
Esercizi di Geometria 1 Foglio 5 – 14 dicembre 2011

Esercizio 1. Calcolare il determinante della seguente matrice

A =

 1 2 −1
0 1 1
2 −2 3


con uno sviluppo di Laplace, operazioni elementari sulle righe e/o colonne oppure con la regola di Sarrus.

Esercizio 2. Calcolare il determinante delle seguenti matrici:

A1 =


2 1 0 1
1 1 0 0
−1 0 0 2
1 0 0 −3

 , A2 =


2 1 0 1
1 1 1 0
2 1 0 1
1 0 1 −3

 , A3 =


1 0 0 −1
0 1 1 0
0 2 −2 0
3 0 0 1

 .

Esercizio 3. Sia A la matrice A3 dell’esercizio 2. Calcolare la sua matrice dei complementi algebrici Ac

e calcolare l’inversa di A usando Ac.

Esercizio 4. Risolvere, se possibile, i seguenti sistemi lineari con la regola di Cramer

{
x1 + 2x2 = 1
−2x1 + x2 = 2

;

 x1 − 2x2 = 0
2x1 + x3 = 1
x1 − x3 = 0

;

 x1 − 2x2 = 0
x1 + x2 − x3 = 1

2x1 − x2 − x3 = 1

Esercizio 5. Siano A,B matrici quadrate di ordine n e sia B invertibile. Esistono formule per |A +
B|, |A+A|, |A2|, |AB−1| che dipendono solo dai determinanti di A e B?

Esercizio 6. Sia n un intero maggiore o uguale a 2 e si considerino le matrici Sn ∈Mn(C), definite da

Sn = a

n∑
j=1

ε(n− j + 1, j) + b

[n/2]∑
j=1

ε([n/2]− j + 1, j) + c

[n/2]∑
j=1

ε(n− j + 1, [(n+ 1)/2] + j),

ove gli scalari a, b, c appartengono a C, { ε(i, j) | 1 ≤ i, j ≤ n }, è la base canonica di Mn(C) e [x] indica
la parte intera del numero reale x, ovvero, [x] ∈ Z e [x] ≤ x < [x] + 1.

(a) Si scrivano le matrici e si calcoli il determinante di S3, S4.

(b) Si scrivano le matrici e si calcoli il determinante di S5 e S6.

(c) Si scriva e si dimostri una formula generale per detSn, al variare di n.

(d) (∗) Si calcoli S2
n. Sia X un’indeterminata e si calcoli il polinomio det(X1n − S2

n).

Esercizio 7. Per n ≥ 2, denotiamo con Xn la matrice di Mn(Q),

Xn =

n∑
i=1

(
iε(i, i) + (−1)i−1iε(n− i+ 1, i)

)
,

ove si sono indicate con ε(h, k) le matrici della base canonica di Mn(Q).

(a) Si scrivano le matrici X2, X3, X4, X5, X6 e se ne calcolino i determinanti.

(b) Si scrivano e si dimostrino delle formule generali per il rango e per il determinante di Xn, in funzione
dell’intero n.

Esercizio 8. Dato uno spazio vettoriale reale V e k suoi vettori u1, . . . , uk, si chiama parallelepipedo
generato dai vettori u1, . . . , uk il sottoinsieme

PL(u1, . . . , uk) = { a1u1 + · · ·+ akuk | ai ∈ [0, 1], i = 1, . . . , k } .

Il parallelepipedo si dirà degenere se i vettori u1, . . . , uk sono linearmente dipendenti. Sia Ik = {1, . . . , k}
e siano fissati un sottoinsieme J ⊆ Ik ed una funzione s : J → {0, 1}. La faccia del parallelepipedo
determinata dalla coppia (J, s) è l’insieme

FJ,s(u1, . . . , uk) = { a1u1 + · · ·+ akuk ∈ PL(u1, . . . , uk) | aj = s(j) ∀j ∈ J } .
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(a) Si verifichi che u1, . . . , uk ed u′1, . . . , u
′
k determinano lo stesso parallelepipedo non degenere se, e solo

se, esiste una permutazione σ ∈ Σk tale che u′j = uσ(j) per j = 1, . . . , k.

(b) Sia PL(u1, . . . , uk) un parallelepipedo non degenere. Fissato un sottoinsieme J ⊆ Ik, quante so-
no le facce del parallelepipedo che hanno lo stesso insieme J? Quante sono le facce del parallele-
pipedo FJ′,s′(u1, . . . , uk) con |J ′| = |J |? Quante sono complessivamente le facce del parallelepipedo
PL(u1, . . . , uk)?

