DMPeA-Un Padova 31.01.2006-M2F-E5

Corso di Matematica 2F per la Laurea in Fisica - esercizi per casa del 31 gennaio 2006

Lo studente è tenuto a consegnare l'elaborato svolto e firmato non più tardi di **Venerdì 3 febbraio 2006**, secondo le regole stabilite (alla lezione del mattino oppure non oltre le ore 13.00 nella casella della posta a nome "Candilera", al quarto piano del Dip. Matematica, edificio Paolotti).

Lo studente dichiara di aver svolto autonomamente l'elaborato presente. Firma:

Notazione: Nel seguito si indicheranno con n_1, n_2, \ldots, n_6 le cifre del numero di matricola (ad esempio, se il proprio numero di matricola è 510243, $n_1 = 5$, $n_2 = 1$, $n_3 = 0$, $n_4 = 2$, $n_5 = 4$, $n_6 = 3$).

Esercizio (16 punti). Si determinino $n, m \in \{1, 2, 3, 4\}$ in modo che $n_6 - n$ ed $n_5 - m$ siano multipli interi di 4. Nello spazio affine $\mathbb{A}(\mathbb{R}^4)$ si considerino i punti

$$P_1 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ n \end{pmatrix}, \quad P_2 = \begin{pmatrix} 1 \\ 1 \\ n \\ n \end{pmatrix}, \quad P_3 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ n+1 \end{pmatrix}, \quad \text{e} \quad Q_1 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ m \end{pmatrix}, \quad Q_2 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ m+1 \end{pmatrix}, \quad Q_3 = \begin{pmatrix} -1 \\ 0 \\ m \\ m \end{pmatrix}.$$

- (1) Si scrivano le equazioni parametriche e cartesiane delle sottovarietà lineari $\mathbb{L} = P_1 \vee P_2 \vee P_3$ ed $\mathbb{M} = Q_1 \vee Q_2 \vee Q_3$. Si determinino dim \mathbb{L} , dim \mathbb{M} .
- (2) Si dica se le due sottovarietà sono incidenti, parallele o sghembe e si determini, se esiste, un piano π tale che $\pi \cap \mathbb{L} = \{P_1\}$ e $\pi \cap \mathbb{M} = \{Q_1\}$.
- (3) Si determini il baricentro G dei quattro punti P_1, P_2, P_3, Q_1 , attribuendo la stessa massa a ciascuno dei punti. Si determinino le facce del tetraedro, Δ , di vertici P_1, P_2, P_3, Q_1 che vengono attraversate dalla retta $Q_2 \vee G$. Si consideri lo stesso problema per la retta $Q_3 \vee G$.
- (4) Ponendo su $\mathbb{A}(\mathbb{R}^4)$ l'usuale prodotto scalere, che lo rende uno spazio euclideo, si determini $d(\mathbb{L}, \mathbb{M})$ e si determinino le coppie di punti $P \in \mathbb{L}$ e $Q \in \mathbb{M}$ tali che $\|\overrightarrow{PQ}\| = d(\mathbb{L}, \mathbb{M})$.