Cognome	Nome	Matricola

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA

Ingegneria industriale

(CANALE 1 – DOCENTE: MAURIZIO CANDILERA)

II prova parziale - 14 Giugno 2013

DOMANDE

- 1. Dare la definizione di matrici simili.
- 2. Siano \mathbb{L} e \mathbb{M} due sottovarietà lineari non vuote dello spazio euclideo. Dare la definizione di distanza tra le due sottovarietà. Se $d = dist(\mathbb{L}, \mathbb{M})$, come si caratterizzano le coppie di punti (P, Q), con $P \in \mathbb{L}$ e $Q \in \mathbb{M}$ tali che $\|Q P\| = d$?
- 3. Siano A e B due matrici per cui esiste una base $\mathcal{V} = \{v_1, \dots, v_n\}$ di autovettori per entrambe (non necessariamente relativi agli stessi autovalori). È vero che AB = BA?

ESERCIZI

Esercizio 1. Si consideri, al variare del parametro $t \in \mathbb{R}$, la matrice

$$A_t := \begin{pmatrix} 1 & 2t - 4 & -1 \\ t - 2 & 0 & 0 \\ -1 & 0 & 1 \end{pmatrix} \in M_3(\mathbb{R}).$$

(a) Dire per quali valori di t il vettore $v = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$ è autovettore di A_t .

Per tali valori di t, scrivere a quale autovalore $\lambda \in \mathbb{R}$ è associato e calcolare la molteplicità geometrica di λ .

(2 punti)

(b) Dire per quali valori di t lo scalare 0 è autovalore di A_t .

Per tali valori di t, determinare l'autospazio associato all'autovalore 0.

(3 punti)

(c) Dire per quali valori di t la matrice A_t è ortogonalmente diagonalizzabile.

Per tali valori di t, determinare una matrice ortogonale H che diagonalizza A_t e la corrispondente forma diagonale D.

(4 punti)

(d) Per t=2, determinare tutti gli autovettori della matrice A_2 che appartengono al sottospazio vettoriale $W:=\left\{\begin{pmatrix} x\\ y\\ z\end{pmatrix}\in\mathbb{R}^3:y=0\right\}$.

(3 punti)

(voltare pagina)

Esercizio 2. Nello spazio vettoriale euclideo \mathbb{R}^3 , con la base canonica $\mathcal{E} = \{e_1, e_2, e_3\}$, si considerino i vettori $v_1 = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$, $v_2 = \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix}$, $v_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ e i sottospazi $U = \langle v_3 \rangle$ e $V = \langle v_1 \rangle$. Si indichino con $p_U \colon \mathbb{R}^3 \to \mathbb{R}^3$ la proiezione ortogonale su V.

- (a) Determinare una base ortonormale $W = \{w_1, w_2, w_3\}$ di \mathbb{R}^3 tale che $\langle w_1 \rangle = \langle v_1 \rangle$, $\langle w_1, w_2 \rangle = \langle w_1 \rangle$ $\langle v_1, v_2 \rangle, \langle w_1, w_2, w_3 \rangle = \langle v_1, v_2, v_3 \rangle$, e scrivere la matrice di cambiamento di base $A := \alpha_{\mathcal{E}, \mathcal{W}}(\mathrm{id})$. (3 punti)
- (b) Scrivere la matrice, $B := \alpha_{\mathcal{W}, \mathcal{W}}(p_U)$, rispetto alla base \mathcal{W} , della proiezione ortogonale $p_U : \mathbb{R}^3 \to \mathbb{R}^3$. Si scriva la matrice $C := \alpha_{\mathcal{E},\mathcal{E}}(p_U)$ della stessa proiezione in base canonica. Che relazioni ci sono tra le matrici A, B e C? (4 punti)

(c) Determinare tutti i vettori $w \in \mathbb{R}^3$ tali che $p_U(w) = p_V(w)$.

(3 punti)

(d) Sia $\phi: \mathbb{R}^3 \to \mathbb{R}^3$ l'applicazione lineare di matrice A rispetto alla base canonica (in partenza e in arrivo). È vero che ϕ è un'isometria? Si tratta di una rotazione, una riflessione, una roto-riflessione o di una traslazione?

(3 punti)

Esercizio 3. Fissato nello spazio un sistema di riferimento cartesiano ortonormale, si considerino i punti $A = \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix}, B = \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix} \in C = \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix}.$

- (a) Determinare l'equazione cartesiana del piano π passante per A, B, C. (1 punto)
- (b) Determinare il luogo dei punti dello spazio equidistanti da A e B. (2 punti)
- (c) Indicato con D il punto di minima distanza di C dalla retta r passante per A e B, determinare la distanza tra $C \in D$. (2 punti)
- (d) Determinare i vertici di ogni possibile quadrato contenuto in π che ha il segmento CD come lato. (3 punti)

Regole d'esame

- Compilare ogni foglio in ogni sua parte (nome, cognome, n. matricola, etc.).
- Consegnare il foglio bianco, con le soluzioni scritte in modo leggibile e ordinato, e questo foglio.
- NON consegnare fogli di brutta copia.
- Verrà valutato solo quanto scritto a penna (blu o nera) sul foglio bianco.
- La durata del compito è di 2 ore e 30 minuti.
- È possibile ritirarsi dalla prova in qualsiasi momento: scrivere, ben visibile, la lettera "R" sul foglio bianco e consegnare tutti i fogli ricevuti dentro il foglio bianco.
- Non è consentito uscire dall'aula prima di aver consegnato definitivamente il proprio elaborato.
- Non è consentito l'uso di libri, appunti, telefoni e calcolatrici di ogni tipo.
- Non è consentito comunicare con altri candidati durante la prova per nessun motivo.