Esame di Geometria 1 — parte I (laurea in Matematica)
prova scritta del 9 luglio 2013

ESERCIZIO 1. [6 punti] Si determinino e si disegnino nel piano di Gauss tutti i numeri complessi z tali

che 22 + 22 = 0.

(a) Si determinino le equazioni delle circonferenze passanti per 'origine del piano di Gauss e con centro
nei numeri, diversi da 0, che soddisfano la condizione data. Si disegnino tali circonferenze nel piano di
Gauss.

(b) Si determinino le equazioni delle rette che si ottengono riflettendo le circonferenze del punto precedente
nella circonferenza unitaria e si disegnino tali rette nel piano di Gauss.

Svolgimento. Il numero complesso 0 soddisfa alle condizioni date.
4
;.

I numeri complessi z # 0, soddisfacenti alle condizioni date, sono le

Se z # 0 soddisfa a tali condizioni, deve aversi |z| = 2 e quindi Z =

radici del polinomio X?3+48. Quindi, i numeri cercati sono 0 e le radici hIS E 14iV3
terze di —8; ovvero —2, 2e™/3 =1 4 4\/3, 2e57/3 = 1 —i\/3. \,.;\\ | I
(a) Le circonferenze cercate hanno equazioni o g il
) N .
C1:2242:422=0, Cy:7z—(1-iV3)z—(1+iV3)z=0,
Cs:%2z—(14+iV3)z— (1 —iV3)z2=0 el .

e ciascuna interseca la circonferenza unitaria in una coppia di punti
uniti per la riflessione, che determinano quindi la retta che si ottiene
per riflessione nella circonferenza unitaria.

(b) Le tre rette hanno quindi equazioni
r:2242241=0, ro:(1—iV3)z+(1+ivV3)2—1=0, r3:(1+iV3)z+(1—-iV3)z—1=0

rispettivamente. (Il

ESERCIZIO 2. [12 punti] Dato lo spazio vettoriale V su Q, con la base V = {v1,...,v4}, si dica se esiste
un endomorfismo ¢ : V — V tale che

¢_1({2U2 — ’U4}) = (2?}4 — 4’[)2) + <’U1 — V3, V3 + ’U4> e V1 € d)_l({’l)g}).

(a) In caso affermativo, si determinino ker¢, ime, ay y(¢), autovalori e autovettori per ¢. In caso negativo,
si spieghi perché non puo esistere e si dica come modificare ¢~ ({2vy—v,}) affinché esista. Si determinino
per tale ¢ le quantita descritte sopra.

(b) Sia V* = {vf,...,vj} la base duale di V*. Si mostri che gli endomorfismi v; @ v} : V. — V, definiti
ponendo x — v;(v} ox), per ogni x € V, con 1 < 14,j < 4, sono una base di Homg (V,V) e si scriva ¢
come combinazione lineare dei vettori di questa base. Si determinino, se esistono, r vettori wy, ..., W,
di V ed r forme lineari (y,...,(. di V* tali che p = w1 ® (1 + -+ +w, ® (-, ove r = rk¢ é il rango di ¢.
Che dire dei sottospazi (w1, ..., wy) € {(1,...,(r)?

(c) II sottoinsieme # = {1 € Homg (V,V) | (idy —¢) 0 ¢ = ¢ } & un sottospazio vettoriale di Homg (V,V)
o una sottovarieta lineare dello spazio affine associato? In ogni caso si determinino dimensione ed un
sistema di equazioni cartesiane per # nel riferimento associato alla base v; @ vy, con 1 <14,j < 4.

Svolgimento. (a) Se un tale ¢ esiste, deve aversi,

d(v1) = w3,  Gvr —w3) =0, @(va+wvs) =0, (2v2—1y) = —%(2112 — v4)).
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I quattro vettori vy, v1 — vs, vo + v4, 205 — v4 sono una base di V' e quindi una tale ¢ esiste ed € unica. In
0

particolare, ker¢ = (v1 — v3,v2 + v4), ImP = (2v3 — V4, v3), ay V(@) = (? 71)/3 (1) 163 ), gli autovalori sono

0 1/6 0—1/6
0, —1/2 e 1, con i rispettivi autospazi ker ¢ = (v1 — v3,v2 + v4), ker (¢p+1/2) = (2uy — v4), ker (¢ —1) = (v3).
(b) Per verificare che i sedici endomorfismi v; @v;}, per 1 < 4, j < 4, sono una base di Homg (V, V) ¢ sufficiente
verificare che sono linearmente indipendenti (o che generano lo spazio). Sia 3, ;4 aiv; ® vi = 0 e si
prenda il vettore v, della base V. Deve aversi

0= g aljvjv o wvp) g apjvy;