Esercizio 9. Dato uno spazio vettoriale reale V ed una sua base (ordinata) V = {v1, . . . , vn}, chiamiamo
volume (orientato) del parallelepipedo generato dai vettori u1, . . . , un, relativamente alla base V, lo scalare

V ol(V, u1, . . . , un) =
D(u1, . . . , un)

D(v1, . . . , vn)
,

ove 0 6= D ∈ An(V ).

(a) Si verifichi che se u′1, . . . , u
′
n sono vettori che determinano lo stesso parallelepipedo, allora V ol(V, u′1, . . . , u′n) =

±V ol(V, u1, . . . , un).

(b) Si verifichi che, se W = {w1, . . . , wn} è una base di V , allora, per ogni n-upla (ordinata) di vettori,
u1, . . . , un, si ha V ol(W, u1, . . . , un) = detαV,W(id)V ol(V, u1, . . . , un).

(c) Sia φ : V → V un’applicazione lineare. Presi comunque i vettori u1, . . . , un di V , si verifichi che si ha
V ol(V, φ(u1), . . . , φ(un)) = detαV,V(φ)V ol(V, u1, . . . , un).

Esercizio 10. Sia V uno spazio vettoriale su C e siano φ1, . . . , φr in HomC(V,C). Si verifichi che
l’applicazione Φ: (v1, . . . , vr) 7→ φ1(v1) · · ·φr(vr) è r-lineare. In particolare, si calcoli esplicitamente tale
applicazione come funzione delle coordinate dei vettori coinvolti, nel caso in cui V = R3 e φ1(x1e1 +
x2e2 + x3e3) = 2x1 − x2, φ2(x1e1 + x2e2 + x3e3) = 3x1 + 2x2 − x3, φ3(x1e1 + x2e2 + x3e3) = x2 + x3.

Esercizio 11. Sia V uno spazio vettoriale su C e siano φ, ψ in HomC(V,C). Si verifichi che l’applicazione
Φ: (v, w) 7→ φ(v)ψ(w) − ψ(v)φ(w) è bilineare e alternante. In particolare, si calcoli esplicitamente tale
applicazione come funzione delle coordinate dei vettori coinvolti, nel caso in cui V = R3 e φ(x1e1 +x2e2 +
x3e3) = 2x1 − x2, ψ(x1e1 + x2e2 + x3e3) = 3x1 + 2x2 − x3.

Esercizio 12. Sia D : R3 × R3 → R un’applicazione trilineare alternante.

(a) Dati i vettori v = x1e1 + x2e2 + x3e3, w = y1e1 + y2e2 + y3e3, z = z1e1 + z2e2 + z3e3, si scriva
esplicitamente D(v, w, z) come funzione delle coordinate dei vettori e del valore D(e1, e2, e3).

(b) Nelle notazioni precedenti, si consideri l’applicazione (v, w) 7→ D(e1, v, w). Indicata con π : R3 →
R3, la proiezione su 〈e2, e3〉 parallela al vettore e1, ossia π(x1e1 + x2e2 + x3e3) = x2e2 + x3e3, si
mostri che D(e1, v, w) = D(e1, π(v), π(w)). Si mostri infine che la restrizione di tale applicazione
ad ogni sottospazio complementare di 〈e1〉 è diversa dall’applicazione nulla.

(c) Nelle notazioni precedenti, si mostri che due vettori v, w di R3 sono linearmente dipendenti se, e
solo se, D(e1, v, w) = D(e2, v, w) = D(e3, v, w) = 0.

Esercizio 13. Siano V uno spazio vettoriale di dimensione n, φ un endomorfismo di V eD un’applicazione
n-lineare alternante non-nulla su V .

(a) Si mostri che l’applicazione D′φ, definita ponendo

D′φ(x1, . . . , xn) =

n∑
j=0

D(x1, . . . , φ(xj), . . . , xn),

per ogni n-upla di vettori di V , è n-lineare e alternante.

(b) Sia V = {v1, . . . , vn} una base di V , si mostri che il quoziente
D′φ(v1, . . . , vn)

D(v1, . . . , vn)
non dipende né dalla

scelta della base, né dalla scelta di D.

(c) Fissata una base V = {v1, . . . , vn} di V , si calcoli il quoziente
D′φ(v1, . . . , vn)

D(v1, . . . , vn)
a partire dalla matrice

αV,V(φ).

Esercizio 14. Siano r ≤ n due numeri interi positivi e si consideri l’insieme Ir,n delle applicazioni
strettamente crescenti di {1, . . . , r} in {1, . . . , n}.
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(a) Dato un sottoinsieme U ⊂ {1, . . . , n} con #(U) = r, si mostri che esiste un’unica applicazione I ∈ Ir,n

la cui immagine è uguale ad U .

(b) Si mostri che #(Ir,n) =
(
n
r

)
.

Esercizio 15. Sia V uno spazio vettoriale di dimensione n sul corpo C. Per ogni intero r, con 2 ≤ r ≤ n,
si indichi con Ar(V ) l’insieme delle applicazioni r-lineari alternanti su V .

(a) Si verifichi che Ar(V ) è uno spazio vettoriale su C.

(b) Siano V = {v1, . . . , vn} una base di V ed F ∈ Ar(V ). Si mostri che, dati i vettori y1, . . . , yr, con

yj =

n∑
i=1

aijvi, per j = 1, . . . , r, si ha

F (y1, . . . , yr) =
∑

I∈Ir,n

[∑
σ∈Σr

(sgnσ) aI(σ(1)),1 · · · aI(σ(r)),r

]
F (vI(1), . . . , vI(r)).

Esercizio 16. Si deduca dai due esercizi precedenti che, se dimCV = n, allora dimCA
r(V ) =

(
n
r

)
, per

2 ≤ r ≤ n1. In particolare si mostri che, data una base V = {v1, . . . , vn} di V , si construisce una base di
Ar(V ), prendendo le funzioni DI , al variare di I ∈ Ir,n, definite nel modo seguente: fissato I, si pone
DI(vJ(1), . . . , vJ(r)) = δIJ , al variare di J ∈ Ir,n.

Si mostri infine che si ha
F =

∑
I∈Ir,n

F (vI(1), . . . , vI(r))DI

per ogni F ∈ Ar(V ),

Esercizio 17. Siano V e W due C-spazi vettoriali, rispettivamente di dimensione n ed m, e sia dato un
omomorfismo φ : V →W .

(a) Dato un intero r, con 1 ≤ r ≤ min{n,m}, si verifichi che, per ogni G ∈ Ar(W ), (cf. 15),
l’applicazione Gφ : (x1, . . . , xr) 7→ G(φ(x1), . . . , φ(xr)) appartiene ad Ar(V ).

(b) Si verifichi inoltre che l’applicazione Ar(φ) : Ar(W ) → Ar(V ), definita da G 7→ Gφ, è un’applica-
zione lineare (detta l’omomorfismo di ordine r associato a φ).

(c) Siano V uno spazio vettoriale di dimensione n e φ : V → V un’applicazione lineare. Si mostri che,
fissata comunque una base V = {v1, . . . , vn} di V , la matrice di An(φ) rispetto alla base An(V) è
(detφ).

Esercizio 18. Siano fissate n + 1 coppie di numeri reali (xi, yi), i = 0, . . . , n. Si mostri che esiste un
unico polinomio P (X) = a0 + a1X + · · ·+ anX

n, di grado minore o uguale ad n, tale che P (xi) = yi se,
e solo se, gli x0, . . . , xn sono a due a due distinti.

Esercizio 19. Notazioni come sopra.

(a) Si verifichi che il simplesso ∆(A0, . . . , An) = A0 + ∆(
−−−→
A0A1, . . . ,

−−−→
A0An) dipende solo dai punti

A0, A1, . . . , An e non dall’ordine in cui vengono presi.

(b) Si mostri che, per n ≥ 2, A0 +PL(
−−−→
A0A1, . . . ,

−−−→
A0An) è diverso da A1 +PL(

−−−→
A1A0,

−−−→
A1A2 . . . ,

−−−→
A1An).

(c) Si mostri che il simplesso ∆(A0, . . . , An) è l’intersezione di tutti i parallelepipedi determinati dai
punti A0, . . . , An.

(d) Partendo dagli esempi di dimensione piccola, si definiscano le facce k-dimensionali di un simplesso
(risp. di un parallelepipedo) n-dimensionale per k = 0, 1, . . . , n. Si contino le facce k dimensionali
di un simplesso (risp. parallelepipedo) di dimensione n.

1Si osservi che, per r > n, si ha necessariamente Ar(V ) = {0}. Si definiscono infine A0(V ) = C ed A1(V ) = HomC(V,C)
e quindi la formula sulla dimensione è vera per 0 ≤ r ≤ n.
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