
Esame di Geometria 1 – parte I (laurea in Matematica)
prova scritta del 30 gennaio 2013

ESERCIZIO 1. [6 punti] Si consideri il polinomio P (X) = X2 + (1− i)X − (2 + 2i) ∈ C[X].
(a) Si determinino le radici di P (X) e si disegni nel piano di Gauss la retta (reale), r, che le contiene.
(b) Si scriva l’equazione di r nelle coordinate z e z̄. Si determinino centro e raggio della circonferenza che

si ottiene riflettendo r lungo la circonferenza unitaria. Si disegni l’immagine tramite questa riflessione
del semipiano soprastante ad r.

Svolgimento. Ricordiamo che la riflessione rispetto alla circonferenza unitaria è l’applicazione λ(z) = 1
z̄ ,

definita per z ∈ Cr {0}.

(a) Si ha

P (X) = X2 + (1− i)X − (2 + 2i) = (X − 1− i)(X + 2).

Le due radici sono quindi −2 e 1 + i e la retta r è rappre-
sentata nel disegno a fianco.

(b) L’equazione della retta è

r : (1 + 3i)z + (1− 3i)z̄ + 4 = 0.

La circonferenza riflessa, λ∗(r) ha quindi centro in 3i−1
4 e

raggio
√

10
4 .

−2

1 + i

r

λ∗(r)

Il semipiano soprastante la retta r è { z ∈ C | (1 + 3i)z + (1− 3i)z̄ + 4 < 0 } (la disequazione ha senso perché
il membro di sinistra è un numero reale, qualsiasi sia il numero complesso z). Nella riflessione lungo la cir-
conferenza unitaria viene trasformato nell’insieme

{
z ∈ C

∣∣ zz̄ + 1+3i
4 z + 1−3i

4 z̄ < 0
}

che è quindi costituito
dai punti interni alla circonferenza. �

ESERCIZIO 2. [12 punti] Si consideri lo spazio vettoriale (complesso) V = M2(C) delle matrici 2 × 2 ad
elementi in C e siano

S =
{
A ∈M2(C)

∣∣ tA = A
}

e U =
〈(

0 2

−i 1

)
,
(

2i i

−1 0

)〉
.

(a) Si verifichi che S è un sottospazio e si determinino le dimensioni e una base per i sottospazi S, U , S∩U ,
S + U .

(b) Fissata una matrice A ∈ V si consideri l’applicazione fA : V → C, definita da fA(X) = tr(tAX),
al variare di X in V . Si verifichi che fA ∈ V ∗. Determinare nucleo e immagine dell’applicazione
f : V → V ∗, A 7→ fA.

(c) Si dica se esiste una forma lineare ζ ∈ V ∗ tale che ζ(X) = ζ(Y ) per ogni X,Y ∈ S e ζ(T ) = 2 + i,

quando T =
(

0 2

−i 1

)
. In caso affermativo, si dica se esiste una matrice A in V tale che ζ = fA e si

spieghi come trovarla.

Svolgimento. (a) Sia A =
(
a b

c d

)
∈ V . A ∈ S se, e solo se, b = c e quindi S è un sottospazio perché insieme

delle soluzioni di un sistema lineare omogeneo nelle coordinate di V . Il sistema ha rango 1, quindi dimS = 3
ed una base è costituita, ad esempio, dalle matrici(

1 0

0 0

)
,
(

0 1

1 0

)
,
(

0 0

0 1

)
.
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I due generatori di U sono linearmente indipendenti e quindi il sottospazio ha dimensione 2 e i generatori

dati sono una base. Un generico elemento di U è della forma
(

2iβ 2α+iβ

−iα−β α

)
, al variare di (α, β) ∈ C2;

questo elemento sta in S se, e solo se,

2α+ iβ = −iα− β, ovvero (2 + i)α+ (1 + i)β = 0.

Quindi S ∩ U ha dimensione 1 ed è generato da
(

2−4i 3

3 1+i

)
(α = 1 + i, β = −2− i).

Per le relazioni di Grassmann, dim(S + U) = 4 = dimV e quindi S + U = V ed una base di tale spazio
è, ad esempio, la base canonica delle matrici 2× 2.

(b) La traccia di una matrice è la somma degli elementi posti sulla diagonale principale. Quindi, posto

A =
( a11 a12
a21 a22

)
, X =

( x11 x12

x21 x22

)
si ha tr(tAX) = a11x11 + a21x21 + a12x12 + a22x22,

che è un polinomio lineare omogeneo nelle entrate della matrice X (forma lineare). Quindi fA ∈ V ∗ e
l’applicazione A 7→ fA è lineare, perché l’espressione precedente è lineare anche rispetto alle entrate di A(†).

