
Esame di Geometria 1 – parte I (laurea in Matematica)
prova di accertamento del 3 febbraio 2012

ESERCIZIO 1. Sia n ≥ 1 un numero intero e si consideri la matrice

Kn =

n∑
j=1

aε(j, j) +

[n+1
2 ]∑

j=1

bε(
[
n+1
2

]
+ 1− j, j) +

[n+1
2 ]∑

j=1

cε(n+ 1− j,
[
n
2

]
+ j),

ove a, b, c sono numeri reali e, come di consueto, [t] indica la parte intera del numero t (ovvero il più grande
numero intero minore o uguale a t).
(a) Si scrivano esplicitamente le matrici K1, K2, K3, K4 e se ne calcolino i rispettivi determinanti.
(b) Si calcolino i determinanti di K5 e K6.
(c) Si determini una formula ricorsiva per il determinante δn = detKn. È vero che per n ≥ 2 ciascuno

dei δn è funzione polinomiale di δ2, δ3, δ4? In caso affermativo si dia un’espressione esplicita per tali
funzioni, altrimenti si dia un controesempio.

Svolgimento. (a) Si ha

K1 = (a+ b+ c), K2 =
(

a+b 0

0 a+c

)
, K3 =

(
a b 0

b a c

0 c a

)
, K4 =

(
a b 0 0

b a 0 0

0 0 a c

0 0 c a

)
;

e quindi δ1 = a+ b+ c, δ2 = (a+ b)(a+ c), δ3 = a(a2 − b2 − c2), δ4 = (a2 − b2)(a2 − c2).

(b) Si ha

δ5 = det


a 0 b 0 0

0 a+b 0 0 0

b 0 a 0 c

0 0 0 a+c 0

0 0 c 0 a

 = δ2δ3 e δ6 = det


a 0 b 0 0 0

0 a+b 0 0 0 0

b 0 a 0 0 0

0 0 0 a 0 c

0 0 0 0 a+c 0

0 0 0 c 0 a

 = δ2δ4.

Nel primo caso, lo si può vedere scambiando tra loro le prime due righe e le prime due colonne e poi portando
la quarta riga al secondo posto e la quarta colonna al secondo posto. Nel secondo, scambiando tra loro le
prime due righe e le prime due colonne e poi portando la quinta riga al secondo posto e la quinta colonna al
secondo posto.

(c) Operando in modo analogo sulle righe e le colonne (scriverlo in modo esplicito!), si può affermare che,
per n ≥ 5, si ha

δn =

{
δ2δn−2 se n ≡ 1, 2 mod 4

δ4δn−4 se n ≡ 3, 4 mod 4
e quindi δn =

{
δ2δ3δn−5 se n ≡ 1 mod 4

δiδn−i se i ∈ {2, 3, 4} e n ≡ i mod 4
.

Si può quindi dimostrare (ad esempio, per induzione su n) che

δn = δ
1−[n+1

4 ]+[n−1
4 ]

2 δ
[n+1

2 ]−[n
2 ]

3 δ
[n+2

4 ]+[n
4 ]−[n−1

4 ]−1
4

per n ≥ 2. �
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2 MAURIZIO CANDILERA

ESERCIZIO 2. Sia V uno spazio vettoriale su Q e sia V = {v1, . . . , v5} una sua base. Si considerino i
sottospazi U = 〈2v1 + v2 + 4v3 − 2v4 + v5, v1 + 2v3, v1 − v2 + 2v3 + 2v4 − v5〉 e

W :


2X1 −X2 − 2X3 + 4X5 = 0

X1 −X3 + 2X5 = 0

X1 +X2 −X3 + 2X5 = 0

.

(a) Si determinino le dimensioni e delle basi di U e W . Si verifichi che V = U ⊕W e si scriva la matrice
αV,V(π) dell’endomorfismo π : V → V che proietta ogni vettore su U , parallelamente a W .

(b) Sia H = 〈2v1 + 3v3 + v4, 2v1 + v2 − v4〉 e si determinino nucleo ed immagine di π|H . Si determinino

i sottospazi U⊥, W⊥, H⊥ di V ∗ e si esibisca una base per ciascuno di questi sottospazi. Si dica se
V ∗ = H⊥ ⊕W⊥.

(c) È vero che H = {u+ φ(u) |u ∈ U } per un opportuno omomorfismo φ : U →W? In caso affermativo si
scriva la matrice di φ nelle basi di U e W fissate al punto (a). È vero che H⊥ =

{
u∗ + ψ(u∗)

∣∣u∗ ∈ U⊥ }
per un opportuno omomorfismo ψ : U⊥ →W⊥? Che relazioni ci sono tra ψ e φ∗?

Svolgimento. (a) I tre generatori di U sono linearmente dipendenti ed una sua base, U , è data da u1 = v1+2v3,
u2 = v2− 2v4 + v5. Anche le tre equazioni che definiscono W sono dipendenti (III = 3II− I) e tre soluzioni
indipendenti del sistema formano la base W, con w1 = v1 + v3, w2 = v4, w3 = 2v1 − v5.

La matrice cercata è αV,V(π) =


−1 2 1 0 −2
0 1 0 0 0

−2 4 2 0 −4
0 −2 0 0 0

0 1 0 0 0

.

(b) ker(π|H) = kerπ∩H = W ∩H = 〈0〉, come si verifica sostituendo una combinazione lineare dei generatori
di H nelle equazioni che definiscono W . Quindi dim(im(π|H)) = dimH−dim ker(π|H) = 2 = dimU e quindi
im(π|H) = U . Ciò significa che π induce un isomorfismo tra H ed U .

Sia V∗ = {v∗1 , . . . , v∗5} la base duale di V ∗. Una base di U⊥ è {2v∗1−v∗3 , 2v∗2+v∗4 , v
∗
4+2v∗5}. Una base diW⊥

è {v∗1−v∗3+2v∗5 , v
∗
2}. Una base diH⊥ è {3v∗1−6v∗2−2v∗3 , 3v

∗
2−v∗3+3v∗4 , v

∗
5}. Infine, H⊥+W⊥ = (H∩W )⊥ = V ∗,

per quanto visto sopra. Applicando le relazioni di Grassmann si conclude che V ∗ = H⊥ ⊕W⊥.

(c) La proiezione, π, induce un isomorfismo tra H ed U e quindi, per ogni vettore u ∈ U esiste un unico
vettore φ(u) ∈W tale che u+φ(u) ∈ H e questo definisce l’omomorfismo φ : U →W (φ = (id−π)◦(π|H)−1).

Si ha u1 + w1 + w2 ∈ H e u2 + w2 + w3 ∈ H, quindi αU,W(φ) =

(
1 0

1 1

0 1

)
.

Poiché V ∗ = H⊥⊕W⊥, la proiezione id−π∗ induce un isomorfismo tra U⊥ ed H⊥; quindi, analogamente
a quanto visto sopra, vi è un unico omomorfismo ψ : U⊥ →W⊥ tale che H⊥ =

{
u∗ + ψ(u∗)

∣∣u∗ ∈ U⊥ }.
Infine, dal fatto che V ∗ = U⊥ ⊕W⊥, si deduce che U⊥ ∼= V ∗/W⊥ ∼= W ∗ (esplicitare gli isomorfismi!)

e, analogamente, W⊥ ∼= V ∗/U⊥ ∼= U∗. Inoltre, per ogni u ∈ U ed ogni u∗ ∈ U⊥, si ha u + φ(u) ∈ H e
u∗ + ψ(u∗) ∈ H⊥, e quindi

0 = (u+ φ(u)) ◦ (u∗ + ψ(u∗)) = φ(u) ◦ u∗ + u ◦ ψ(u∗)

da cui si deduce che ψ = −φ∗. �


