
Esame di Geometria 1 – parte I (laurea in Matematica)
prova scritta del 17 settembre 2013

ESERCIZIO 1. [6 punti]
(a) Si determinino e si disegnino nel piano di Gauss le soluzioni dell’equazione z3 = i(z + 1)3.
(b) Si determini, se esiste, una trasformazione di Möbius, z 7→ az+b

cz+d , che mandi le radici dell’equazione
precedente su punti della circonferenza unitaria.

Svolgimento. z = 1 non è una soluzione, per cui l’equazione data è equivalente a
(

z
z+1

)3
= i. Le radici

cubiche di i sono i numeri complessi

eiπ/6 =
√
3
2 + i 12 , e5iπ/6 = −

√
3
2 + i 12 , e3iπ/2 = −i.

Le radici cercate sono quindi,

eiπ/6

1−eiπ/6 =
√
3−2+i

4−2
√
3
, e5iπ/6

1−e5iπ/6 = −2−
√
3+i

4+2
√
3
, −i

1+i = − 1+i
2 .

Naturalmente, la trasformazione z 7→ z
z+1 , manda le tre radici del polinomio sulle radici cubiche di i, che

sono sulla circonferenza unitaria. �

ESERCIZIO 2. [12 punti] Si consideri il seguente sistema lineare a coefficienti razionali.
2X1 − 2X2 + 3X3 + 2X4 +X5 = 0

X1 −X2 −X5 = −1

X1 −X2 + 3X4 −X5 = 2

.

(a) Si determinino le soluzioni S ⊂ Q5 del sistema lineare. Si determinino gli endomorfismi φ : Q5 → Q5

tali che imφ ⊆ 〈S〉 ⊆ kerφ, φ(e3 + e5) = e1 − e3 + e5 e φ(e3 − e5) = e3 − e4 − e5. Si scriva la matrice,
in base canonica, di tali endomorfismi.

(b) Sia E∗ = {e∗1, . . . , e∗5} la base duale. Si scrivano i φ del punto precedente come combinazione lineare
degli endomorfismi ei ⊗ e∗j . Si determinino, se esistono, r vettori w1, . . . , wr di Q5 ed r forme lineari
ζ1, . . . , ζr del duale tali che φ = w1 ⊗ ζ1 + · · · + wr ⊗ ζr, ove r = rkφ è il rango di φ. Si determini, se
esiste, una base V = {v1, . . . , v5} di Q5 tale che φ = v1 ⊗ v∗1 + · · ·+ vr ⊗ v∗r , ove V∗ = {v∗1 , . . . , v∗5} è la
base duale della base V.

(c) Siano V = {v1, . . . , v5} una base di Q5 e V∗ = {v∗1 , . . . , v∗5} la base duale. È vero che ogni endomorfismo
invertibile di Q5 è composizione di un numero finito di endomorfismi del tipo

idQ5 + avi ⊗ v∗j con a ∈ Q e i 6= j, e idQ5 + (b− 1)vi ⊗ v∗i con b ∈ Q× e i = 1, . . . , 5.

Si discuta lo stesso problema in Qn, per qualsiasi n ≥ 1.

Svolgimento. (a) Si ha

S =


0

1

0

1

0

+

〈
0

1

1

0

−1

 ,


1

1

0

0

0

〉 e quindi 〈S〉 =

〈
0

1

0

1

0

 ,


0

1

1

0

−1

 ,


1

1

0

0

0

〉 .
In base alle condizioni date, φ ha rango almeno 2 e quindi ha un nucleo di dimensione 3 e si ha

A = (aij)1≤i,j≤5 = αE,E(φ) =


0 0 1/2 0 1/2

0 0 0 0 0

1 −1 0 1 −1
−1 1 −1/2 −1 1/2

−1 1 0 −1 1

 .
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(b) Si ha φ =
∑

1≤i,j≤5 aijvi ⊗ v∗j ed è un endomorfismo di rango 2. Posto,

w1 = e3 − e4 − e5, w2 = e1 − e4, e ζ1 = e∗1 − e∗2 − e∗4 − e∗5, ζ2 = 1
2 (e∗3 − e∗5);

si ha φ = w1 ⊗ ζ1 + w2 ⊗ ζ2. Mentre non può esistere una base per cui φ = v1 ⊗ v∗1 + v2 ⊗ v∗2 , perché si
dovrebbe avere

imφ = 〈v1, v2〉 ⊂ kerφ = 〈v∗1 , v∗2〉
⊥

= 〈v3, v4, v5〉 .

