
Esercizi di Geometria 1 Foglio 4 – 23 Novembre 2011

Esercizio 1. Risolvere i sistemi lineari Ax = b di matrice completa 1 0 1 −1 1 1
0 2 4 1 0 2
−2 3 0 0 4 1

 ,

 0 0 −1 −1 1 1
0 2 2 1 0 2
0 4 0 0 4 4

 ,

 1 0 1 −1 2 1
1 −1 0 1 0 0
−1 1 0 1 1 2

 ,

 1 0 −1 −1 1 1
0 2 2 1 0 2
0 4 0 0 4 4

 ,


2 0 −1 1
1 1 1 4
1 3 −1 5
1 −1 −2 −3

 ,


2 0 −1 1
1 3 −1 5
1 1 1 2
1 −1 −2 −1

 ,


0 1 −1 −1 1 −1
3 0 −2 1 −4 1
1 −1 1 0 −2 0
4 0 −2 0 −5 0
3 −1 −1 2 −5 2

 ,


3 0 −3 −1 4 −6
1 1 −2 1 1 −4
0 1 −1 2 1 −2
1 0 −1 0 2 −2
1 0 −1 −1 −2 0

 ,


2 0 1 −1 1 1
0 1 −1 2 0 −3
2 0 −2 0 0 −1
2 1 0 1 3 −2
2 1 3 0 4 1

 .

Esercizio 2. Determinare le soluzioni del sistema lineare −tx1 + (t− 1)x2 + x3 = 1
(t− 1)x2 + tx3 = 1

2x1 + x3 = 5

al variare del parametro t ∈ R.

Esercizio 3. Dato l’insieme S =




λ+ 2
2µ+ 1
3µ− 1

λ− µ− 1

 , λ, µ ∈ R

 determinare un sistema lineare le cui so-

luzioni coincidano con S. Quante saranno le incognite? Qual è il numero minimo di equazioni necessarie?
Se leggiamo S come un piano in A4(R), il sistema cercato a cosa corrisponde?

Esercizio 4. Si considerino, al variare di λ tra i numeri reali, i sistemi lineari:

Σλ =

 (λ− 1)x +2y −λz = 0
2x −z = 0

−(λ+ 1)x −λy +(λ+ 2)z = 0
.

(a) Si indichi con Sλ l’insieme delle soluzioni del sistema Σλ. Si determini al variare di λ la dimensione
del sottospazio Sλ.

(b) Si dica se l’unione dei sottoinsiemi Sλ, al variare di λ, genera tutto R3. In caso contrario, si
determini la dimensione del sottospazio generato da tale unione.

Esercizio 5. Si considerino i sistemi lineari omogenei: 2x1 −3x2 −x4 = 0
3x2 −2x3 +x4 = 0

x1 +x4 = 0
e

 λx1 +2x2 −3λx3 = 0
(λ+ 1)x1 +2x2 −3λx3 +x4 = 0

2λx2 −3x3 +2λx4 = 0

Si determinino i valori di λ per cui i due sistemi ammettono soluzioni non banali in comune.

Esercizio 6. Si considerino, al variare di λ tra i numeri reali, i sistemi lineari:

Σλ =


(λ− 1)x1 +2x2 −λx3 +2λx4 = 0

2x1 −x3 +x4 = 0
−(λ+ 1)x1 −λx2 +(λ+ 2)x3 −2x4 = 0

2x1 +(λ− 2)x2 −2x3 = 0

.

(a). Si indichi con Sλ l’insieme delle soluzioni del sistema Σλ. Si determini al variare di λ la dimensione
del sottospazio Sλ.
(b). Si dica se l’unione dei sottoinsiemi Sλ, al variare di λ, genera tutto R4. In caso contrario, si
determinino le equazioni del sottospazio generato da tale unione.
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Esercizio 7. Al variare di λ in Q, si dica quante soluzioni vi sono in Q4 per il seguente sistema di
equazioni lineari

Σλ :


(λ− 1)x1 + 2x2 + 3x4 = 0

λx2 + (λ+ 1)x4 = 1

x1 + λx3 + x4 = 0

(λ− 1)x1 + x4 = 0

.

Esercizio 8. Si determinino i valori del parametro t per cui il sistema

Σt :


(t+ 1)x1 + 2x2 − tx4 = 1

(2− t)x2 + x3 = 1

(2− t)x2 + 2tx4 = 1

(t+ 1)x1 + 2x2 + (2− t)x3 = 1

ha soluzione.
Per i valori di t per cui il sistema ammette un’unica soluzione, si determini tale soluzione in funzione

del parametro t.

Esercizio 9. Nello spazio affine A3(R) si considerino le terne di piani

π1(λ) : y − λx+ (λ− 2)(z + 1) = 0, π2(λ) : (λ− 1)x+ λz = 2, π3(λ) : x+ λy + 2λ2z = 0,

al variare di λ in R.
Si dica per quali valori di λ le intersezioni π1(λ) ∩ π2(λ), π1(λ) ∩ π3(λ), π2(λ) ∩ π3(λ) sono tre rette
parallele, a due a due, distinte.

Esercizio 10. Si considerino i sistemi lineari omogenei:{
x2 − 2x3 + 2x4 = 0

x1 + x4 = 0
e

{
λx1 + 3x2 − (λ+ 1)x3 = 0

2λx2 + x3 − λx4 = 0
.

Si determinino i valori di λ ∈ C per cui i due sistemi ammettono soluzioni non banali in comune.

Esercizio 11. Due matrici A,B ∈ Mn×m(C) si dicono riga-equivalenti se esiste una matrice invertibile
P ∈ GLn(C) tale che B = PA. Analogamente, due sistemi di equazioni lineari si dicono riga-equivalenti
se lo sono le loro matrici complete.

(a) Si verifichi che due sistemi lineari riga-equivalenti hanno lo stesso insieme di soluzioni.

(b) È vero o falso che due matrici A,B ∈Mn×m(C) sono riga-equivalenti se, e solo se, i sistemi omogenei
AX = 0 e BX = 0 hanno lo stesso insieme di soluzioni?

(c) È vero o falso che due sistemi non-omogenei di equazioni lineari, AX = c e BX = d, sono riga-
equivalenti se, e solo se, hanno lo stesso insieme di soluzioni?

Esercizio 12. Sia A =

(
a b
c d

)
∈ M2(Q). Si mostri che l’insieme delle matrici X ∈ M2(Q) tali che

AX = XA è un sottospazio di M2(Q), la cui dimensione è uguale a 2 oppure a 4, e quest’ultimo caso
accade se, e solo se, A è una matrice scalare (a = d e b = c = 0).

Esercizio 13. Siano dati tre spazi vettoriali V , W , Z, di dimensione finita sul campo C, e due applicazioni
lineari φ : V →W , ψ : W → Z. Si mostri che

(a) rk(ψ ◦ φ) = rkφ se, e solo se, kerψ ∩ imφ = 〈0〉;
(b) rk(ψ ◦ φ) = rkψ se, e solo se, kerψ + imφ = W .

(c) Si concluda che, dato un endomorfismo f : V → V , si ha rk(f ◦f) = rkf se, e solo se, V = kerf⊕ imf .

Esercizio 14. Sia B una matrice m × n. Si descriva l’effetto che si ottiene su B, moltiplicando B a
destra per una matrice elementare di ordine n.

Esercizio 15. Si verifichi che le matrici elementari sono tutte invertibili e che ogni matrice invertibile,
ad elementi in un corpo C, è prodotto di un numero finito di matrici elementari.

Esercizio 16. Sia V uno spazio vettoriale di dimensione finita sul campo C e sia φ : V → V un
endomorfismo. Si mostri che rkφ = dimV se, e solo se, esiste un’applicazione lineare φ−1 : V → V , tale
che φ ◦ φ−1 = idV = φ−1 ◦ φ.
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Esercizio 17. Sia V uno spazio vettoriale di dimensione finita sul campo C e sia φ : V → V un
endomorfismo. Si mostri che sono equivalenti le seguenti affermazioni:

(a) rkφ < dimV .

(b) esiste un’endomorfismo ψ : V → V , diverso da 0, tale che φ ◦ ψ = 0.

(c) esiste un’endomorfismo χ : V → V , diverso da 0, tale che χ ◦ φ = 0.

(d) per ogni ψ : V → V , si ha φ ◦ ψ 6= idV .

(e) per ogni χ : V → V , si ha χ ◦ φ 6= idV .

Esercizio 18. Cosa resta vero del contenuto degli ultimi due esercizi se V ha dimensione infinita?

?Esercizio 19. Siano V e W due spazi vettoriali di dimensione finita su C e sia φ : V → W un’appli-
cazione lineare. Si chiamano rispettivamente conucleo e coimmagine di φ i quozienti cokerφ = W/imφ e
coimφ = V/kerφ.

(a) Si dimostri che dimcokerφ+ dimcoimφ = dimW .

(b) È vero che dimV − dimkerφ = dimW − dimcokerφ ?

(c) Sia j : kerφ → V l’immersione naturale del sottospazio in V . Si mostri che, per ogni applicazione
lineare ψ : T → V tale che φ ◦ψ = 0 esiste un’unica applicazione lineare ν : T → kerφ tale che ψ = j ◦ ν.

(d) Utilizzare il punto precedente per determinare il nucleo dell’applicazione lineare h(T, φ) : HomC(T, V )→
HomC(T,W ), definita da ξ 7→ φ ◦ ξ.
(e) Sia p : W → cokerφ la proiezione naturale di W sul quoziente. Si mostri che, per ogni applicazione
lineare ψ : W → T tale che ψ ◦ φ = 0 esiste un’unica applicazione lineare ν : cokerφ → T tale che
ψ = ν ◦ p.
(f) Utilizzare il punto precedente per determinare il nucleo dell’applicazione lineare h(φ, T ) : HomC(W,T )→
HomC(V, T ), definita da ξ 7→ ξ ◦ φ.

Esercizio 20. Sia B ∈Mn×k(R) una matrice di rango k.

(a) Si mostri che, se tBB = 1k, allora BtB è la matrice della proiezione ortogonale di Rn, dotato dell’usuale
prodotto scalare, sul sottospazio generato dalle colonne della matrice B.

(b) In generale, si mostri che P = B(tBB)−1tB è la matrice della proiezione ortogonale di Rn, dotato
dell’usuale prodotto scalare, sul sottospazio generato dalle colonne della matrice B.

(c) Si mostri infine che, preso comunque un vettore b ∈ Rk, il sistema lineare tBx = b ha soluzione e che
le soluzioni sono tutti e soli gli elementi p ∈ Rn della forma p = B(tBB)−1b+ (1n − P )y, al variare di y
in Rn.

Esercizio 21. Unendo il cloro (Cl2) all’idrossido di potassio (KOH), si ottengono cloruro di potassio
(KCl), clorato di potassio (KClO3) e acqua (H2O). Bilanciare la reazione

Cl2 +KOH → KCl +KClO3 +H2O;

ovvero trovare dei numeri naturali n1, . . . , n5 tali che il numero di atomi di ciascun elemento nel termine
di sinistra n1Cl2 + n2KOH sia uguale al numero di atomi di ciascun elemento presente nel termine di
destra n3KCl + n4KClO3 + n5H2O.
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