
Esame di Geometria 1 – parte I (laurea in Matematica)
prova scritta del 19 settembre 2012

ESERCIZIO 1. Sia f : A1(C) → A1(C) un’applicazione affine. È vero che se f assume lo stesso valore
su due punti distinti allora assume lo stesso valore su tutti i punti? È vero che esiste un’applicazione affine
f : A1(C)→ A1(C) tale che f(1 + i) = 1 + i e f(1− i) = 3− i? In caso affermativo, si determini l’espressione
di f nel riferimento canonico di A1(C).

Svolgimento. Un’applicazione affine della retta complessa si scrive nel riferimento canonico nella forma z 7→
az + b, per opportuni numeri complessi a, b. Se z1 6= z2 e az1 + b = az2 + b, allora a = 0 e l’applicazione
manda tutti i punti della retta complessa in b.

Per trovare l’applicazione in questione, basta risolvere il sistema lineare

{
a(1 + i) + b = 1 + i

a(1− i) + b = 3− i
, che

porge a = 1 + i, b = 1− i. �

ESERCIZIO 2. Siano V e W spazi vettoriali sul campo Q e siano V = {v1, . . . , v5} e W = {w1, . . . , w4}
delle rispettive basi. Data l’applicazione lineare φ : V →W di matrice

A = αV,W(φ) =

( 1 1 0 3 2

0 2 2 2 2

−1 0 1 −2 −1
1 1 0 3 2

)
,

si determinino delle basi per il nucleo e l’immagine di φ. Detto r il rango di φ, determinare (se esistono) r
vettori w1, . . . , wr in W ed r forme lineari ξ1, . . . , ξr in V ∗ tali che φ = w1 ⊗ ξ1 + · · ·+ wr ⊗ ξr e si scrivano
le matrici nelle basi date delle applicazioni wi ⊗ ξi, i = 1, . . . , r.

Svolgimento. L’omomorfismo φ ha rango 2 e

imφ = 〈w1 − w3 + w4, 2w2 + w3〉 , kerφ = 〈v1 − v2 + v3, 3v1 + v3 − v4, 2v1 + v3 − v5〉 .

I vettori v1 e v3, generano un complementare di kerφ, perché le loro immagini tramite φ costituiscono la base
dell’immagine scritta sopra. In particolare, v1 + kerφ e v3 + kerφ sono una base di V/kerφ e kerφ⊥ ⊂ V ∗

si può identificare con il duale di V/kerφ [in che modo?]. Le forme lineari ξ1 = v∗1 + v∗2 + 3v∗4 + 2v∗5 e
ξ2 = v∗2 + v∗3 + v∗4 + v∗5 sono la base di kerφ⊥ duale della base fissata e quindi

φ = φ(v1)⊗ ξ1 + φ(v3)⊗ ξ2 = (w1 − w3 + w4)⊗ (v∗1 + v∗2 + 3v∗4 + 2v∗5) + (2w2 + w3)⊗ (v∗2 + v∗3 + v∗4 + v∗5).

In termini di matrici si ha

A =

( 1 1 0 3 2

0 2 2 2 2

−1 0 1 −2 −1
1 1 0 3 2

)
=

( 1

0

−1
1

)
( 1 1 0 3 2 ) +

( 0

2

1

0

)
( 0 1 1 1 1 )

che è una decomposizione del tipo richiesto. �

ESERCIZIO 3. Si consideri lo spazio vettoriale R7 dotato della base canonica E = {e1, . . . , e7}, e siano
fissati i sottospazi V = 〈e1, e2, e3, e4〉 e W = 〈e5, e6, e7〉.
(a) Si determinino, se esistono, le applicazioni lineari φ : V →W soddisfacenti alle condizioni

φ(e1 + e3) = e5 + e6 + 2e7, φ(e2 + e4) = 3e5 + 3e6 + 6e7,

φ(e1 + e2 + e3) = e5 + 3e6 + 7e7, φ(e2 − e3 + e4) = 4e5 + 2e6 + 3e7.

e se ne scriva la matrice nelle basi date. Di tali applicazioni si determinino nucleo ed immagine, scrivendo
esplicitamente una base per ciascun sottospazio.
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(b) Si consideri il sottoinsieme U =
{
v + φ(v) ∈ R7 | v ∈ V

}
. Si mostri che U è un sottospazio, detto il

grafico dell’applicazione lineare φ, e si determinino la dimensione e delle equazioni cartesiane per U . Vi
sono relazioni con il rango di φ? Si determinino delle eventuali basi per i sottospazi U ∩ V e U ∩W .

(c) Si diano condizioni necessarie e sufficienti affinché un sottospazio G di R7 sia il grafico di un’applicazione
lineare ψ : V →W .

(d) Sia R7∗ lo spazio duale di R7 con la base duale E∗ = {e∗1, . . . , e∗7}. Si determinino una base e delle
equazioni cartesiane per il sottospazio U⊥ e si dica che relazioni vi sono (se ve ne sono) tra questo
sottospazio ed il grafico dell’applicazione trasposta φ∗ : W ∗ → V ∗.

Svolgimento. (a) I vettori e1 +e3, e2 +e4, e1 +e2 +e3, e2−e3 +e4 sono una base di V e quindi l’applicazione
lineare φ esiste ed è unica. Detta B la sua matrice nella basi date, si ha

B =

(
2 0 −1 3

0 2 1 1

−1 5 3 1

)
. imφ = 〈2e5 − e7, 2e6 + 5e7〉 , kerφ = 〈e1 − e2 + 2e3, 2e1 + e3 − e4〉 .

(b) La verifica che U è sottospazio è immediata. Infatti, 0 = 0 + φ(0) ∈ U e, dati v1, v2 in V ed a1, a2 in
Q, si ha a1(v1 + φ(v1)) + a2(v2 + φ(v2)) = (a1v1 + a2v2) + φ(a1v1 + a2v2) ∈ U , perché φ è lineare.

Un vettore

( x1

...
x7

)
appartiene ad U se, e solo se,


x5 = 2x1 − x3 + 3x4

x6 = 2x2 + x3 + x4

x7 = −x1 + 5x2 + 3x3 + x4

e quindi si tratta di

un sottospazio di dimensione 4 (soluzione di un sistema lineare omogeneo di rango 3 in 7 incognite). La
dimensione di U coincide con la dimensione di V , indipendentemente dal rango di φ. In particolare, i vettori
di U ∩ V hanno le ultime tre componenti uguali a 0 e quindi sono i vettori di kerφ, una cui base è scritta
sopra; mentre U ∩W = 〈0〉 e non c’è una base.

(c) Un sottospazio G di R7 = V ⊕W è il grafico di un omomorfismo ψ : V →W se, e solo se, dimG = dimV
e G ∩ W = 〈0〉. Sotto queste ipotesi, la restrizione a G della proiezione su V , parallelamente a W , è
un’applicazione iniettiva (il suo nucleo è G ∩ W ) e quindi, per motivi di dimensione, è suriettiva su V .
Quindi, per ogni vettore x ∈ V esiste un unico vettore x + w ∈ G, con w ∈ W . L’applicazione x 7→ w
è l’omomorfismo cercato e quindi le condizioni date sono sufficienti. Lasciamo al lettore la verifica che le
condizioni sono anche necessarie.

(d) I vettori e1 + φ(e1), . . . , e4 + φ(e4) sono una base di U , quindi un vettore y1e
∗
1 + · · ·+ y7e

∗
7 appartiene a

U⊥ se, e solo se, le sue coordinate soddisfano al sistema
Y1 + 2Y5 − Y7 = 0

Y2 + 2Y6 + 5Y7 = 0

Y3 − Y5 + Y6 + 3Y7 = 0

Y4 + 3Y5 + Y6 + Y7 = 0

ed una base è data dai vettori

2e∗1 − e∗3 + 3e∗4 − e∗5, 2e∗2 + e∗3 + e∗4 − e∗6, −e∗1 + 5e∗2 + 3e∗3 + e∗4 − e∗7.

Il sottospazio V ⊥ = 〈e∗5, e∗6, e∗7〉 si identifica con W ∗ prendendo la base data come base duale della base
e5, e6, e7 di W ; ed analogamente si identifica W⊥ = 〈e∗1, e∗2, e∗3, e∗4〉 con lo spazio V ∗. Con queste identificazioni
U⊥ è il grafico di −φ∗. �


