
Esame di Geometria 1 – parte I (laurea in Matematica)
prova scritta del 8 febbraio 2012

ESERCIZIO 1. Si consideri il polinomio P (X) = X3 + X2 + 3X − 5.
(a) Si verifichi che P (1) = 0; si determinino le radici in C del polinomio P (X) e le si disegni nel piano di

Gauss.
(b) Si determinino le fattorizzazioni in fattori irriducibili di P (X) in R[X] ed in C[X].

Svolgimento. P (X) = (X − 1)(X2 + 2X + 5) = (X − 1)(X + 1 + 2i)(X + 1 − 2i) e lasciamo al lettore il
disegno. �

ESERCIZIO 2. Si considerino i vettori v =
(

2−i

1+2i

)
e w =

(
2i+1

i−2

)
di C2.

(a) Si determinino le dimensioni sui rispettivi campi di base, dei sottospazi 〈v, w〉C e 〈v, w〉R.
(b) Si dica se esiste un endomorfismo di C–spazi vettoriali, φ : C2 → C2, tale che φ(v) = v e φ(w) =

−w. In caso affermativo se ne scriva la matrice rispetto alla base canonica {e1, e2}. Si dica se esiste
un endomorfismo di R–spazi vettoriali, φ : C2 → C2, tale che φ(v) = v e φ(w) = −w e kerφ =〈(

0

1−i

)
,
(

0

1+i

)〉
R
. In caso affermativo se ne scriva la matrice rispetto alla base R = {e1, ie1, e2, ie2}.

(c) Nel caso in cui esista l’endomorfismo φ del punto precedente, si consideri l’endomorfismo αt = 3idC2−tφ;
si calcoli detαt e si determini una base di kerαt, al variare di t in C o in R (a seconda del caso).

Svolgimento. (a) w = iv e quindi 〈v, w〉C = 〈v〉C ha dimensione 1 come C-spazio vettoriale. I due vettori
sono linearmente indipendenti su R e quindi dimR 〈v, w〉R = 2.
(b) Poiché w = iv non può esistere un’applicazione C-lineare che soddisfi alle condizioni dette. I quattro
vettori

v1 = v = 2e1 − ie1 + e2 + 2ie2, v2 = w = e1 + 2ie1 − 2e2 + ie2, v3 = e2 − ie2, v4 = e2 + ie2,

sono una base, V, di C2 come spazio vettoriale reale e quindi esiste un’unica applicazione lineare φ soddis-
facente alle condizioni date, e si ha

B = αV,V(φ) =


1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0

 , P = αV,R(id) =


2 1 0 0
−1 2 0 0
1 −2 1 1
2 1 −1 1

 ;

da cui si conclude che A = αR,R(φ) = PBP−1 =

 3/5 −4/5 0 0

−4/5 −3/5 0 0

4/5 3/5 0 0

3/5 −4/5 0 0

.

(c) Il determinante di αt è facile da calcolare utilizzando la base V ed è uguale a 9(9−t2). Si ha kerα3 = 〈v〉R,
kerα−3 = 〈w〉R, e kerαt = 〈0〉R, per tutti gli altri valori di t ∈ R. �
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2 MAURIZIO CANDILERA

ESERCIZIO 3. Sia n un numero naturale fissato e si consideri l’applicazione φn : Mn(R) → Mn(R),
definita da φ(A) = −tA.
(a) Si verifichi che, per ogni numero naturale n ≥ 1, φn è un’applicazione lineare ed una simmetria dello

spazio Mn(R). Si determinino, al variare di n, il sottospazio unito ed il sottospazio delle direzioni di
riflessione per φn e le loro dimensioni.

(b) Si calcoli detφn al variare di n.
(c) Si identifichi lo spazio Mn(R) con il suo duale tramite l’applicazione bilineare g : Mn(R)×Mn(R) → R,

g(X, Y ) = tr(tXY ), e si verifichi che tramite tale identificazione la base canonica {ε(i, j) | 1 ≤ i, j ≤ n}
di Mn(R) coincide con la base duale. Che dire della trasposta di φn?

Svolgimento. (a) t(A + B) = tA + tB e t(cA) = ctA per ogni scalare reale c. Quindi la trasposizione è
un’applicazione lineare, cos̀ı come lo è la moltiplicazione per lo scalare −1. Quindi φn è lineare in quanto
composizione di applicazioni lineari. Inoltre φn(φn(A)) = −t(−tA) = A per ogni A ∈ Mn(R) e quindi φn è
una simmetria. φn(A) = A se, e solo se, tA = −A e quindi gli elementi uniti per φn formano il sottospazio,
An, delle matrici antisimmetriche, di dimensione

(
n
2

)
. Una sua base è data dalle matrici ε(i, j)− ε(j, i) per

1 ≤ i < j ≤ n. Le direzioni di riflessione sono le matrici, X, per cui φn(X) = −X, ovvero le matrici
simmetriche che formano uno sottospazio, Sn, di dimensione

(
n+1

2

)
. Una sua base è data dalle matrici

ε(i, j) + ε(j, i) per 1 ≤ i ≤ j ≤ n.
(b) Mn(R) = An ⊕ Sn e quindi esiste una base fatta con vettori dei due sottospazi. Utilizzando tale base si
calcola facilmente det φn = (−1)(

n+1
2 ) per ogni intero n ≥ 1.

(c) Per i vettori della base canonica, si ha

tr(tε(i, j)ε(h, k)) = tr(ε(j, i)ε(h, k)) = tr(δihε(j, k)) = δihδjk

da cui si conclude. Date due matrici, A e B, in Mn(R), si ha

g(φn(A), B) = −tr(AB) = −trt(AB) = −tr(tBtA) = −tr(tAtB) = g(A,φn(B))

e quindi φn coincide con la sua trasposta. �


