Esercizio 1. Date le matrici

$$A_1 = \begin{pmatrix} 1 & 1 & 1 & 0 \\ -1 & 0 & 1 & 0 \end{pmatrix}, \quad A_2 = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix}, \quad A_3 = \begin{pmatrix} 2 & 0 \\ 1 & 1 \\ 1 & 3 \\ 1 & -1 \end{pmatrix}, \quad A_4 = \begin{pmatrix} 2 & 0 & -1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 2 \\ 1 & 0 & 0 & -3 \end{pmatrix}$$

quali di queste si possono sommare? E quali moltiplicare? Svolgere tutte le operazioni di somma e prodotto possibili.

Esercizio 2. Scrivere la matrice, rispetto alle basi canoniche, della proiezione $\pi: \mathbb{R}^3 \to \mathbb{R}^2$, $t(x_1, x_2, x_3) \mapsto t(x_1, x_2)$. Considerando su \mathbb{R}^3 la base $\{e_3, e_1, e_2\}$ e su \mathbb{R}^2 la base $\{e_1 - e_2, e_1 + 2e_2\}$, scrivere la matrice di π rispetto a queste basi.

Esercizio 3. Sia V uno spazio vettoriale su \mathbb{Q} e sia $\mathcal{V} = \{v_1, \dots, v_3\}$ una sua base.

(a) Si scrivano le matrici $\alpha_{\mathcal{V},\mathcal{V}}(\varphi)$ di tutte le applicazioni lineari, $\phi:V\to V$, soddisfacenti alle condizioni

$$\phi(2v_1+v_2)=2v_1-v_2, \quad \phi(v_1+2v_2-v_3)=v_1-v_2+v_3, \quad \phi(v_1-v_2+v_3)=v_1-v_3.$$

- (b) Siano ϕ_1 e ϕ_2 due applicazioni descritte al punto (a). Si determini il nucleo di $\phi_2 \phi_1$. Si dica se esistono ϕ_1 e ϕ_2 soddisfacenti alla condizione $\phi_2(v_1) = 2v_1 + 4v_3 = 2\phi_1(v_1)$. In caso affermativo, si determini im $(\phi_2 \phi_1)$.
- (c) Le applicazioni, ϕ , descritte al punto (a) sono tutte invertibili? In caso contrario, si dia una condizione necessaria e sufficiente su $\phi(v_1 + v_2 + v_3)$ affinché ϕ sia invertibile.

Esercizio 4. Sia $\mathcal{V}=\{v_1,\ldots,v_5\}$ una base dello spazio vettoriale V. Sia U il sottospazio vettoriale generato dai vettori $u_1=v_1+v_2-v_3+v_4-v_5,\ u_2=2v_1+v_3+2v_4-v_5,\ u_3=2v_2-3v_3-v_5,\ e$ sia W il

sottospazio vettoriale definito dal sistema di equazioni omogenee $\begin{cases} X_2-X_3+X_4=0\\ 4X_1-X_2+3X_3-X_4=0\\ 2X_1+X_3=0 \end{cases}.$

- (a) Si determinino le rispettive dimensioni ed una base per i sottospazi U e W. Si determinino delle equazioni cartesiane per il sottoinsieme di V che si ottiene traslando tutti i vettori di U per il vettore $u_0 = 2v_1 v_3$.
- (b) Si determini la matrice $\alpha_{\mathcal{V},\mathcal{V}}(\pi)$ dell'endomorfismo $\pi:V\to V$ che si ottiene proiettando i vettori su U parallelamente a W.

Esercizio 5. Si consideri l'endomorfismo $\psi \colon \mathbb{Q}^3 \to \mathbb{Q}^3$ di matrice

$$P = \left(\begin{array}{ccc} 1 & 0 & -2 \\ -1 & 1 & 0 \\ 0 & -2 & 4 \end{array}\right)$$

rispetto alla base canonica e si determinino le matrici, rispetto alle basi canoniche, di tutte le applicazioni lineari $\phi \colon \mathbb{Q}^2 \to \mathbb{Q}^3$ tali che $\psi \circ \phi = 0$.

Esercizio 6. Siano V e W due spazi vettoriali reali e siano $V = \{v_1, \ldots, v_3\}$ e $W = \{w_1, \ldots, w_4\}$, rispettivamente, basi dei due spazi.

(a) Si determinino le applicazioni lineari $\phi: V \to W$ soddisfacenti alle seguenti condizioni

$$\phi(2v_2-2v_1)=6w_2+4w_3-2w_4; \qquad \phi(v_2-v_3)=w_1+3w_2-2w_4; \qquad \phi(3v_1-3v_3)=3w_1-6w_3-3w_4.$$

e si scriva la matrice $\alpha_{VW}(\phi)$ per ciascuna di esse.

(b) Si determini una base dei sottospazi $\ker \phi$ ed $\operatorname{im} \phi$ per ciascuna di tali ϕ e si determinino delle equazioni cartesiane per $\operatorname{im} \phi$ nel caso in cui ϕ non sia iniettiva.

Esercizio 7. Sia $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ e si consideri l'applicazione $\phi_A \colon M_2(\mathbb{Q}) \to M_2(\mathbb{Q})$, definita ponendo $\phi_A(X) = AX - XA$, al variare di $X \in M_2(\mathbb{Q})$. Si mostri che si tratta di un'applicazione lineare e si determinino, al variare di A in $M_2(\mathbb{Q})$, il nucleo e l'immagine di ϕ_A .

Esercizio 8. Si consideri l'applicazione lineare $\pi \colon \mathbb{R}^4 \to \mathbb{R}^4$, di matrice

rispetto alla base canonica di \mathbb{R}^4 .

