Esame di Geometria 1 — parte I (laurea in Matematica)
prova scritta del 30 gennaio 2013

ESERCIZIO 1. [6 punti] Si consideri il polinomio P(X) = X% + (1 —i)X — (2 + 2i) € C[X].

(a) Si determinino le radici di P(X) e si disegni nel piano di Gauss la retta (reale), r, che le contiene.

(b) Si scriva I'equazione di r nelle coordinate z e zZ. Si determinino centro e raggio della circonferenza che
si ottiene riflettendo r lungo la circonferenza unitaria. Si disegni I'immagine tramite questa riflessione
del semipiano soprastante ad r.

Svolgimento. Ricordiamo che la riflessione rispetto alla circonferenza unitaria ¢ I’applicazione A(z) = %,
definita per z € C \ {0}.

(a) Siha A

PX)=X*+(1-9)X - (2+2)=(X—-1-9)(X +2). r

A*(r) 1+
Le due radici sono quindi —2 e 1 44 e la retta r & rappre-
sentata nel disegno a fianco.

(b) L’equazione della retta ¢ 3

r:(14+3i)z+(1—-3i)z+4=0.

La circonferenza riflessa, A*(r) ha quindi centro in -1

raggio ‘/TTO .

e

11 semipiano soprastante larettar ¢ {z € C | (1 +3i)z + (1 — 3i)z + 4 < 0 } (la disequazione ha senso perché
il membro di sinistra & un numero reale, qualsiasi sia il numero complesso z). Nella riflessione lungo la cir-
conferenza unitaria viene trasformato nell’insieme { zeC ’ 2z + %z + %2 <0 } che ¢ quindi costituito
dai punti interni alla circonferenza. O

ESERCIZIO 2. [12 punti] Si consideri lo spazio vettoriale (complesso) V.= Ms(C) delle matrici 2 x 2 ad
elementi in C e siano

sS={Aem©|a=a} e U=((27). (%))

(a) Si verifichi che S & un sottospazio e si determinino le dimensioni e una base per i sottospazi S, U, SNU,
S+U.

(b) Fissata una matrice A € V si consideri I'applicazione fq : V — C, definita da fa(X) = tr(*AX),
al variare di X in V. Si verifichi che fo € V*. Determinare nucleo e immagine dell’applicazione
VoV A fa.

(c) Si dica se esiste una forma lineare ( € V* tale che ((X) = ((Y) per ogni XY € S e {(T) = 2+,

quando T = (fi f

spieghi come trovarla.

). In caso affermativo, si dica se esiste una matrice A in V tale che ( = f4 e si

Svolgimento. (a) Sia A = (Z Z) c€V. Ae S se, esolose, b=_ce quindi S ¢ un sottospazio perché insieme
delle soluzioni di un sistema lineare omogeneo nelle coordinate di V. 1l sistema ha rango 1, quindi dim S = 3
ed una base ¢ costituita, ad esempio, dalle matrici

(60). (1) (01):

1



2 MAURIZIO CANDILERA

I due generatori di U sono linearmente indipendenti e quindi il sottospazio ha dimensione 2 e i generatori

dati sono una base. Un generico elemento di U e della forma (_3;6_5 MIW), al variare di (o,8) € C?

questo elemento sta in S se, e solo se,
200+ if = —ia — B, ovvero 2+da+ (1+9)p=0.

Quindi S NU ha dimensione 1 ed & generato da (2;4i 111) (a=1+1i, =-2—1).
Per le relazioni di Grassmann, dim(S+ U) =4 =dimV e quindi S+ U =V ed una base di tale spazio

¢, ad esempio, la base canonica delle matrici 2 x 2.

(b) La traccia di una matrice ¢ la somma degli elementi posti sulla diagonale principale. Quindi, posto

A= (Zi Z;z) y X = (z; iiz) si ha t}I‘(tAX) = a11211 + a21T21 + a12x12 + 22122,
che ¢ un polinomio lineare omogeneo nelle entrate della matrice X (forma lineare). Quindi f4 € V* e
lapplicazione A — f4 & lineare, perché I’espressione precedente & lineare anche rispetto alle entrate di A().

