
Esame di Geometria 1 – parte I (laurea in Matematica)
prova scritta del 28 febbraio 2012

ESERCIZIO 1. Si consideri il polinomio P (X) = X3 − 11X + 20.
(a) Si verifichi che P (−4) = 0; si determinino le radici in C del polinomio P (X) e le si disegni nel piano di

Gauss.
(b) Si determinino le fattorizzazioni in fattori irriducibili di P (X) in R[X] ed in C[X].

Svolgimento. P (X) = (X + 4)(X2− 4X + 5) = (X + 4)(X − 2 + i)(X − 2− i) e lasciamo al lettore il disegno.
�

ESERCIZIO 2. Sia V uno spazio vettoriale complesso e sia V = {v1, . . . , v4} una sua base.
(a) Si dica se esiste un’applicazione lineare φ : V → V soddisfacente alle seguenti condizioni

φ(v1 + 2v2) = 2v3 + 4v4, φ(2v3 + 4v4) = v1 + 2v2, φ(v1 − 4v4) = 2v3 − 2v2,

φ(2v3 − 2v2) = v1 − 4v4, φ(v1) = v1.

In caso positivo, si scriva la matrice αV,V(φ) e si dica se φ ◦ φ = idV . In caso negativo, si dica come
modificare l’immagine di v1 + v2 affinché oltre alle condizioni date, si abbia φ ◦ φ = idV .

(b) Si determini la decomposizione V = U ⊕ W ove U è il sottospazio lasciato invariante da φ (asse di
simmetria) e W è il sottospazio delle direzioni di simmetria per φ.

(c) Sia T uno spazio vettoriale di dimensione n su C e si consideri l’applicazione Φ : HomC (T, V ) →
HomC (T, V ) definita da Φ(ξ) = φ ◦ ξ. Si mostri che Φ è una simmetria dello spazio HomC (T, V )
e si determinino la decomposizione in somma diretta ad essa associata (direzioni unite e direzioni di
simmetria) e le dimensioni dei relativi sottospazi. Si calcoli det(2id− Φ).

Svolgimento. (a) I vettori

w1 = v1, w2 = v1 + 2v2, w3 = 2v3 + 4v4, w4 = v1 − 4v4,

sono linearmente indipendenti e formano quindi una base, W = {w1, . . . , w4}, di V . Si possono quindi
assegnare le immagini dei vettori della base secondo quanto scritto sopra ed ottenere un’applicazione lineare,
φ : V → V . Essendo, 2v3 − 2v2 = −w2 + w3 + w4, si ottiene φ(2v3 − 2v2) = φ(−w2 + w3 + w4) =
−(2v3 +4v4)+(v1 +2v2)+(2v3−2v2) = v1−4v4 e sono soddisfatte tutte le condizioni richieste. Si ha quindi

P = αW,V(id) =

( 1 1 0 1

0 2 0 0

0 0 2 0

0 0 4 −4

)
, B = αW,W(φ) =

( 1 0 0 0

0 0 1 −1
0 1 0 1

0 0 0 1

)
, P−1 = αV,W(id) =

(
1 −1/2 −1/2 1/4
0 1/2 0 0
0 0 1/2 0
0 0 1/2 −1/4

)
,

A = PBP−1 = αV,V(φ) =

(
1 −1/2 0 1/4
0 0 0 1/2
0 1 1 −1/2
0 2 0 0

)
.

A2 = B2 = 14 e quindi φ è una simmetria.

(b) U = 〈vi + φ(vi) | i = 1, . . . , 4〉 = 〈v1, v1 − 2v2 − 2v3 − 4v4, v3, v1 + 2v2 − 2v3 + 4v4〉 = 〈v1, v3, v2 + 2v4〉 e
W = 〈vi − φ(vi) | i = 1, . . . , 4〉 = 〈v1 + 2v2 − 2v3 − 4v4〉.
(c) Per ogni ξ ∈ HomC (T, V ), si ha Φ(Φ(ξ)) = φ ◦ (φ ◦ ξ) = ξ e quindi Φ2 = id e Φ è una simme-
tria di HomC (T, V ). Essendo V = U ⊕W , si ha HomC (T, V ) ∼= HomC (T,U) ⊕ HomC (T,W ) (esplicitare
l’isomorfismo!) e il sottospazio HomC (T,U), di dimensione 3n, è il sottospazio delle direzioni unite, mentre
HomC (T,W ), di dimensione n, è il sottospazio delle direzioni di simmetria. Infine, se ξ è una direzione unita,
si ha (2id−Φ)(ξ) = ξ; mentre, se η è una direzione di simmetria, si ha (2id−Φ)(η) = 3η. Quindi, prendendo
una base fatta di direzioni unite e di direzioni di simmetria per Φ, si calcola facilmente det(2id − Φ) = 3n.

�

ESERCIZIO 3. Si consideri la matrice

A =


4 2 −6 −2 6

2 1 −3 −1 3

−6 −3 9 3 −9
0 0 0 0 0

4 2 −6 −2 6

 ∈M5(Q).
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2 MAURIZIO CANDILERA

(a) Si determini il rango di A e si determinino, se esistono, una matrice colonna c ∈M5×1(Q) ed una matrice
riga r ∈ M1×5(Q), tali che A = cr. È vero che, per ogni intero n ≥ 2, qualsiasi matrice di rango 1 in
Mn(Q) è prodotto di una colonna per una riga? La colonna e la riga in questione, se esistono, sono
univocamente determinate?

