
Esame di Geometria 1 – parte I (laurea in Matematica)
prova scritta del 9 luglio 2013

ESERCIZIO 1. [6 punti] Si determinino e si disegnino nel piano di Gauss tutti i numeri complessi z tali
che z̄2 + 2z = 0.
(a) Si determinino le equazioni delle circonferenze passanti per l’origine del piano di Gauss e con centro

nei numeri, diversi da 0, che soddisfano la condizione data. Si disegnino tali circonferenze nel piano di
Gauss.

(b) Si determinino le equazioni delle rette che si ottengono riflettendo le circonferenze del punto precedente
nella circonferenza unitaria e si disegnino tali rette nel piano di Gauss.

Svolgimento. Il numero complesso 0 soddisfa alle condizioni date.

Se z 6= 0 soddisfa a tali condizioni, deve aversi |z| = 2 e quindi z = 4
z .

I numeri complessi z 6= 0, soddisfacenti alle condizioni date, sono le
radici del polinomio X3+8. Quindi, i numeri cercati sono 0 e le radici
terze di −8; ovvero −2, 2eπi/3 = 1 + i

√
3, 2e5πi/3 = 1− i

√
3.

(a) Le circonferenze cercate hanno equazioni

C1 : z̄z + 2z + 2z̄ = 0, C2 : z̄z − (1− i
√

3)z − (1 + i
√

3)z̄ = 0,

C3 : z̄z − (1 + i
√

3)z − (1− i
√

3)z̄ = 0

e ciascuna interseca la circonferenza unitaria in una coppia di punti
uniti per la riflessione, che determinano quindi la retta che si ottiene
per riflessione nella circonferenza unitaria.

−2

1+i
√
3

1−i
√
3r1

r3r2

(b) Le tre rette hanno quindi equazioni

r1 : 2z + 2z̄ + 1 = 0, r2 : (1− i
√

3)z + (1 + i
√

3)z̄ − 1 = 0, r3 : (1 + i
√

3)z + (1− i
√

3)z̄ − 1 = 0

rispettivamente. �

ESERCIZIO 2. [12 punti] Dato lo spazio vettoriale V su Q, con la base V = {v1, . . . , v4}, si dica se esiste
un endomorfismo φ : V → V tale che

φ−1({2v2 − v4}) = (2v4 − 4v2) + 〈v1 − v3, v2 + v4〉 e v1 ∈ φ−1({v3}).

(a) In caso affermativo, si determinino kerφ, imφ, αV,V(φ), autovalori e autovettori per φ. In caso negativo,
si spieghi perché non può esistere e si dica come modificare φ−1({2v2−v4}) affinché esista. Si determinino
per tale φ le quantità descritte sopra.

(b) Sia V∗ = {v∗1 , . . . , v∗4} la base duale di V ∗. Si mostri che gli endomorfismi vj ⊗ v∗i : V → V , definiti
ponendo x 7→ vj(v

∗
i ◦ x), per ogni x ∈ V , con 1 ≤ i, j ≤ 4, sono una base di HomQ (V, V ) e si scriva φ

come combinazione lineare dei vettori di questa base. Si determinino, se esistono, r vettori w1, . . . , wr
di V ed r forme lineari ζ1, . . . , ζr di V ∗ tali che φ = w1 ⊗ ζ1 + · · ·+wr ⊗ ζr, ove r = rkφ è il rango di φ.
Che dire dei sottospazi 〈w1, . . . , wr〉 e 〈ζ1, . . . , ζr〉?

(c) Il sottoinsieme W = {ψ ∈ HomQ (V, V ) | (idV − ψ) ◦ φ = φ } è un sottospazio vettoriale di HomQ (V, V )
o una sottovarietà lineare dello spazio affine associato? In ogni caso si determinino dimensione ed un
sistema di equazioni cartesiane per W nel riferimento associato alla base vj ⊗ v∗i , con 1 ≤ i, j ≤ 4.

Svolgimento. (a) Se un tale φ esiste, deve aversi,

φ(v1) = v3, φ(v1 − v3) = 0, φ(v2 + v4) = 0, φ(2v2 − v4) = −1

2
(2v2 − v4)).
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I quattro vettori v1, v1 − v3, v2 + v4, 2v2 − v4 sono una base di V e quindi una tale φ esiste ed è unica. In

particolare, kerφ = 〈v1 − v3, v2 + v4〉, imφ = 〈2v2 − v4, v3〉, αV,V(φ) =

( 0 0 0 0

0 −1/3 0 1/3

1 0 1 0

0 1/6 0 −1/6

)
, gli autovalori sono

0, −1/2 e 1, con i rispettivi autospazi kerφ = 〈v1 − v3, v2 + v4〉, ker(φ+1/2) = 〈2v2 − v4〉, ker(φ−1) = 〈v3〉.
(b) Per verificare che i sedici endomorfismi vj⊗v∗i , per 1 ≤ i, j ≤ 4, sono una base di HomQ (V, V ) è sufficiente
verificare che sono linearmente indipendenti (o che generano lo spazio). Sia

∑
1≤i,j≤4 aijvj ⊗ v∗i = 0 e si

prenda il vettore vh della base V. Deve aversi

0 =
∑

1≤i,j≤4

aijvj(v
∗
i ◦ vh) =

∑
1≤j≤4

ahjvj ;

da cui si deduce ah1 = · · · = ah4 = 0, perché i vettori v1, . . . , v4 sono linearmente indipendenti in V . Si
conclude cos̀ı che gli endomorfismi dati sono linearmente indipendenti in HomQ (V, V ).

La matrice A = αV,V(φ) ha rango 2 e si ha

A =

( 0 0

0 −1/3
1 0

0 1/6

)(
1 0 1 0

0 1 0 −1

)
.

Possiamo quindi considerare i vettori w1 = v3, w2 = − 1
3v2 + 1

6v4 e le forme lineari ζ1 = v∗1 +v∗3 , ζ2 = v∗2 −v∗4 ,
ed osservare che φ = w1 ⊗ ζ1 + w2 ⊗ ζ2, come richiesto. In particolare, 〈w1, w2〉 = imφ e 〈ζ1, ζ2〉 = (kerφ)⊥.

(c) (idV −ψ)◦φ = φ se, e solo se, ψ◦φ = 0 e quindi W è un sottospazio in quanto è il nucleo dell’applicazione
lineare Rφ : ψ 7→ ψ ◦φ. Gli endomorfismi ψ ∈ W devono annullarsi sui vettori del sottospazio imφ e possono
assumere valori arbitrari su (la base di) un qualsiasi sottospazio complementare. Quindi dim W = 8 e una
base di W è costituita dagli endomorfismi v1⊗ η1, v2⊗ η1, v3⊗ η1, v4⊗ η1, v1⊗ η2, v2⊗ η2, v3⊗ η2, v4⊗ η2,
ove η1 = v∗1 e η2 = v∗2 + 2v∗4 sono una base di (imφ)⊥ ⊂ V ∗.

Un sistema di equazioni cartesiane che definisce il sottospazio W è

a13 = 0

a23 = 0

a33 = 0

a43 = 0

2a12 − a14 = 0

2a22 − a24 = 0

2a32 − a34 = 0

2a42 − a44 = 0

.

Lo si poteva ricavare anche scrivendo una generica matrice X tale che XA = 0. �

ESERCIZIO 3. [12 punti] Si considerino i sottospazi U e W dello spazio vettoriale R4, definiti dalle
condizioni

U :


4X1 −X2 − 2X3 + 2X4 = 0

2X1 +X2 −X3 − 2X4 = 0

6X1 − 2X2 − 3X3 + 4X4 = 0

e W =

〈( 1

0

−1
0

)
,

( 3

2

−3
−2

)
,

(−2
1

2

−1

)〉
.

(a) Si determinino le dimensioni dei sottospazi U , W , U ∩W e U +W e si completi una base di U ad una
base di U +W . Se necessario, si completi la base cos̀ı ottenute ad una base V = {v1, . . . , v4} di R4.

(b) Se R4 = U⊕W si scriva la matrice in base canonica dell’endomorfismo π : R4 → R4 che manda ogni vet-
tore nella sua proiezione in U , parallelamente a W . In caso contrario, si fissi a piacere un complementare
T di U e si determini la matrice della proiezione, π, su U , associata a questa decomposizione.
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(c) Sia B la matrice, in base canonica della simmetria σ = 2π − id. Si può trovare una matrice ortogonale
H (ovvero con tH = H−1), tale che la matrice Ct = tH + (1 − t)B sia invertibile e U sia contenuto
nell’autospazio relativo ad 1, per ogni t ∈ [0, 1]?

Svolgimento. (a) Il sistema che definisce U ha rango 2, quindi dimU = 2 e U = 〈e1 + 2e3, 2e2 + e4〉. Anche
dimW = 2 e W = 〈e1 − e3, e2 − e4〉. Se ne deduce che U ∩W = 〈0〉 e la base V di R4 = U ⊕W , può essere
costituita da

v1 = e1 + 2e3, v2 = 2e2 + e4, v3 = e1 − e3, v4 = e2 − e4.

(b) La matrice è

A = αE,E(π) =
1

3

( 1 0 1 0

0 2 0 2

2 0 2 0

0 1 0 1

)
.

(c) Sia σ = 2π− id la simmetria di asse U e direzione W ; sia sU : R4−R4 la simmetria ortogonale di asse U
e indichiamo con pU e pU⊥ le proiezioni ortogonali su U e U⊥, di modo che sU = pU − pU⊥ . Poniamo quindi
B = αE,E(σ) e H = αE,E(sU ). Dato t ∈ [0, 1], indichiamo con ψt : R4 → R4 l’applicazione lineare definita
da ψt(x) = (1 − t)σ(x) + tsU (x) per ogni x ∈ R4. Se x = u + w con u ∈ U e w ∈ W , si ha σ(x) = u − w
e sU (x) = u + pU (w) − pU⊥(w), da cui si deduce ψt(x) = u + (2t − 1)pU (w) − pU⊥(w). Quindi ψt(x) = 0
se, e solo se, u + (2t − 1)pU (w) = 0 e pU⊥(w) = 0 e quindi w ∈ W ∩ kerpU⊥ = W ∩ U = 〈0〉; da cui si
deduce u = (1 − 2t)pU (w) = 0. Ciò significa kerψt = 〈0〉 e quindi ψt invertibile; e dallo stesso calcolo si
ricava ψt(u) = u per ogni u ∈ U , qualunque sia t ∈ [0, 1] e ciò permette di concludere che H soddisfa a tutte
le condizioni richieste. In particolare, si può verificare che, per ogni t ∈ [0, 1], ψt è una simmetria di asse U .

�


