DMPe A-Un Padova 07 03 2006-M2F-E6

Corso di Matematica 2F per la Laurea in Fisica - esercizi per casa del 7 marzo 2006

Cognome Nome Matricola

Lo studente è tenuto a consegnare l'elaborato svolto e firmato non più tardi di **Venerdì 10 marzo 2006**, secondo le regole stabilite (alla lezione del mattino oppure non oltre le ore 13.00 nella casella della posta a nome "Candilera", al quarto piano del Dip. Matematica, edificio Paolotti).

Notazione: Nel seguito si indicheranno con n_1, n_2, \ldots, n_6 le cifre del numero di matricola (ad esempio, se il proprio numero di matricola è 521043, $n_1 = 5$, $n_2 = 2$, $n_3 = 1$, $n_4 = 0$, $n_5 = 4$, $n_6 = 3$).

Esercizio (16 punti). Si determinino $n, m \in \{1, 2, 3, 4\}$ in modo che $n_6 - n$ ed $n_5 - m$ siano multipli interi di 4. È data l'applicazione lineare $\phi : \mathbb{R}^5 \to \mathbb{R}^5$, rappresentata dalla seguente matrice in base canonica

$$A = \alpha_{\mathcal{E},\mathcal{E}}(\phi) = \begin{pmatrix} 2 & n^2 - n & m - 4 & 0 & -5n \\ 0 & -3 & 0 & 0 & 0 \\ m & 0 & 2 - m & -1 & -mn \\ -m^2 & 0 & 2m^2 - 4m & m + 2 & m^2n \\ 0 & n - 1 & 0 & 0 & -3 \end{pmatrix}.$$

- (1) Trovare il polinomio caratteristico di ϕ e determinare gli autovalori di ϕ , specificando nullità e molteplicità per ogni autovalore.
- (2) Trovare il polinomio minimo di ϕ e determinare una matrice di Jordan J e una matrice invertibile P tali che $J = P^{-1}AP$.
- (3) Si determinino un endomorfismo diagonalizzabile $\delta : \mathbb{R}^5 \to \mathbb{R}^5$ ed un endomorfismo nilpotente $\nu : \mathbb{R}^5 \to \mathbb{R}^5$ tali che $\phi = \delta + \nu$ e $\nu \circ \delta = \delta \circ \nu$. Scrivere le matrici $\alpha_{\mathcal{E},\mathcal{E}}(\delta)$ e $\alpha_{\mathcal{E},\mathcal{E}}(\nu)$.
- che $\phi = \delta + \nu$ e $\nu \circ \delta = \delta \circ \nu$. Scrivere le matrici $\alpha_{\mathcal{E},\mathcal{E}}(\delta)$ e $\alpha_{\mathcal{E},\mathcal{E}}(\nu)$.

 (4) Si determinino tutti gli endomorfismi $\psi : \mathbb{R}^{10} \to \mathbb{R}^{10}$ per cui si ha $p_{\psi}(x) = (x n)^6 (x m)^4$ e $\lambda_{\psi}(x) = (x n)^3 (x m)^2$, scrivendone le relative matrici di Jordan (una matrice per ogni classe di simiglianza).