Dalla formula scritta sopra si deduce che, se aij 6= 0, allora fA(ε(ij)) = 1 (ε(ij) è l’elemento della base
canonica di V che ha tutte le entrate nulle, eccetto quella di posto (i, j) che è uguale ad 1). Quindi l’unica
matrice A per cui la forma fA è identicamente nulla è A = 0. Ciò significa che f : V → V ∗ è iniettiva e
quindi suriettiva (formula delle dimensioni).

(c) Da quanto appena visto possiamo concludere che, se esiste una forma lineare, ζ, soddisfacente alle
condizioni poste, allora esiste una matrice A tale che fA = ζ, perché f è suriettiva.

T ∈ Ur(U∩S) e quindi V = S⊕〈T 〉, quindi esiste un’unica forma lineare ζ soddisfacente alle condizioni

poste. Dovendo annullarsi su S e valere 2 + i sulla matrice T , si ha A =
(

0 1

−1 0

)
(usare la formula esplicita

di fA per scrivere un sistema lineare nelle entrate della matrice A). �

ESERCIZIO 3. [6 punti] Sia V uno spazio vettoriale reale e φ : V → V un endomorfismo. Un sottospazio
W di V si dice stabile rispetto a φ se φ(w) ∈ W per ogni w ∈ W . Sia W un sottospazio stabile rispetto a
φ; allora
(a) È vero che W + kerφ è stabile rispetto a φ?
(b) È vero che W⊥ è stabile rispetto a φ∗?
(c) È vero che φ1 : v +W 7→ φ(v) +W è un endomorfismo di V/W?
(d) È vero che φ è completamente determinato se si conoscono φ1 : V/W → V/W e φ0 = φ|W : W →W?

Svolgimento. (a) Se x ∈ W e y ∈ kerφ, φ(x + y) = φ(x) ∈ W ⊆ W + kerφ, perché W è stabile. Quindi si
tratta di un sottospazio stabile.

(b) Se v∗ ∈ W⊥, e x ∈ W , allora φ∗(w∗) ◦ x = w∗ ◦ φ(x) = 0, perché, φ(x) ∈ W . Quindi W⊥ è stabile
rispetto a φ∗.

(c) Sia ora v ∈ V e sia v+w un altro rappresentante della classe laterale v+W in V/W . Allora φ(v+w) =
φ(v) +φ(w) ∈ φ(v) +W , perché φ(w) ∈W . Dunque l’applicazione φ1 : V/W → V/W è ben definita ed è un
endomorfismo, perché φ lo è.

(d) Infine, la conoscenza di φ0 e φ1 non determina completamente φ (farsi un esempio). �

ESERCIZIO 4. [6 punti] Sia V uno spazio vettoriale di dimensione finita sul campo C e sia φ : V → V un
endomorfismo diagonalizzabile. Si mostri che l’endomorfismo trasposto φ∗ : V ∗ → V ∗ è diagonalizzabile e
si scrivano le relazioni esistenti tra gli autovalori e le rispettive molteplicità per i due endomorfismi. Si dica
quali relazioni vi sono tra i sottospazi di autovettori dei due endomorfismi.

Svolgimento. Sia c ∈ C uno scalare e consideriamo il sottospazio ker(φ∗ − c). Si ha

ker(φ∗ − c) = ker(φ− c)∗ = im(φ− c)⊥,

(†) Detto in altro modo, f : V → V ∗ è l’applicazione lineare associata all’applicazione bilineare (A,X) 7→ tr(tAX).
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e quindi i sottospazi ker(φ∗ − c) e ker(φ− c) hanno la stessa dimensione. Ciò significa che φ∗ : V ∗ → V ∗ ha
gli stessi autovalori con le stesse molteplicità geometriche (nullità) di φ. Dunque φ∗ è diagonalizzabile se (e
solo se) φ lo è.

Siano a1, . . . , ar gli autovalori di φ, a due a due distinti. Allora si ha

V = ker(φ− a1)⊕ · · · ⊕ ker(φ− ar).

Se un vettore 0 6= v ∈ ker(φ− aj), si ha (φ− a1)(v) = (aj − a1)v, che è diverso da 0 se j 6= 1 e quindi

im(φ− a1) = ker(φ− a2)⊕ · · · ⊕ ker(φ− ar),

da cui si deduce che

ker(φ∗ − a1) = im(φ− a1)⊥ = ker(φ− a2)⊥ ∩ · · · ∩ ker(φ− ar)⊥

e quindi i sottospazi ker(φ∗−a1) e ker(φ−a1) sono naturalmente in dualità (ovvero la restrizione del tondino
◦ : V ∗ × V → C ai due sottospazi è un’applicazione bilineare non degenere). Il ragionamento è analogo per
gli altri autovalori. �


