Esame di Geometria 1 — parte I (laurea in Matematica)
prova scritta del 28 febbraio 2012

ESERCIZIO 1. Si consideri il polinomio P(X) = X — 11X + 20.

(a) Si verifichi che P(—4) = 0; si determinino le radici in C del polinomio P(X) e le si disegni nel piano di
Gauss.

(b) Si determinino le fattorizzazioni in fattori irriducibili di P(X) in R[X] ed in C[X].

Svolgimento. P(X) = (X +4)(X? —4X +5) = (X +4)(X —2+1)(X —2—1) e lasciamo al lettore il disegno.
([

ESERCIZIO 2. Sia V' uno spazio vettoriale complesso e sia V = {v1,...,v4} una sua base.
(a) Si dica se esiste un’applicazione lineare ¢ : V' — V soddisfacente alle seguenti condizioni

P(v1 4 2v2) = 203 +dvy,  G(203 + dvy) = v1 + 2v2,  G(v1 — 4dvg) = 2v3 — 20y,
(2v3 — 2v2) = v1 —4vg,  P(v1) = v1.

In caso positivo, si scriva la matrice oy v(¢) e si dica se ¢ o ¢ = idy. In caso negativo, si dica come
modificare I'immagine di vy + v affinché oltre alle condizioni date, si abbia ¢ o ¢ = idy .

(b) Si determini la decomposizione V.= U @ W ove U ¢ il sottospazio lasciato invariante da ¢ (asse di
simmetria) e W é il sottospazio delle direzioni di simmetria per ¢.

(c) Sia T uno spazio vettoriale di dimensione n su C e si consideri 'applicazione ® : Homg¢ (T,V) —
Homg (T,V) definita da ®(§) = ¢ o &. Si mostri che ® & una simmetria dello spazio Homg (T,V)
e si determinino la decomposizione in somma diretta ad essa associata (direzioni unite e direzioni di
simmetria) e le dimensioni dei relativi sottospazi. Si calcoli det(2id — ®).

Svolgimento. (a) I vettori

w) =v1, w2 =v1+2v2, w3=2v3+4vy, wg=v1—4dvy,

sono linearmente indipendenti e formano quindi una base, W = {ws,...,ws}, di V. Si possono quindi
assegnare le immagini dei vettori della base secondo quanto scritto sopra ed ottenere un’applicazione lineare,
¢ 'V — V. Essendo, 2v3 — 2vs = —ws + w3 + wy, si ottiene ¢(2vu3 — 2v3) = P(—wg + w3 + wy) =

—(2v3 +4v4) + (v1 +2v2) + (203 — 2v3) = v1 — 4wy e sono soddisfatte tutte le condizioni richieste. Si ha quindi
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A? = B%2 =1, e quindi ¢ & una simmetria.

(b) U= (vi+d(vi)|i=1,...,4) = (v1,v1 — 2vg — 2v3 — 4v4,v3,v1 + 202 — 2v3 + 4vy) = (v1,V3,v2 + 204) €

W = <’Ui—(b(’l)i)|’i: 1,...,4) = <’U1 + 2vy — 2vg —41}4).

(¢) Per ogni & € Homc (T,V), si ha ®(®(£)) = po(pof) = £ e quindi ®? = id e ® & una simme-

tria di Homg (7,V). Essendo V = U & W, si ha Home (T,V) = Home (T,U) @ Homg (T, W) (esplicitare

lisomorfismo!) e il sottospazio Homg (7, U), di dimensione 3n, ¢ il sottospazio delle direzioni unite, mentre

Homge (T, W), di dimensione n, ¢ il sottospazio delle direzioni di simmetria. Infine, se £ & una direzione unita,

si ha (2id — ®)(§) = &; mentre, se 1 € una direzione di simmetria, si ha (2id — ®)(n) = 3n. Quindi, prendendo

una base fatta di direzioni unite e di direzioni di simmetria per ®, si calcola facilmente det(2id — @) = 3".
(|

ESERCIZIO 3. Si consideri la matrice

4 2 6-26
2 1 -3-1 3

A= -6-39 3 -9 | € M5(Q).
000 00
4 2 6-26



2 MAURIZIO CANDILERA

(a) Sidetermini il rango di A e si determinino, se esistono, una matrice colonna ¢ € Msx1(Q) ed una matrice
riga r € Myy5(Q), tali che A = cr. E vero che, per ogni intero n > 2, qualsiasi matrice di rango 1 in
M, (Q) é prodotto di una colonna per una riga? La colonna e la riga in questione, se esistono, sono
univocamente determinate?

(b) Sian > 2 e siano Ay = c111 ed Ay = care due matrici in M, (Q), prodotto di una colonna 0 # ¢; €
M, «1(Q) e di una riga 0 # r; € M14,(Q), (i = 1,2). Si descrivano nucleo ed immagine di Ay, Ay ed
A1 4 Az in relazione alle dimensioni dei sottospazi (ci,ca) e (ri,732).

(c) Sia
3142 0
1011 1
B=]oo0oo0o0 0 | €M(Q).
2-113 5
01 1-1-3
Si determini r = rkB. Si determinino, se esistono, r matrici di rango 1, By,..., B, tali che B =

By +- -+ B,. Le matrici in questione, se esistono, sono univocamente determinate (a meno dell’ordine)?
Se non sono uniche, come possono variare?

Svolgimento. (a) La matrice A ha rango 1, come si pud vedere facilmente applicando il procedimento di

2
1
eliminazione di Gauss alle colonne. Posto ¢ = | =3 | ed r = (2,1,—3,—1,3), si verifica con un calcolo
X
diretto che A = cr.
Piu in generale, se una matrice A € M,,(Q) ha rango 1, tutte le sue colonne aq,...,a, sono multipli
di una di queste, ovvero esiste una colonna a # 0 di A e degli scalari, aq,...,a,, tali che a; = aya, per
i=1,...,n. Indicata con b la riga (aq,...,a,), si ha quindi A = ab. La colonna a & determinata a meno

del prodotto per uno scalare p # 0 e, posto a’ = pa, si ha A = a’b' con b’ = (p~1b).
(b) Poiché le righe e le colonne non possono essere nulle, entrambo le matrici A; ed As hanno rango
esattamente uguale ad 1 e imA; = (¢;), ker 4; = <7"Z->J‘, ove Q" = M, «1(Q) e Q™" = M1, (Q).

Se dim (c1, c2) = 2 = dim (rq, r2), dato un vettore x € Q", si ha (A; + Az)x = c1(r1 0x) + ca2(rg 0 x) (col
tondino indichiamo la dualita canonica, ovvero il prodotto riga per colonna) e quindi im (A; + As2) C {c1, c2)
ed i due sottospazi sono uguali perché, essendo 71 ed 72 linearmente indipendenti in Q™*, esistono vettori
Z1, 2 in Q" taliche rpoxy =1 =r90x9 ey 09 =0 = 79 0 1 (perché?). D’altro canto, essendo ¢; e ¢y
linearmente indipendenti in Q™, un vettore x appartiene al nucleo di A; + A, se, e solo se, rpox =0 =ryox.
Dunque, ker (A; + Ag) = (ry,ro)"

Se, invece dim (ci,c2) = 1 e ¢ = age, ca = age per un vettore ¢ € Q" ed ag, az in Q, allora
im(A4; + A2) = {c) e ker (A1 + As) = (a1 + a27’2>J‘. Analogamente, se vy = a7, r9 = a7, per un vettore
r € Q" ed aj, az in Q, allora im (47 + As) = (@11 + asce) e ker (A; + Ag) = (r)J'

(¢) Applicando la tecnica di eliminazione alle righe o alle colonne di B, si verifica facilmente che rk B = 2.
In particolare, se consideriamo i vettori

1 0 -1 -1 -1
0 1 -1 1 3
vl = o1, Vg = o1, V3 = 1 s Vg = 0 s V5 = 0 s
0 0 0 1 0
0 0 0 0 1

si ha che v3, vy, v5 sono una base del nucleo di B ed i vettori v1 e vo li completano ad una base di Q°. Infine,
i vettori

3 1
1 0
wlszlz 0 s w2:BU2: 0
2 -1
0 1
sono una base dell'immagine di B. Se consideriamo la base duale vj, ..., v di Q5" ovvero,

’UT = (13071717 1)3 U; = (Oa 13 1771773)’ ’U; = (070717070)3 UZ = (anaovlao)a U; - (anaoaovl)a

si ha B = w0} + wgvé‘(”, prodotto di colonne per righe.

Possiamo modificare la scelta della base V, prendendo come v1, v2 una qualsiasi altra coppia di generatori
di un complementare del nucleo di B. In corrispondenza a questa coppia, sono univocamente determinati
i vettori w; = Bv; e wy = Bvy ed i vettori v],v3, ortogonali al nucleo di B, e tali che v] o v; = §;; per
1<i,j<2. O

M) Detta ¢ : Q° — QP l’applicazione lineare di matrice B rispetto alla base canonica, nelle notazioni del sesto foglio di
esercizi, si potrebbe scrivere ¢ = w1 @ vy + w2 @ vy = ¢(v1) ® v] + d(v2) ® V5.



