Esercizi di Geometria 1 Foglio 4 — 15 Novembre 2012

Esercizio 1. Risolvere i sistemi lineari Az = b di matrice completa
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Esercizio 2. Determinare le soluzioni del sistema lineare

—tx1 + (t — 1)1‘2 + x3 = 1
(t—1Dze + tzs = 1
2x1 + x3 = 5
al variare del parametro t € R.
A+2
. . e . 2u+1 . . . .
Esercizio 3. Dato 'insieme S = 3 — 1 ;A b € R 3 determinare un sistema lineare le cui so-
A—p—1

luzioni coincidano con S. Quante saranno le incognite? Qual ¢ il numero minimo di equazioni necessarie?
Se leggiamo S come un piano in A*(R), il sistema cercato a cosa corrisponde?

Esercizio 4. Si considerino, al variare di A tra i numeri reali, i sistemi lineari:

A=D1z +2y -z =0
Y= 2x —z =0
—A+1lz -y +(A+2)z =0

(a) Siindichi con Sy l'insieme delle soluzioni del sistema . Si determini al variare di A la dimensione
del sottospazio S}.

(b) Si dica se I'unione dei sottoinsiemi Sy, al variare di )\, genera tutto R3. In caso contrario, si
determini la dimensione del sottospazio generato da tale unione.

Esercizio 5. Si considerino i sistemi lineari omogenei:

2x1 —3x9 —x4 =0 Axq +2x9 —3)Ax3 =0
3ry —2z3 +xz4 =0 e A+ 1Dzy 4222 —3dzs +xz4 =0
T +z4, =0 2\x2 —3x3 +2Xry =0

Si determinino i valori di A per cui i due sistemi ammettono soluzioni non banali in comune.

Esercizio 6. Si considerino, al variare di A tra i numeri reali, i sistemi lineari:

(A=1)ay 4224 —\T3 +2 s =0

= 211 —T3 +x4 =0
AT —(/\ + 1)%‘1 — Ao —l—()\ + 2)$3 —2x4 =0
21’1 +()\ - 2)1‘2 7213 =0

(a). Siindichi con Sy l'insieme delle soluzioni del sistema . Si determini al variare di A la dimensione
del sottospazio Sy .

(b). Si dica se l'unione dei sottoinsiemi Sy, al variare di A, genera tutto R*. In caso contrario, si
determinino le equazioni del sottospazio generato da tale unione.



Esercizio 7. Al variare di A in Q, si dica quante soluzioni vi sono in Q* per il seguente sistema di
equazioni lineari

A=1)x1+222+324=0

Az + (A + 1y =1

1+ Ar3+x4 =0

A=1)z14+24=0

Z,\:

Esercizio 8. Si determinino i valori del parametro ¢ per cui il sistema

(t + 1)1‘1 4+ 2z —txy =1
(Q—t).’L’Q—F.Tg =1

Xy
(2—t)xg + 2txy =1
(t+1)

ha soluzione.
Per i valori di ¢ per cui il sistema ammette un’unica soluzione, si determini tale soluzione in funzione
del parametro t.

Esercizio 9. Nello spazio affine A3(R) si considerino le terne di piani
TNy = Az +A=2)(z+1) =0, m\):A=Dax+rz=2, m3(A\):x+\y+2\22=0,

al variare di A in R.
Si dica per quali valori di A le intersezioni m1(A\) N wa(A), 71 (A) N w5(A), m2(A) N w5(A\) sono tre rette
parallele, a due a due, distinte.

Esercizio 10. Si considerino i sistemi lineari omogenei:

To —2x3+2x4 =0 o )\.131+3$2—(/\+1)£E3 =0
r1 + x4 =0 2A\x9 + x3 — A1y =0

Si determinino i valori di A € C per cui i due sistemi ammettono soluzioni non banali in comune.

Esercizio 11. Due matrici A, B € M,,x,(C) si dicono riga-equivalenti se esiste una matrice invertibile
P € GL,(C) tale che B = PA. Analogamente, due sistemi di equazioni lineari si dicono riga-equivalenti
se lo sono le loro matrici complete.

(a) Si verifichi che due sistemi lineari riga-equivalenti hanno lo stesso insieme di soluzioni.

(b) E vero o falso che due matrici A, B € M, 5m (C) sono riga-equivalenti se, e solo se, i sistemi omogenei
AX =0e BX =0 hanno lo stesso insieme di soluzioni?

(¢) E vero o falso che due sistemi non-omogenei di equazioni lineari, AX = ¢ e BX = d, sono riga-
equivalenti se, e solo se, hanno lo stesso insieme di soluzioni?

Esercizio 12. Sia A = (Z Z) € M>(Q). Si mostri che I'insieme delle matrici X € M>(Q) tali che

AX = X A ¢ un sottospazio di M2(Q), la cui dimensione & uguale a 2 oppure a 4, e quest’ultimo caso
accade se, e solo se, A & una matrice scalare (a =d e b=c=0).

Esercizio 13. Siano dati tre spazi vettoriali V', W, Z, di dimensione finita sul campo C, e due applicazioni
lineari ¢: V. — W, ¢p: W — Z. Si mostri che

(a) k(1) o ¢) = rko se, e solo se, kery) Nim¢ = (0);
(b) rk(w o ¢) = rke) se, e solo se, kery) +im¢ = W.
(¢) Si concluda che, dato un endomorfismo f: V — V, si hark(fo f) =rkf se, e solo se, V = ker f &im f.

Esercizio 14. Sia B una matrice m X n. Si descriva l'effetto che si ottiene su B, moltiplicando B «a
destra per una matrice elementare di ordine n.

Esercizio 15. Si verifichi che le matrici elementari sono tutte invertibili e che ogni matrice invertibile,
ad elementi in un corpo C, & prodotto di un numero finito di matrici elementari.

Esercizio 16. Sia V uno spazio vettoriale di dimensione finita sul campo C e sia ¢ : V — V un
endomorfismo. Si mostri che rk¢ = dimV se, e solo se, esiste un’applicazione lineare ¢~ : V — V| tale

che poop™t =idy = ¢ L og.



Esercizio 17. Sia V uno spazio vettoriale di dimensione finita sul campo C e sia ¢ : V — V un
endomorfismo. Si mostri che sono equivalenti le seguenti affermazioni:
) k¢ < dim V.

a
b) esiste un’endomorfismo ¢ : V- — V', diverso da 0, tale che ¢ o) = 0.

d) per ogni v : V — V,si ha ¢ ot # idy.

(
(
(c) esiste un’endomorfismo x : V. — V, diverso da 0, tale che x o ¢ = 0.
(
(e) per ogni x : V — V, si ha xyo¢ # idy.

Esercizio 18. Cosa resta vero del contenuto degli ultimi due esercizi se V ha dimensione infinita?

* Esercizio 19. Siano V e W due spazi vettoriali di dimensione finita su C' e sia ¢ : V' — W un’appli-
cazione lineare. Si chiamano rispettivamente conucleo e coimmagine di ¢ i quozienti coker¢ = W/im¢ e
coim¢ = V/ker ¢.

(a) Si dimostri che dim coker ¢ + dimcoim¢ = dimW.
(b) E vero che dimV — dimker¢ = dim W — dim coker ¢ ?

(c) Sia j : ker¢ — V I'immersione naturale del sottospazio in V. Si mostri che, per ogni applicazione
lineare ¢ : T'— V tale che ¢ 09 = 0 esiste un’unica applicazione lineare v : T — ker ¢ tale che ¥ = jov.

(d) Utilizzare il punto precedente per determinare il nucleo dell’applicazione lineare (T, ¢) : Homg (T, V) —
Hom¢ (T, W), definita da & — ¢ o €.

(e) Sia p : W — coker¢ la proiezione naturale di W sul quoziente. Si mostri che, per ogni applicazione
lineare v : W — T tale che 9 o ¢ = 0 esiste un’unica applicazione lineare v : coker¢p — T tale che
Y =vop.

(f) Utilizzare il punto precedente per determinare il nucleo dell’applicazione lineare h(¢, T) : Home (W, T) —
Home (V,T), definita da & — £ o ¢.

Esercizio 20. E dato un numero dispari di sacchetti contenenti biglie metalliche, tutte uguali tra loro.
Sappiamo che, togliendo uno qualsiasi tra i sacchetti, i rimenenti possono essere suddivisi in due gruppi
aventi ugual numero di sacchetti ed ugual peso. E vero o falso che ogni sacchetto deve necessariamente
contenere lo stesso numero di biglie?

Si consideri lo stesso problema senza l'ipotesi che nei due gruppi vi sia un ugual numero di sacchetti.

Esercizio 21. Sia B € M,,«x(R) una matrice di rango k.

(a) Simostri che, se 'BB = 1, allora B!B ¢ la matrice della proiezione ortogonale di R”, dotato dell’usuale
prodotto scalare, sul sottospazio generato dalle colonne della matrice B.

(b) In generale, si mostri che P = B(!*BB)~!'B & la matrice della proiezione ortogonale di R™, dotato
dell’usuale prodotto scalare, sul sottospazio generato dalle colonne della matrice B.

(c) Si mostri infine che, preso comunque un vettore b € R¥, il sistema lineare ‘Bz = b ha soluzione ¢ che
le soluzioni sono tutti e soli gli elementi p € R™ della forma p = B(‘BB)~'b + (1,, — P)y, al variare di y
in R™.

Esercizio 22. Unendo il cloro (Cl3) allidrossido di potassio (KOH), si ottengono cloruro di potassio
(KCl), clorato di potassio (KClOs3) e acqua (H20). Bilanciare la reazione
Cla+ KOH — KCl+ KClOs + H30;

ovvero trovare dei numeri naturali ny,...,ns tali che il numero di atomi di ciascun elemento nel termine
di sinistra n1Cly + no KOH sia uguale al numero di atomi di ciascun elemento presente nel termine di
destra n3 KCl + ny KClO3 + nsH50.



