Esercizi di Geometria 1 Foglio 4 — 23 Novembre 2011

Esercizio 1. Risolvere i sistemi lineari Az = b di matrice completa
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Esercizio 2. Determinare le soluzioni del sistema lineare

—tx1 + (t — 1)1‘2 + x3 = 1
(t—1Dze + tzs = 1
2x1 + x3 = 5
al variare del parametro t € R.
A+2
. . e . 2u+1 . . . .
Esercizio 3. Dato 'insieme S = 3 — 1 ;A b € R 3 determinare un sistema lineare le cui so-
A—p—1

luzioni coincidano con S. Quante saranno le incognite? Qual ¢ il numero minimo di equazioni necessarie?
Se leggiamo S come un piano in A*(R), il sistema cercato a cosa corrisponde?

Esercizio 4. Si considerino, al variare di A tra i numeri reali, i sistemi lineari:

A=D1z +2y -z =0
Y= 2x —z =0
—A+1lz -y +(A+2)z =0

(a) Siindichi con Sy l'insieme delle soluzioni del sistema . Si determini al variare di A la dimensione
del sottospazio S}.

(b) Si dica se I'unione dei sottoinsiemi Sy, al variare di )\, genera tutto R3. In caso contrario, si
determini la dimensione del sottospazio generato da tale unione.

Esercizio 5. Si considerino i sistemi lineari omogenei:

2x1 —3x9 —x4 =0 Axq +2x9 —3)Ax3 =0
3ry —2z3 +xz4 =0 e A+ 1Dzy 4222 —3dzs +xz4 =0
T +z4, =0 2\x2 —3x3 +2Xry =0

Si determinino i valori di A per cui i due sistemi ammettono soluzioni non banali in comune.

Esercizio 6. Si considerino, al variare di A tra i numeri reali, i sistemi lineari:

(A=1)ay 4224 —\T3 +2 s =0

= 211 —T3 +x4 =0
AT —(/\ + 1)%‘1 — Ao —l—()\ + 2)$3 —2x4 =0
21’1 +()\ - 2)1‘2 7213 =0

(a). Siindichi con Sy l'insieme delle soluzioni del sistema . Si determini al variare di A la dimensione
del sottospazio Sy .

(b). Si dica se l'unione dei sottoinsiemi Sy, al variare di A, genera tutto R*. In caso contrario, si
determinino le equazioni del sottospazio generato da tale unione.



Esercizio 7. Al variare di A in Q, si dica quante soluzioni vi sono in Q* per il seguente sistema di
equazioni lineari

A=1)x1+222+324=0

Az + (A + 1y =1

1+ Ar3+x4 =0

A=1)z14+24=0

Z,\:

Esercizio 8. Si determinino i valori del parametro ¢ per cui il sistema

(t + 1)1‘1 4+ 2z —txy =1
(Q—t).’L’Q—F.Tg =1

Xy
(2—t)xg + 2txy =1
(t+1)

ha soluzione.
Per i valori di ¢ per cui il sistema ammette un’unica soluzione, si determini tale soluzione in funzione
del parametro t.

Esercizio 9. Nello spazio affine A3(R) si considerino le terne di piani
TNy = Az +A=2)(z+1) =0, m\):A=Dax+rz=2, m3(A\):x+\y+2\22=0,

al variare di A in R.
Si dica per quali valori di A le intersezioni m1(A\) N wa(A), 71 (A) N w5(A), m2(A) N w5(A\) sono tre rette
parallele, a due a due, distinte.

Esercizio 10. Si considerino i sistemi lineari omogenei:

To —2x3+2x4 =0 o )\.131+3$2—(/\+1)£E3 =0
r1 + x4 =0 2A\x9 + x3 — A1y =0

Si determinino i valori di A € C per cui i due sistemi ammettono soluzioni non banali in comune.

Esercizio 11. Due matrici A, B € M,,x,(C) si dicono riga-equivalenti se esiste una matrice invertibile
P € GL,(C) tale che B = PA. Analogamente, due sistemi di equazioni lineari si dicono riga-equivalenti
se lo sono le loro matrici complete.

(a) Si verifichi che due sistemi lineari riga-equivalenti hanno lo stesso insieme di soluzioni.

(b) E vero o falso che due matrici A, B € M, 5m (C) sono riga-equivalenti se, e solo se, i sistemi omogenei
AX =0e BX =0 hanno lo stesso insieme di soluzioni?

(¢) E vero o falso che due sistemi non-omogenei di equazioni lineari, AX = ¢ e BX = d, sono riga-
equivalenti se, e solo se, hanno lo stesso insieme di soluzioni?

Esercizio 12. Sia A = (Z Z) € M>(Q). Si mostri che I'insieme delle matrici X € M>(Q) tali che

AX = X A ¢ un sottospazio di M2(Q), la cui dimensione & uguale a 2 oppure a 4, e quest’ultimo caso
accade se, e solo se, A & una matrice scalare (a =d e b=c=0).

Esercizio 13. Siano dati tre spazi vettoriali V', W, Z, di dimensione finita sul campo C, e due applicazioni
lineari ¢: V. — W, ¢p: W — Z. Si mostri che

(a) k(1) o ¢) = rko se, e solo se, kery) Nim¢ = (0);
(b) rk(w o ¢) = rke) se, e solo se, kery) +im¢ = W.
(¢) Si concluda che, dato un endomorfismo f: V — V, si hark(fo f) =rkf se, e solo se, V = ker f &im f.

Esercizio 14. Sia B una matrice m X n. Si descriva l'effetto che si ottiene su B, moltiplicando B «a
destra per una matrice elementare di ordine n.

Esercizio 15. Si verifichi che le matrici elementari sono tutte invertibili e che ogni matrice invertibile,
ad elementi in un corpo C, & prodotto di un numero finito di matrici elementari.

Esercizio 16. Sia V uno spazio vettoriale di dimensione finita sul campo C e sia ¢ : V — V un
endomorfismo. Si mostri che rk¢ = dimV se, e solo se, esiste un’applicazione lineare ¢~ : V — V| tale

che poop™t =idy = ¢ L og.



Esercizio 17. Sia V uno spazio vettoriale di dimensione finita sul campo C e sia ¢ : V — V un
endomorfismo. Si mostri che sono equivalenti le seguenti affermazioni:

) k¢ < dim V.

a
b) esiste un’endomorfismo ¢ : V- — V', diverso da 0, tale che ¢ o) = 0.

(
(
(c) esiste un’endomorfismo x : V. — V, diverso da 0, tale che x o ¢ = 0.
(d) per ogni ¢ : V — V, si ha ¢ o) # idy.
(e) per ogni x : V — V, si ha xyo¢ # idy.

Esercizio 18. Cosa resta vero del contenuto degli ultimi due esercizi se V ha dimensione infinita?

* Esercizio 19. Siano V e W due spazi vettoriali di dimensione finita su C' e sia ¢ : V' — W un’appli-
cazione lineare. Si chiamano rispettivamente conucleo e coimmagine di ¢ i quozienti coker¢ = W/im¢ e
coim¢ = V/ker ¢.

(a) Si dimostri che dim coker ¢ + dimcoim¢ = dimW.

(b) E vero che dimV — dimker¢ = dim W — dim coker ¢ ?

(c) Sia j : ker¢ — V I'immersione naturale del sottospazio in V. Si mostri che, per ogni applicazione
lineare ¢ : T'— V tale che ¢ 09 = 0 esiste un’unica applicazione lineare v : T — ker ¢ tale che ¥ = jov.
(d) Utilizzare il punto precedente per determinare il nucleo dell’applicazione lineare (T, ¢) : Homg (T, V) —
Hom¢ (T, W), definita da & — ¢ o €.

(e) Sia p : W — coker¢ la proiezione naturale di W sul quoziente. Si mostri che, per ogni applicazione
lineare v : W — T tale che 9 o ¢ = 0 esiste un’unica applicazione lineare v : coker¢p — T tale che
v=vop.

(f) Utilizzare il punto precedente per determinare il nucleo dell’applicazione lineare h(¢, T) : Home (W, T) —
Home (V,T), definita da & — £ o ¢.

Esercizio 20. Sia B € M,,x;(R) una matrice di rango k.

(a) Simostri che, se 'BB = 1, allora BB ¢ la matrice della proiezione ortogonale di R”, dotato dell’usuale
prodotto scalare, sul sottospazio generato dalle colonne della matrice B.

(b) In generale, si mostri che P = B(!*BB)~!'B & la matrice della proiezione ortogonale di R™, dotato
dell’usuale prodotto scalare, sul sottospazio generato dalle colonne della matrice B.

(c) Si mostri infine che, preso comunque un vettore b € R¥ | il sistema lineare ‘Bx = b ha soluzione e che
le soluzioni sono tutti e soli gli elementi p € R™ della forma p = B(*BB)~'b + (1,, — P)y, al variare di y
in R™.

Esercizio 21. Unendo il cloro (Cl3) all’idrossido di potassio (KOH), si ottengono cloruro di potassio
(KCl), clorato di potassio (KClOs3) e acqua (H20). Bilanciare la reazione
Cla+ KOH — KCl+ KClOs + H30;

ovvero trovare dei numeri naturali ny,...,ns tali che il numero di atomi di ciascun elemento nel termine
di sinistra n1Cls + no KOH sia uguale al numero di atomi di ciascun elemento presente nel termine di
destra n3 KCl + ny KClO3 + nsH50.



