
Esame di Geometria 1 – parte I (laurea in Matematica)
prova scritta del 5 settembre 2013

ESERCIZIO 1. [8 punti]
(a) Si disegni nel piano di Gauss l’insieme S = { z ∈ C | zz̄ − 2iz̄ + 2iz − 1 = 0 }.
(b) Siano λ : C r {0} → C r {0} la riflessione nella circonferenza unitaria e σ : C → C il coniugio. Si

determinino e si disegnino nel piano di Gauss gli insiemi λ∗(S) e σ∗(S).
(c) Si determinino tutte le circonferenze (o rette) del piano di Gauss, C, per cui λ∗(C) = σ∗(C).

Svolgimento. (a) S è la circonferenza di centro 2i e raggio
√

5, rappresentata qui sotto.
(b) Si ha

λ∗(S) = { z ∈ C | zz̄ + 2iz̄ − 2iz − 1 = 0 }
σ∗(S) = { z ∈ C | zz̄ + 2iz̄ − 2iz − 1 = 0 }

Quindi i due insiemi coincidono e si tratta della circonferenza di centro −2i e
raggio

√
5.

(c) Si consideri una generica circonferenza (o retta) del piano complesso, di
equazione C : azz̄ + bz̄ + b̄z + c = 0.

2i

−2i

2

S

λ∗S=σ∗S

Gli insiemi che si ottengono riflettendo nella circonferenza unitaria e nell’asse reale, hanno equazioni

λ∗(C) : czz̄ + bz̄ + b̄z + a = 0 e σ∗(C) : azz̄ + b̄z̄ + bz + c = 0.

Supponiamo a, b, c 6= 0, lasciando al lettore la discussione dei casi particolari (che è richiesta). Gli insiemi

delle soluzioni coincidono se, e solo se, c
a = b

b
= b

b = a
c . Da cui si deduce a2 = c2 e b2 = b̄2; o, meglio,{

a = c

b = b̄
e

{
a = −c
b = −b̄

. Sono quindi due famiglie di circonferenze, la prima del tipo |z − α| =
√
α2 − 1, ove

α ∈ R e |α| ≥ 1, con centri nell’asse reale; e la seconda |z − iβ| =
√
β2 + 1, ove β ∈ R con centri nell’asse

immaginario. Il lettore è invitato a disegnarsi qualche esempio. �

ESERCIZIO 2. [12 punti] Siano U , V e W spazi vettoriali su Q su cui siano fissate rispettivamente le basi,
U = {u1, . . . , u4}, V = {v1, . . . , v3}, W = {w1, . . . , w4}.
(a) Si determinino le applicazioni lineari ψ : U → V e φ : W → U che soddisfano alle condizioni

φ(w1 + w3) = 0 = φ(w2 + w4), φ(w1 + w4) = −3u1 + u2 − u3, φ(w2 − w3) = u1 + u2 + 3u3 + 2u4.

ψ(u1 − u2 − u3) = 0 = ψ(u1 − u2 + u4), ψ(u1 − u2) = v1 − v3, ψ(u1 + u2) = v1 + 2v2 + v3;

Si scrivano le matrici A = αW,U (φ) e B = αU,V(ψ), e si determinino nucleo ed immagine di tali
applicazioni.

(b) Si consideri l’insieme X = { ξ ∈ HomQ (V,W ) |φ ◦ ξ ◦ ψ = 0 }. Si dica se X è un sottospazio o una
sottovarietà lineare di HomQ (V,W ) e se ne calcoli in ogni caso la dimensione. Si determinino le matrici
delle funzioni appartenenti a X nelle basi date.

(c) Sia Y = {C ∈M4×4(Q) |C +AXB = 14, ∃X ∈M4×3(Q) }. Si determini una rappresentazione para-
metrica degli elementi di Y e si dica se si tratta di un sottospazio o di una sottovarietà lineare di M4(Q).
È vero che ogni matrice in M4(Q), di rango 1, si può trasformare con operazioni elementari sulle righe
e sulle colonne in una matrice di Y? E cosa si può dire a questo riguardo per una matrice invertibile?

Svolgimento. (a) Osserviamo che i vettori, u1 − u2 − u3, u1 − u2 + u4, u1 + u2, u1 − u2 sono una base di U
e che i vettori w1 + w3, w2 + w4, w1 + w4, w2 − w3 sono una base di W ; quindi le applicazioni lineari φ e ψ,
soddisfacenti alle condizioni date, esistono e sono uniche. Inoltre è evidente che

kerψ = 〈u1 − u2 − u3, u1 − u2 + u4〉 , imψ = 〈v1 − v3, v1 + 2v2 + v3〉 ,
kerφ = 〈w1 + w3, w2 + w4〉 , imφ = 〈−3u1 + u2 − u3, u1 + u2 + 3u3 + 2u4〉 .
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Infine

B = αU,V(ψ) =

 1 0 1 −1
1 1 0 0
0 1 −1 1

 A = αW,U (φ) =


−1 2 1 −2
1 0 −1 0
1 2 −1 −2
1 1 −1 −1

 .

(b) Il sottoinsieme X contiene l’omomorfismo nullo e, presi comunque ξ1 e ξ2 in X e due numeri reali a1 ed
a2, si ha φ ◦ (a1ξ1 + a2ξ2) ◦ ψ = a1φ ◦ ξ1 ◦ ψ + a2φ ◦ ξ2 ◦ ψ = 0. Quindi X è un sottospazio di HomR (V,W ).
Un’applicazione lineare ξ ∈ HomR (V,W ) appartiene a X se, e solo se, ξ(imψ) ⊆ kerφ. Quindi sul sottospazio
imψ (di dimensione 2), ξ deve assumere valori in kerφ (che ha pure dimensione 2), mentre in un qualsiasi
complementare di imψ (di dim 1) può assumere qualunque valore in W (di dimensione 4). Dunque il
sottospazio X ha dimensione 8.
Si può facilmente scrivere una base di αV,W(X ), prendendo 8 matrici linearmente indipendenti che soddisfano
alla condizione data; ad esempio( 1 0 0

0 0 0

1 0 0

0 0 0

)
,

( 0 1 0

0 0 0

0 1 0

0 0 0

)
,

( 0 0 1

0 0 0

0 0 1

0 0 0

)
,

( 0 0 0

1 0 0

0 0 0

1 0 0

)
,

( 0 0 0

0 1 0

0 0 0

0 1 0

)
,

( 0 0 0

0 0 1

0 0 0

0 0 1

)
,

( 1 −1 1

0 0 0

0 0 0

0 0 0

)
,

( 0 0 0

1 −1 1

0 0 0

0 0 0

)
.

(c) L’applicazione f : M4×3(R)→ M4×4(R), definita da X 7→ AXB, è un’applicazione lineare il cui nucleo
è αV,W(X ). Quindi Y = 14 + imf è una sottovarietà lineare di dimensione 4 di M4×4(R), che può essere
parametrizzato con l’immagine tramite f di un qualsiasi complementare di αV,W(X ). Si ha quindi

Y =

{
14 −A

(
a b 0

c d 0

0 0 0

0 0 0

)
B
∣∣ (a, b, c, d) ∈ R4

}
=

{( 1+a+b−2c−2d b−2d a−2c −a+2c

−a−b 1−b −a a

−a−b−2c−2d −b−2d 1−a−2c a+2c

−a−b−c−d −b−d −a−c 1+a+c

) ∣∣ (a, b, c, d) ∈ R4

}

che dà una rappresentazione parametrica di Y. Il rango di un elemento di Y è compreso tra 2 e 4, perché il
rango della somma di due matrici (o dei corrispondenti omomorfismi) è compreso tra la somma e il valore
assoluto della differenza dei ranghi degli addendi. Due matrici di M4(R) aventi uguale rango possono essere
trasformate l’una nell’altra tramite operazioni elementari su righe e colonne (perché?). Quindi l’asserto è
vero per le matrici invertibili, ma è falso per le matrici di rango 1, perché nessuna matrice con questo rango
appartiene a Y. �

ESERCIZIO 3. [10 punti] Sia V = R[X]≤4 lo spazio vettoriale dei polinomi a coefficienti reali di grado
minore di 5, ed indichiamo con B la base canonica di V . Si consideri l’applicazione φ : V → V , definita da

φ(P (X)) = P (X + 1) − XP ′(X), ove P ′(X) indica il derivato del polinomio P (X) (se P (X) =

n∑
i=0

aiX
i,

allora P ′(X) =

n∑
i=1

iaiX
i−1).

(a) Si verifichi che φ è un omomorfismo di spazi vettoriali reali, se ne calcolino nucleo e immagine e si scriva
la matrice A = αB,B(φ). Si dica se φ è diagonalizzabile.

(b) Detta φ∗ : V ∗ → V ∗ l’applicazione trasposta, se ne determinino nucleo ed immagine. È vero che
l’applicazione P (X) 7→ P (1) appartiene a imφ∗? Qual è la sua controimmagine tramite φ∗? Sia
B∗ = { δi | 0 ≤ i < 5 }, come di consueto, la base duale della base canonica di V . È vero che l’applicazione
δ2 − 3δ3 appartiene a imφ∗? Qual è la sua controimmagine tramite φ∗?

Svolgimento. (a) φ è un omomorfismo perché lo sono la moltiplicazione per polinomi fissati (che non facciano
uscire dallo spazio), cos̀ı come la derivazione. Inoltre combinazioni lineari di omomorfismi producono ancora
omomorfismi. Possiamo calcolare l’effetto dell’applicazione φ sui vettori della base canonica e ottenere

A = αB,B(φ) =


1 1 1 1 1
0 0 2 3 4
0 0 −1 3 6
0 0 0 −2 4
0 0 0 0 −3


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e kerφ = 〈X − 1〉, imφ =
〈
1, 2X −X2, 3X + 3X2 − 2X3, 4X + 6X2 + 4X3 − 3X4

〉
. La matrice di φ è

triangolare con elementi a due a due distinti sulla diagonale e quindi φ è diagonalizzabile.

(b) imφ∗ = (kerφ)⊥ = 〈δ0 + δ1, δ2, δ3, δ4〉, kerφ∗ = (imφ)⊥ = 〈6δ1 + 12δ2 + 27δ3 + 68δ4〉. L’applicazione
P (X) 7→ P (1) è δ0 + δ1 + δ2 + δ3 + δ4 ∈ imφ∗ e la sua controimmagine è δ0 + kerφ∗.

Infine l’applicazione δ2 − 3δ3 ∈ imφ∗, perché (δ2 − 3δ3) ◦ (X − 1) = 0 e la sua controimmagine è

φ∗−1(δ2 − 3δ3) = {−δ2 − 2δ4 + a(6δ1 + 12δ2 + 27δ3 + 68δ4) | a ∈ R } .

�


