Esame di Geometria 1 — parte II (laurea in Matematica)
prova scritta del 19 settembre 2012

50 —6 2 1
0-20 0 -3

ESERCIZIO 1. Sia ¢ : Q° — Q° Iendomorfismo di matrice A = [ 40 -5 2 0 rispetto alla base
00 0 —1 1
01 0 0 2

canonica.

(a) Si determinino polinomio caratteristico, polinomio minimo, autovalori e spazi di autovettori per ¢.
(b) Si determinino una matrice di Jordan, J, ed una matrice invertibile, P, tali che J = P~1AP.
(c) Si determini, se esiste, un vettore w, per cui i vettori

wp = w, wo = ¢(w)7 w3 = (]52(’11})7 w3 = (]53(11))7 Wy = ¢4(’LU>

formino una base, W = {wy,...,ws} di Q° (giustificando la scelta). Si scriva la matrice ayy ().

Svolgimento. (a) 11 polinomio caratteristico & py(X) = (X 4+ 1)3(X — 1)? e quindi vi sono i due autovalori,
1 e —1, con molteplicita (algebrica) 2 e 3, rispettivamente. I relativi sottospazi di autovettori sono ker (¢ —
1) = (3e1 + 2e3) e ker(¢ + 1) = (e1 + e3). Necessariemente, il polinomio minimo coincide con il polinomio
caratteristico, perché per ogni autovalore vi & un unico blocco di Jordan.

(b) Siha
60 —62 1 12 1 —120 11 2410 —24 0 42
0-10 0-3 0-2 0 0-6 0 -4 0 0-12
A+l=[4a20-120 |, (A+1)?*=|s80 806 |, (A+1)> =166 -160 26 |,
00 001 01 003 02 00 6
01 003 02 006 04 0 012
40 62 1
0-30 0 -3
A-1=1]40 -62 0
00 0 -21
01 0 0 1

la matrice di Jordan di ¢ ha quindi un blocco di ordine 3 relativo all’autovalore —1 ed uno di ordine 2
relativo all’autovalore 1. Il vettore vs = —6es + es + 2e5 € un autovettore generalizzato di periodo 3 per
l'autovalore —1 e si pone vg = (¢ + 1)(v3) = —de; — 4dez + 2e4, v1 = (¢ + 1)%(v3) = de; + 4ez. 11 vettore
v = e + 262 +e3 —eq —2e5 € im (¢ +1)3 = ker (¢ — 1)? & un autovettore generalizzato di periodo 2 relativo
all’autovalore 1 e si pone vy = (¢ —1)(v5) = —6e; —4es. Si ha cosi una base, V = {v1,...,vs} di Q°, rispetto
a cui ¢ ha matrice di Jordan. Le matrici cercate sono, ad esempio,

11 000 4-40 —6 1
0 -1100 00 —60 2
J=ayy(@)=| 0o o -100 e P=ayg(id)=]4-41 -4 1
00 011 02 0 0 —1
00 001 00 2 0 -2

(c) 1l vettore w = v3+v5 = e1 —4ea + 2e3 —ey4, € somma di due autovettori generalizzati di periodo massimo.
Poiché lo spazio ¢ somma diretta dei sottospazi di autovettori generalizzati e ¢ induce endomorfismi su
quei sottospazi [Lemma di Decomposizione], il vettore w si annulla applicando I'endomorfismo P(¢), con
P(X) € Q[X], se, e solo se, si annullano le due componenti nei sottospazi di autovettori generalizzati; quindi
se, e solo se, P(X) ¢ divisibile sia per (X + 1) che per (X —1)? e ha quindi grado almeno 5. Cid permette
di concludere (perché?). La matrice di ¢ nella base W & la matrice compagna del polinomio minimo di ¢,
OVVEro.
0000 -1
1000 —1
C=ayy(p)=|0100 2
0010 2
0001 -1



2 MAURIZIO CANDILERA

e cio conclude la discussione. O

ESERCIZIO 2. Si consideri I'applicazione affine f : A3(C) — A2(C) di matrice

1000
A=(0124
12438
nei riferimenti (O, e1,eq,e3) e (O’ e1,e3). Si determinino equazioni cartesiane per I'immagine di f, per

la controimmagine di un generico punto, O’ + y1€1 + y2€2, € per la controimmagine di una generica retta
a1Y1 + a2Ys = ag.

Svolgimento. Per ogni punto P = O+z1e1+x2ea+x3e3 di A3(C), si ha f(P) = O+ (21 +222+423)e1 + (221 +
4xo + 8x3 4 1)y e quindi le coordinate di f(P) soddisfano all’equazione 2Y; — Y5 + 1 = 0, che & 'equazione
cartesiana di im f. Se un punto Q € A?(C) appartiene all'immagine (risp. se un sottoinsieme U di A?(C) ha
intersezione non banale con im f), la controimmagine di Q ha equazione f~1(Q) : X1 +2Xs +4X3 = y1, ove
Q = O +yie1 + (2y1 + 1)eg (visp. f~1(U) & unione di iperpiani paralleli a X7 + 2X5 + 4X3 = 0; uno per
ogni punto di U Nim f).

Se la retta r : a1Y7 + a2Ys = ap non é parallela a im f : 2Y; — Y5 4+ 1 = 0, interseca quest’ultima in un
unico punto, @, e f~1(r) = f~1(rNimf) = f~1(Q). Quando la retta r ¢ parallela, ma diversa da im f, la
controimmagine & @. Infine la controimmagine di im f & tutto A3(C). ]

ESERCIZIO 3. Siano P, Q, R, S i vertici di un tetraedro non degenere nello spazio euclideo E3(R).

(a) Si dimostri che, se PV @ é ortogonale a RV S e PV R & ortogonale a Q V S, allora anche PV S é
ortogonale a Q V R.

(b) Si dimostri che, nelle ipotesi del punto (a), le quattro altezze del tetraedro concorrono ad uno stesso
punto (tetraedro ortocentrico).

Svolgimento. (a) Siano Q@ — P = vy, R— P = vy, S — P = v3. Le ipotesi sono quindi equivalenti alle
condizioni vy - (v2 —v3) = 0 e vy - (v —wv3) = 0. Sottraendo la prima dalla seconda si ottiene esattamente
v3 - (v1 — v2) = 0, ovvero l'ortogonalita della terza coppia di lati opposti.

0
(b) Scegliamo un riferimento ortonormale per cui il punto P abbia coordinate <0>, il punto S abbia

a

Z1 Y1
coordinate (0)7 ed i punti @ ed R abbiano coordinate (362 )7 (yz >, rispettivamente. Chiaramente h # 0
0 0 0

ed osserviamo che, se a = 0, Porigine del riferimento coincide con S e, nelle ipotesi del punto (a), le tre
altezze si incontrano proprio in quel punto.
Supponiamo quindi ¢ # 0. La condizione che P V @ sia ortogonale a RV S da x; = y; e, unita alla

condizione che PV R sia ortogonale a Q V S, da 2% — ax1 + 22y, = 0 (la condizione che PV S sia ortogonale
hzy

a @ V R produce la medesima condizione). Da cio si deduce che il vettore n = <hmg ) ¢ ortogonale al piano
axry

0
PV RV S elaltezza @ + (n1) incontra l’altezza O V P nel punto X di coordinate < 0 > Si ha
—azx1/h

s {(B) - wra-r + we=(()-a-rs

e quindi il punto X e l'intersezione delle quattro altezze del tetraedro. O