Dalla formula scritta sopra si deduce che, se a;; # 0, allora fa(e(ij)) =1 ((ij) € elemento della base
canonica di V' che ha tutte le entrate nulle, eccetto quella di posto (4,5) che & uguale ad 1). Quindi I'unica
matrice A per cui la forma fa ¢ identicamente nulla ¢ A = 0. Cio significa che f : V — V* ¢ iniettiva e
quindi suriettiva (formula delle dimensioni).

(¢) Da quanto appena visto possiamo concludere che, se esiste una forma lineare, ¢, soddisfacente alle
condizioni poste, allora esiste una matrice A tale che fa = (, perché f e suriettiva.

T e U~ (UNS)equindi V = S&(T), quindi esiste un’unica forma lineare ¢ soddisfacente alle condizioni
01

1 0) (usare la formula esplicita

poste. Dovendo annullarsi su S e valere 2 + i sulla matrice T, si ha A = (

di fa per scrivere un sistema lineare nelle entrate della matrice A).

ESERCIZIO 3. [6 punti] Sia V uno spazio vettoriale reale e ¢ : V. — V un endomorfismo. Un sottospazio
W di V si dice stabile rispetto a ¢ se ¢p(w) € W per ogni w € W. Sia W un sottospazio stabile rispetto a
¢; allora

(a) E vero che W + ker¢ ¢é stabile rispetto a ¢?

(b) E vero che W+ & stabile rispetto a ¢*?

(¢) E vero che ¢y : v+ W — ¢(v) + W & un endomorfismo di V/W ?

(d) E vero che ¢ & completamente determinato se si conoscono ¢, VIW = V/W e ¢o=gw : W — W?

Svolgimento. (a) Sex € W ey € kerd, ¢o(x +y) = ¢(x) € W C W + kerg, perché W & stabile. Quindi si
tratta di un sottospazio stabile.

(b) Se v* € Wt e x € W, allora ¢*(w*) oz = w* o ¢(x) = 0, perché, ¢(x) € W. Quindi W+ & stabile
rispetto a ¢*.

(c) Sia ora v € V e sia v+ w un altro rappresentante della classe laterale v+ W in V/W. Allora ¢(v+ w) =
d(v) + p(w) € ¢p(v) + W, perché ¢(w) € W. Dunque V'applicazione ¢y : V/W — V/W & ben definita ed & un
endomorfismo, perché ¢ lo é.

(d) Infine, la conoscenza di ¢y e ¢1 non determina completamente ¢ (farsi un esempio). a

ESERCIZIO 4. [6 punti] Sia V uno spazio vettoriale di dimensione finita sul campo C e sia ¢ : V — V un
endomorfismo diagonalizzabile. Si mostri che I’endomorfismo trasposto ¢* : V* — V* é diagonalizzabile e
si scrivano le relazioni esistenti tra gli autovalori e le rispettive molteplicita per i due endomorfismi. Si dica
quali relazioni vi sono tra i sottospazi di autovettori dei due endomorfismi.

Svolgimento. Sia ¢ € C uno scalare e consideriamo il sottospazio ker (¢* — ¢). Si ha

ker (¢* — ¢) = ker (¢ — ¢)* = im (¢ — ¢)*,

() Detto in altro modo, f:V — V* & l'applicazione lineare associata all’applicazione bilineare (A4, X) — tr(*AX).
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e quindi i sottospazi ker (¢* — ¢) e ker (¢ — ¢) hanno la stessa dimensione. Cio significa che ¢* : V* — V* ha
gli stessi autovalori con le stesse molteplicitd geometriche (nullitd) di ¢. Dunque ¢* & diagonalizzabile se (e
solo se) ¢ lo e.

Siano ay, ..., a, gli autovalori di ¢, a due a due distinti. Allora si ha

V=ker(¢p—a) @ dker(¢— a,).
Se un vettore 0 # v € ker (¢ — a;), si ha (¢ —a1)(v) = (a; — a1)v, che ¢ diverso da 0 se j # 1 e quindi
im(¢p —ay) =ker(¢p—az) ® - ®ker (¢ — a,),
da cui si deduce che
ker (¢* —ay) = im (¢ — a1)* =ker(¢ —az)t N---Nker(¢ —a, )t
e quindi i sottospazi ker (¢* —aq) e ker (¢ —aq) sono naturalmente in dualita (ovvero la restrizione del tondino

o:V*xV — C ai due sottospazi ¢ un’applicazione bilineare non degenere). Il ragionamento ¢ analogo per
gli altri autovalori. (]