(b) Sia n ≥ 2 e siano A1 = c1r1 ed A2 = c2r2 due matrici in Mn(Q), prodotto di una colonna 0 6= ci ∈
Mn×1(Q) e di una riga 0 6= ri ∈ M1×n(Q), (i = 1, 2). Si descrivano nucleo ed immagine di A1, A2 ed
A1 +A2 in relazione alle dimensioni dei sottospazi 〈c1, c2〉 e 〈r1, r2〉.

(c) Sia

B =


3 1 4 2 0

1 0 1 1 1

0 0 0 0 0

2 −1 1 3 5

0 1 1 −1 −3

 ∈M5(Q).

Si determini r = rkB. Si determinino, se esistono, r matrici di rango 1, B1, . . . , Br tali che B =
B1+ · · ·+Br. Le matrici in questione, se esistono, sono univocamente determinate (a meno dell’ordine)?
Se non sono uniche, come possono variare?

Svolgimento. (a) La matrice A ha rango 1, come si può vedere facilmente applicando il procedimento di

eliminazione di Gauss alle colonne. Posto c =


2

1

−3
0

2

 ed r = (2, 1,−3,−1, 3), si verifica con un calcolo

diretto che A = cr.
Più in generale, se una matrice A ∈ Mn(Q) ha rango 1, tutte le sue colonne a1, . . . , an sono multipli

di una di queste, ovvero esiste una colonna a 6= 0 di A e degli scalari, α1, . . . , αn, tali che ai = αia, per
i = 1, . . . , n. Indicata con b la riga (α1, . . . , αn), si ha quindi A = ab. La colonna a è determinata a meno
del prodotto per uno scalare ρ 6= 0 e, posto a′ = ρa, si ha A = a′b′ con b′ = (ρ−1b).

(b) Poiché le righe e le colonne non possono essere nulle, entrambo le matrici A1 ed A2 hanno rango

esattamente uguale ad 1 e imAi = 〈ci〉, kerAi = 〈ri〉⊥, ove Qn = Mn×1(Q) e Qn∗ = M1×n(Q).
Se dim 〈c1, c2〉 = 2 = dim 〈r1, r2〉, dato un vettore x ∈ Qn, si ha (A1 +A2)x = c1(r1 ◦x) + c2(r2 ◦x) (col

tondino indichiamo la dualità canonica, ovvero il prodotto riga per colonna) e quindi im(A1 +A2) ⊆ 〈c1, c2〉
ed i due sottospazi sono uguali perché, essendo r1 ed r2 linearmente indipendenti in Qn∗, esistono vettori
x1, x2 in Qn, tali che r1 ◦ x1 = 1 = r2 ◦ x2 e r1 ◦ x2 = 0 = r2 ◦ x1 (perché?). D’altro canto, essendo c1 e c2
linearmente indipendenti in Qn, un vettore x appartiene al nucleo di A1 +A2 se, e solo se, r1 ◦x = 0 = r2 ◦x.
Dunque, ker(A1 +A2) = 〈r1, r2〉⊥.

Se, invece dim 〈c1, c2〉 = 1 e c1 = α1c, c2 = α2c per un vettore c ∈ Qn ed α1, α2 in Q, allora

im(A1 +A2) = 〈c〉 e ker(A1 +A2) = 〈α1r1 + α2r2〉⊥. Analogamente, se r1 = α1r, r2 = α2r, per un vettore

r ∈ Qn∗ ed α1, α2 in Q, allora im(A1 +A2) = 〈α1c1 + α2c2〉 e ker(A1 +A2) = 〈r〉⊥.

(c) Applicando la tecnica di eliminazione alle righe o alle colonne di B, si verifica facilmente che rkB = 2.
In particolare, se consideriamo i vettori

v1 =


1

0

0

0

0

 , v2 =


0

1

0

0

0

 , v3 =


−1
−1
1

0

0

 , v4 =


−1
1

0

1

0

 , v5 =


−1
3

0

0

1

 ,

si ha che v3, v4, v5 sono una base del nucleo di B ed i vettori v1 e v2 li completano ad una base di Q5. Infine,
i vettori

w1 = Bv1 =


3

1

0

2

0

 , w2 = Bv2 =


1

0

0

−1
1


sono una base dell’immagine di B. Se consideriamo la base duale v∗1 , . . . , v

∗
5 di Q5∗, ovvero,

v∗1 = (1, 0, 1, 1, 1) , v∗2 = (0, 1, 1,−1,−3) , v∗3 = (0, 0, 1, 0, 0) , v∗4 = (0, 0, 0, 1, 0) , v∗5 = (0, 0, 0, 0, 1) ,

si ha B = w1v
∗
1 + w2v

∗
2
(†), prodotto di colonne per righe.

Possiamo modificare la scelta della base V, prendendo come v1, v2 una qualsiasi altra coppia di generatori
di un complementare del nucleo di B. In corrispondenza a questa coppia, sono univocamente determinati
i vettori w1 = Bv1 e w2 = Bv2 ed i vettori v∗1 , v

∗
2 , ortogonali al nucleo di B, e tali che v∗i ◦ vj = δij per

1 ≤ i, j ≤ 2. �

(†) Detta φ : Q5 → Q5 l’applicazione lineare di matrice B rispetto alla base canonica, nelle notazioni del sesto foglio di

esercizi, si potrebbe scrivere φ = w1 ⊗ v∗1 + w2 ⊗ v∗2 = φ(v1)⊗ v∗1 + φ(v2)⊗ v∗2 .