1<i,j<4 1<j<4

da cui si deduce ap; = --- = apg = 0, perché i vettori vq,...,v4 sono linearmente indipendenti in V. Si
conclude cosi che gli endomorfismi dati sono linearmente indipendenti in Homg (V, V).
La matrice A = ay y(¢) ha rango 2 e si ha

_ gff/:s 1010
A 1 0 (010—1)'

0 1/6

Possiamo quindi considerare i vettori wy = vz, we = —%’02 + %1)4 e le forme lineari {; = vj +v3, (2 = v5 — v},
ed osservare che ¢ = w; ® (1 + wy ® (2, come richiesto. In particolare, (wy,ws) =im¢ e ((1, () = (kerg)*t
(¢) (idy —1)o¢ = ¢ se, e solo se, Yop = 0 e quindi # & un sottospazio in quanto ¢ il nucleo dell’applicazione
lineare Ry : ¢ +— 1o ¢. Gli endomorfismi ¢ € # devono annullarsi sui vettori del sottospazio im¢ e possono
assumere valori arbitrari su (la base di) un qualsiasi sottospazio complementare. Quindi dim % = 8 e una
base di # & costituita dagli endomorfismi v; ® 71, vo @M1, V3 R N1, V4 RNy, V1 R N2, V2 R N2, V3 R N2, V4 R N2,
ove 71 = v} e 1y = v} + 2v} sono una base di (im¢)- C V*.
Un sistema di equazioni cartesiane che definisce il sottospazio # ¢

a13=0
CL23:O
a33:0
a43:0

2&12 — a4 = 0
2(122 — ag4 — 0

2&32 — as4q = 0

2a42 — A44 = 0

Lo si poteva ricavare anche scrivendo una generica matrice X tale che XA = 0. |

ESERCIZIO 3. [12 punti] Si considerino i sottospazi U e W dello spazio vettoriale R*, definiti dalle

condizioni
4X1—X2—2X3+2X4=0 1 3 -2
U:{ 2X1 +Xo — X3 —2X4 =0 e W:<<_"1>,<f3>,<;>>.
6X; —2X, —3X3+4X, =0 0 —2 -1
(a) Si determinino le dimensioni dei sottospazi U, W, UNW e U + W e si completi una base di U ad una
base di U + W. Se necessario, si completi la base cosi ottenute ad una base V = {v1,...,v4} di R,
(b) SeR* = U@W si scriva la matrice in base canonica dell’endomorfismo 7 : R* — R* che manda ogni vet-

tore nella sua proiezione in U, parallelamente a W . In caso contrario, si fissi a piacere un complementare
T di U e si determini la matrice della proiezione, 7, su U, associata a questa decomposizione.
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(c) Sia B la matrice, in base canonica della simmetria o = 27w —id. Si puo trovare una matrice ortogonale
H (ovvero con 'H = H™'), tale che la matrice C; = tH + (1 — t)B sia invertibile e U sia contenuto
nell’autospazio relativo ad 1, per ogni t € [0,1]?

Svolgimento. (a) Il sistema che definisce U ha rango 2, quindi dimU =2 e U = (e + 2e3,2¢e3 + e4). Anche
dimW =2e W = (e; — e3,ea — e4). Se ne deduce che U NW = (0) e la base V di R* = U & W, pud essere
costituita da

v, =e1+2e3, vy =2ey+e4, V3=e€1—€3, Vg =e€y—ey.

1 1010

0202

A=a5,s(ﬂ)=3<gozo>‘
0101

(b) La matrice ¢

(c) Sia 0 = 27 —id la simmetria di asse U e direzione W sia sy : R* —R?* la simmetria ortogonale di asse U
e indichiamo con py e py . le proiezioni ortogonali su U e U, di modo che sy = pyy — py.. Poniamo quindi
B = age(o) e H= age(sy). Dato t € [0,1], indichiamo con 9 : R* — R* I'applicazione lineare definita
da Yy(x) = (1 — t)o(z) + tsy(x) perogniz € R Sex =u+wconu € Uew € W, sihao(r) =u—w
e sy(z) = u+ pu(w) — pyr(w), da cui si deduce ¢Yr(x) = u+ (2t — py(w) — pyr (w). Quindi ¢¥4(x) =0
se, e solo se, u+ (2t — 1)py(w) = 0 e pyr(w) = 0 e quindi w € W Nkerpyr = WNU = (0); da cui si
deduce u = (1 — 2t)py(w) = 0. Cio significa keryyy, = (0) e quindi ¢, invertibile; e dallo stesso calcolo si
ricava ¢ (u) = u per ogni u € U, qualunque sia t € [0,1] e cid permette di concludere che H soddisfa a tutte

le condizioni richieste. In particolare, si pud verificare che, per ogni ¢ € [0, 1], 1; & una simmetria di asse U.
O