- (a) Si verifichi che $\pi(\pi(v)) = \pi(v)$ per ogni vettore $v \in \mathbb{R}^4$.
- (b) Si determinino i sottospazi $U = \ker \pi$ e $W = \operatorname{im} \pi$ e si mostri che $\mathbb{R}^4 = U \oplus W$.
- (c) Si scriva la matrice della proiezione su U parallelamente a W.
- (d) Si scriva la matrice della simmetria di asse U e direzione W.

Esercizi di approfondimento

Esercizio 9. Sia X una matrice quadrata di ordine n. Si mostri che, se AX = XA per ogni $A \in M_n(C)$, allora $X = c\mathbf{1}_n$ (matrice scalare).

Esercizio 10. Si consideri lo spazio vettoriale \mathbb{C}^2 e si osservi che si tratta di uno spazio vettoriale sia sul campo \mathbb{C} che sul campo \mathbb{R} .

- (a) Si calcolino le seguenti dimensioni: $\dim_{\mathbb{C}} \mathbb{C}^2$, $\dim_{\mathbb{R}} \mathbb{C}^2$, $\dim_{\mathbb{C}} \operatorname{Hom}_{\mathbb{C}}(\mathbb{C}^2, \mathbb{C}^2)$, $\dim_{\mathbb{R}} \operatorname{Hom}_{\mathbb{C}}(\mathbb{C}^2, \mathbb{C}^2)$, $\dim_{\mathbb{R}} \operatorname{Hom}_{\mathbb{C}}(\mathbb{C}^2, \mathbb{C}^2)$.
- (b) Si consideri l'applicazione $\sigma: \mathbb{C}^2 \to \mathbb{C}^2$, definita da $\sigma(z_1) = (\bar{z}_1)$. Si verifichi che σ è un'applicazione \mathbb{R} -lineare, ma non \mathbb{C} -lineare.
- (c) Si consideri la base canonica $\mathcal{E} = \{e_1, e_2\}$ di \mathbb{C}^2 su \mathbb{C} e sia $\mathcal{E}_{\mathbb{R}} = \{e_1, e_2, ie_1, ie_2\}$. Si mostri che $\mathcal{E}_{\mathbb{R}}$ è una base di \mathbb{C}^2 come \mathbb{R} -spazio vettoriale. Si caratterizzino le matrici rispetto a questa base degli elementi di $\mathrm{Hom}_{\mathbb{C}}(\mathbb{C}^2, \mathbb{C}^2) \subseteq \mathrm{Hom}_{\mathbb{R}}(\mathbb{C}^2, \mathbb{C}^2)$.
- (d) Sia $H = \operatorname{Hom}_{\mathbb{C}}(\mathbb{C}^2, \mathbb{C}^2)$ e sia $H' = \{ \psi \in \operatorname{Hom}_{\mathbb{R}}(\mathbb{C}^2, \mathbb{C}^2) \mid \psi(cv) = \bar{c}\psi(v), \ \forall v \in \mathbb{C}^2, \ \forall c \in \mathbb{C} \ \}$. Si mostri che la corrispondenza $H \to H'$ definita da $\phi \mapsto \sigma \circ \phi$ è un isomorfismo di \mathbb{R} -spazi vettoriali.
- (e) Si concluda che $\operatorname{Hom}_{\mathbb{R}}(\mathbb{C}^2, \mathbb{C}^2) = H \oplus H'$.

Esercizio 11. Dati due sottoinsiemi di un insieme finito, S_1 ed S_2 , vale la formula $\#(S_1 \cup S_2) = \#S_1 + \#S_2 - \#(S_1 \cap S_2)$ e vi è un analogo per le dimensioni dei sottospazi di uno spazio vettoriale di dimensione finita, nelle Relazioni di Grassmann $\dim(W_1 + W_2) = \dim W_1 + \dim W_2 - \dim(W_1 \cap W_2)$. Dati tre sottoinsiemi, si ha

$$\#(S_1 \cup S_2 \cup S_3) = \#S_1 + \#S_2 + \#S_3 - \#(S_1 \cap S_2) - \#(S_1 \cap S_3) - \#(S_2 \cap S_3) + \#(S_1 \cap S_2 \cap S_3);$$

è vero o falso che vale l'analogo per i sottospazi, ovvero che

$$\dim(W_1 + W_2 + W_3) = \dim W_1 + \dim W_2 + \dim W_3 - \dim(W_1 \cap W_2) -$$
$$-\dim(W_1 \cap W_3) - \dim(W_2 \cap W_3) + \dim(W_1 \cap W_2 \cap W_3) ?$$

Esercizio 12. Sia $V = U \oplus W$ e siano date le basi $\mathcal{U} = \{u_1, \dots, u_4\}$ di U e $\mathcal{W} = \{w_1, \dots, w_3\}$ di W su \mathbb{R} . Sia inoltre T il sottospazio di V, $T = \langle u_1 + u_2 - w_1, u_3 - u_4 + w_2 - w_3, u_3 + u_4 + w_1, u_1 - u_2 + w_2 - w_3 \rangle$.

- (a) Si determinino equazioni parametriche e cartesiane del sottospazio T nel sistema di coordinate associato alla base $\mathcal{U} \cup \mathcal{W}$ di V. Si mostri che, per ogni vettore $u \in U$ esiste un unico vettore $u' \in T$ tale che u' u appartenga a W.
- (b) Sia $\phi: U \to W$ l'applicazione che manda il vettore u di U in u' u, ove $u' \in T$ è il vettore descritto nel punto precedente. Si verifichi che ϕ è un'applicazione lineare e se ne scriva la matrice nelle basi date. Si determinino infine nucleo ed immagine di ϕ .