(c) Gli endomorfismi dati sono trasformazioni elementari. Le loro matrici nella base V sono le matrici
elementari, diverse dalle matrici di scambio. Si tratta quindi di dimostrare che anche gli scambi si possono
ottenere come composizione di questi isomorfismi per poter concludere, visto che le trasformazioni elementari
sono generatori del gruppo GL(V ), per ogni spazio di dimensione finita V . Infatti, si ha

H(i, j) = (idV − 2vj ⊗ v∗j )(idV + vi ⊗ v∗j )(idV − vj ⊗ v∗i )(idV + vi ⊗ v∗j )

e ciò permette di concludere. �

ESERCIZIO 3. [12 punti] Siano V e W spazi vettoriali complessi e siano V = {v1, . . . , v4} e W = {w1, w2}
delle rispettive basi.
(a) Si determinino le applicazioni lineari φ : V → W tali che, v3 − 2v4 ∈ φ−1{w2} e φ−1{w1 − 2w2} =

(v1 + 2v3) + 〈v1 − 2v4, v2 − 2v3〉; e se ne scrivano le matrici nelle basi date.
(b) Si consideri l’insieme S = {ψ ∈ HomC (W,V ) |φ ◦ ψ = idW }. Si dica se l’insieme

X = {ψ1 − ψ2 | (ψ1, ψ2) ∈ S × S }

è un sottospazio, una sottovarietà lineare o altro in HomC (W,V ) e si determinino l’eventuale dimensione
e il corrispondente sottoinsieme di matrici αW,V(X ).

(c) Si dia una condizione necessaria e sufficiente sulla matrice di ξ ∈ X , affinché si abbia imξ⊕〈v3, v4〉 = V .
È vero che il complementare dell’insieme di queste matrici è descritto da un insieme finito di equazioni
algebriche? . . . sono equazioni lineari?

Svolgimento. (a) I vettori v1−2v4, v2−2v3, v1+2v3, v3−2v4 sono linearmente indipendenti e quindi formano
una base di V . Per cui esiste un’unica applicazione lineare che soddisfa alle condizioni date e la sua matrice
è

B = αV,W(φ) =

(
1/3 2/3 1/3 1/6
−1 0 0 −1/2

)
.

(b) S è una sottovarietà lineare e X ne è lo spazio direttore. Gli elementi di X sono applicazioni lineari
ξ : W → V tali che φ ◦ ξ = 0 e quindi coincide con il sottospazio di HomC (W,V ) formato dagli omomorfismi
la cui immagine è contenuta in kerφ. Un sottospazio di dimensione 4 a cui corrisponde il sottospazio di
matrici 〈( 1 0

0 0

0 0

−2 0

)
,

( 0 0

1 0

−2 0

0 0

)
,

( 0 1

0 0

0 0

0 −2

)
,

( 0 0

0 1

0 −2
0 0

)〉
tramite l’isomorfismo αW,V .

(c) Il sottospazio 〈v3, v4〉 è un complementare di kerφ = 〈v1 − 2v4, v2 − 2v3〉. Quindi, affinché si abbia
imξ ⊕ 〈v3, v4〉 = V , è necessario e sufficiente che imξ = kerφ, ovvero che ξ abbia rango massimo. Il
complementare è formato dalle matrici in αW,V(X ) di rango ≤ 1, ovvero quelle per cui si annullano tutti i
minori di ordine 2 che danno sei equazioni algebriche (di secondo grado e non ‘indipendenti’) di cui queste
matrici sono soluzione. �


