
Esame di Geometria 1 – parte II (laurea in Matematica)
prova scritta del 5 settembre 2012

ESERCIZIO 1. Sia φ : Q5 → Q5 l’endomorfismo di matrice A =


3 1 −1 0 0

0 3 0 −1 0

0 2 3 −1 0

0 0 0 3 0

0 0 1 −2 3

 rispetto alla base canonica.

(a) Si determinino polinomio caratteristico, polinomio minimo, autovalori e spazi di autovettori per φ.
(b) Si determinino una matrice di Jordan, J , ed una matrice invertibile, P , tali che J = P−1AP .

Svolgimento. (a) Il polinomio caratteristico è pφ(X) = (X − 3)5 e quindi vi è l’unico autovalore, 3, con
molteplicità (algebrica) 5. I relativi autovettori generano il sottospazio ker(φ− 3) = 〈e1, e5〉. Si ha

A− 3 =


0 1 −1 0 0

0 0 0 −1 0

0 2 0 −1 0

0 0 0 0 0

0 0 1 −2 0

 , (A− 3)2 =


0 −2 0 0 0

0 0 0 0 0

0 0 0 −2 0

0 0 0 0 0

0 2 0 −1 0

 , (A− 3)3 =


0 0 0 2 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 −2 0

 , (A− 3)4 = 05.

dunque il polinomio minimo è λφ(X) = (X − 3)4.

(b) la matrice di Jordan di φ ha quindi un blocco di ordine 4 ed uno di ordine 1. Il vettore v4 = e4 è
un autovettore generalizzato di periodo 4 per l’autovalore 3 e si pone v3 = (φ − 3)(v4) = −e2 − e3 − 2e5,
v2 = (φ− 3)2(v4) = −2e3 − e5 e v1 = (φ− 3)3(v4) = 2e1 − 2e5. Il vettore v5 = e5, appartiene a ker(φ− 3) e
completa i vettori dati ad una base V = {v1, . . . , v5} di Q5, rispetto a cui φ ha matrice di Jordan. Le matrici
cercate sono, ad esempio,

J = αV,V(φ) =


3 1 0 0 0

0 3 1 0 0

0 0 3 1 0

0 0 0 3 0

0 0 0 0 3

 e P = αV,E(id) =


2 0 0 0 0

0 0 −1 0 0

0 −2 −1 0 0

0 0 0 1 0

−2 −1 −2 0 1

 .

�

ESERCIZIO 2. Sia V uno spazio vettoriale di dimensione finita su un campo C e sia φ : V → V un
endomorfismo. Si consideri l’endomorfismo Rφ : HomC (V, V ) → HomC (V, V ) che manda η : V → V su
η ◦ φ.
(a) Si dimostri che φ ed Rφ hanno gli stessi autovalori e lo stesso polinomio minimo.
(b) Si dimostri che φ è diagonalizzabile se, e solo se, lo è Rφ. Cosa dire degli spazi di autovettori e del

polinomio caratteristico di φ ed Rφ?

Svolgimento. (a) Sia a un autovalore per Rφ e sia η ∈ HomC (V, V ) un autovettore relativo ad a. Allora,
per ogni vettore v ∈ V , si ha η(φ(v)) = aη(v) = η(av) e quindi η(φ(v) − av) = 0. Ciò significa che
im(φ− a) ⊆ kerη è un sottospazio diverso da V (η 6= 0) e quindi ker(φ− a) deve avere dimensione positiva;
ovvero a è un autovalore per φ. D’altra parte, sia a un autovalore per φ ed η : V → V un’applicazione
lineare, non-nulla, che si annulli su tutti i vettori del sottospazio im(φ − a) [spiegarsi bene perché esiste!].
Per ogni vettore v di V , si ha η(φ(v)− av) = 0, ovvero η(φ(v)) = η(av) = aη(v) e quindi Rφ(η) = aη.

È immediato verificare che P (Rφ) = RP (φ) per ogni polinomio P (X) ∈ C[X], e che, dato un endomor-
fismo ψ, Rψ = 0 se, e solo se, ψ = 0 [verificare i necessari dettagli!]. Da ciò si conclude che P (Rφ) = 0 se, e
solo se, P (φ) = 0 e quindi che i due polinomi minimi coincidono.

(b) L’endomorfismo φ è diagonalizzabile se, e solo se, il suo polinomio minimo è prodotto di fattori lineari
distinti in C[X]. Poiché il polinomio minimo di φ coincide con quello di Rφ, anche quest’ultimo endomorfismo
è diagonalizzabile.

Sia a un autovalore di φ. Abbiamo visto nel punto precedente che gli autovettori di Rφ relativi
all’autovalore a, sono le applicazioni lineari η : V → V che si annullano su im(φ − a). Indicato con Wa
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un complementare di im(φ−a) in V = Wa⊕ im(φ−a), si ha che le η : V → V , che si annullano su im(φ−a),
sono in corrispondenza biunivoca con gli elementi di HomC (Wa, V )(†). Ora,

dimWa = dimV − dim im(φ− a) = dim ker(φ− a) = nullφ(a).

Quindi, la nullità (molteplicità geometrica) di a per Rφ è uguale a

dim HomC (Wa, V ) = (dimWa)(dimV ) = (nullφ(a))(dimV ).

In particolare, se φ è diagonalizzabile, ciò significa che la molteplicità di a per perRφ è uguale a nmoltφ(a), ove
n = dimV . Si conclude che PRφ(X) = Pφ(X)n. Nel caso in cui φ non sia diagonalizzabile, si può ragionare

in modo analogo dimostrando che gli autovettori generalizzati in ker(Rφ − a)k sono gli endomorfismi nel
nucleo di R(φ−a)k ovvero gli endomorfismi che si annullano su im(φ−a)k. Dalle dimensioni dei sottospazi di
autovettori generalizzati si può dedurre la molteplicità di un autovalore e quindi il polinomio caratteristico
di Rφ è, in ogni caso, uguale a Pφ(X)dimV . �

ESERCIZIO 3. Nello spazio euclideo, E3, col riferimento canonico, R = (O, {e1, . . . , e3}), si considerino le
rette r ed s, di equazioni:

r :

{
x− y − 1 = 0

y + z = 0
s :

{
2x− y + 1 = 0

x− z = 0
.

(a) Si determinino la distanza e l’angolo tra le due rette ed i punti di minima distanza.
(b) Si dimostri che, ruotando la retta s attorno alla retta r di un qualsiasi angolo ϑ /∈ 2πZ, si ottiene una

retta sghemba con s.

Svolgimento. (a) La retta r passa per il punto P =

(
1

0

0

)
ed è parallela al vettore v =

(
1

1

−1

)
. La retta s

passa per il punto Q =

(
0

1

0

)
ed è parallela al vettore w =

(
1

2

1

)
. Il vettore differenza tra un generico punto

di s ed un generico punto di r è u = P −Q− t2w+ t1v =

(
1+t1−t2
−1+t1−2t2
−t1−t2

)
, che è ortogonale ad entrambo le rette

se, e solo se, u ·v = 0 = u ·w, ovvero se, e solo se,

{
3t1 − 2t2 = 0

2t1 − 6t2 = 1
, che è equivalente a

{
t1 = − 1

7

t2 = − 3
14

. Dunque

i punti di minima distanza tra le due rette sono P0 = P − 1
7v =

(
6/7

−1/7
1/7

)
e Q0 = Q− 3

14w =

(−3/14
8/14

−3/14

)
e la

distanza tra le due rette è d = ‖Q0 − P0‖ = 5
√
14

14 . Il coseno dell’angolo tra le due rette è |v·w|
‖v‖‖w‖ =

√
2
3 .

(b) Possiamo supporre di fissare un sistema di riferimento ortonormale con l’origine nel punto P0, la retta r

come asse Z e la retta P0+〈Q0 − P0〉 come asse X. Allora la retta s ha equazione parametrica s :


X = d

Y = s0t

Z = c0t

,

ove t varia in R, c20 + s20 = 1 e c0 è il coseno dell’angolo tra r ed s. Fissato un angolo ϑ la rotazione di asse
r ed angolo ϑ, ha matrice

A =

( 1 0 0 0

0 c −s 0

0 s c 0

0 0 0 1

)
, ove c = cosϑ, s = sinϑ.

La retta s viene trasformata nella retta di equazioni parametriche s′ :


X = cd− ss0t
Y = sd+ cs0t

Z = c0t

. Perché le due rette

siano parallele, dovrebbe aversi

〈(
0

s0
c0

)〉
=

〈(−ss0
cs0
c0

)〉
, che è possibile solo se c = 1, s = 0, ovvero ϑ ∈ 2πZ.

(†) Per i puristi, sarebbe preferibile scrivere HomC (V/im(φ − a), V ) in luogo di HomC (Wa, V ), considerando superflua la

scelta di un complementare per im(φ− a). Resta però un’opinione diffusa che, per gli spazi vettoriali, sia preferibile utilizzare

i complementari in luogo dei quozienti ogni volta sia possibile (sic!). Forse qualcuno preferirebbe anche scrivere coker(φ − a)

per indicare il quoziente V/im(φ− a).
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Affinché le due rette siano incidenti deve aver soluzione il sistema lineare
d = cd− ss0t2
s0t1 = sd+ cs0t2

c0t1 = c0t2

da cui si deduce di nuovo c = 1. �


