix}$.

(b) Si consideri la sottovarietà lineare, τ , di equazioni cartesiane

$$\tau: \begin{cases} X_1 + 2X_2 + X_4 = 2\\ X_2 + X_4 = 1 \end{cases}$$

e se ne determini la dimensione. Si dica se σ e τ sono parallele, incidenti, sghembe o altro. Come si può calcolare la distanza tra σ e τ ?

Svolgimento. (a) Le equazioni cartesiane sono

$$\sigma: \left\{ \begin{array}{l} X_3 = -1 \\ 2X_1 + X_2 - X_4 = 2 \end{array} \right.$$

(b) Il sistema che determina l'intersezione

$$\sigma \cap \tau : \begin{cases} X_3 = -1 \\ 2X_1 + X_2 - X_4 = 2 \\ X_1 + 2X_2 + X_4 = 2 \\ X_2 + X_4 = 1 \end{cases}$$

ha ranghi 3 e 4; quindi non ci sono punti in comune, ma c'è una direzione in comune, data dalle soluzioni del sistema omogeneo associato. Si conclude che i due piani non sono né incidenti, né paralleli, né sghembi. Per quanto riguarda la distanza, è sufficiente trovare un vettore, n, ortogonale ad entrambo gli spazi direttori e

calcolare la lunghezza della proiezione ortogonale su n di un vettore che congiunge un punto di σ ad uno di

$$\tau. \text{ Si ha } P = \begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \end{pmatrix} \in \sigma, \ Q = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} \in \tau \text{ ed } n = \begin{pmatrix} 2 \\ 1 \\ 0 \\ -1 \end{pmatrix}; \text{ dunque la distanza tra i piani è } d = \frac{|\overrightarrow{PQ} \cdot n|}{\|n\|} = 1/\sqrt{6}.$$

ESERCIZIO 3. [16 punti] Sia V uno spazio vettoriale reale e $\mathcal{V} = \{v_1, \dots, v_4\}$ una sua base. Si consideri l'applicazione $\phi: \mathbb{R}^3 \to V$, di matrice,

$$B = \alpha_{\mathcal{E}, \mathcal{V}}(\phi) = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 2 & 2 \\ 1 & 1 & -1 \\ 0 & -1 & -1 \end{pmatrix}.$$

- (a) Si determinino il nucleo di ϕ ed il sottospazio $U = \text{im } \phi$.
- (b) Si determini una base del sottospazio, $W \subseteq V$, formato dai vettori $v = x_1v_1 + x_2v_2 + x_3v_3 + x_4v_4$ soddisfacenti alle condizioni

$$W: \begin{cases} x_1 + 2x_3 - x_4 = 0 \\ x_2 + x_4 = 0 \\ x_1 + x_2 + 2x_3 = 0 \end{cases}$$

e si verifichi se $V = U \oplus W$.

- (c) Indicata con $\pi: V \to V$ la proiezione su U, parallelamente a W, si scriva la matrice $A = \alpha_{\mathcal{V},\mathcal{V}}(\pi)$.
- (d) Si consideri l'applicazione $\Phi: M_4(\mathbb{R}) \to M_4(\mathbb{R})$, definita da $\Phi(X) = AX$, ove A è la matrice del punto precedente. Si determinino nucleo ed immagine di Φ . È vero che Φ è una proiezione?
- (e) Si consideri l'applicazione $\Psi: M_4(\mathbb{R}) \to M_4(\mathbb{R})$, definita da $\Psi(X) = XA$. Date $X \in \operatorname{im} \Phi$ ed $Y \in \ker \Psi$, cosa si può dire di nucleo ed immagine di XY ed YX?

Svolgimento. (a) Si ha $\ker \phi = \langle 2e_1 - e_2 + e_3 \rangle$ ed $\operatorname{im} \phi = \langle v_1 + v_3, 2v_2 - v_3 - v_4 \rangle$.

- (b) Le tre equazioni che determinano W sono linearmente dipendenti (I + II = III) e quindi lo spazio delle soluzioni ha dimensione 2 e si ha $W = \langle 2v_2 - v_3 - 2v_4, v_1 - v_2 + v_4 \rangle$. Mettendo insieme le equazioni cartesiane dei due sottospazi si trova un sistema di rango 4 e quindi $U \cap W = \langle 0 \rangle$ e perciò $V = U \oplus W$.
- (c) Dato un vettore $x \in V$, la sua projezione $\pi(x) \in U$ è determinata dalla condizione $x \pi(x) \in W$. Si ottiene quindi

$$A = \alpha_{\mathcal{V},\mathcal{V}}(\pi) = \frac{1}{3} \begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 6 & 0 & 6 \\ 1 & -2 & 2 & -3 \\ 0 & -3 & 0 & -3 \end{pmatrix}.$$

- (d) ker Φ corrisponde (tramite l'isomorfismo $\alpha_{\mathcal{V},\mathcal{V}}$) all'insieme delle applicazioni lineari, $\xi: V \to V$, tali che $\pi \circ \xi = 0$, ovvero tali che im $\xi \subseteq \ker \pi = W$. L'immagine di Φ corrisponde alle applicazioni lineari $\eta: V \to V$ tali che im $\eta \subseteq U$ (perché?). Infine, $\Phi(\Phi(X)) = A^2X = AX = \Phi(X)$ per ogni X e quindi Φ è una proiezione.
- (e) Se $X \in \operatorname{im}\Phi$, X = AC per qualche C in $M_4(\mathbb{R})$, se $Y \in \ker\Psi$, si ha YX = YAC = 0 ovvero $\ker YX = \mathbb{R}^4$ ed im $YX = \langle 0 \rangle$. D'altro canto, XY = ACY e quindi im $XY \subseteq \operatorname{im} \pi = U$; inoltre, da YA = 0, posso concludere che $\ker XY \supseteq \operatorname{im} \pi = U$.