
Esercizi di Geometria 1 Foglio 6 – 13 dicembre 2012

Esercizio 1. Sia V uno spazio vettoriale sul campo C e siano V = {v1, . . . , vn} una base di V e V∗ =
{v∗1 , . . . , v∗n} la corrispondente base duale di V ∗. Si mostri che per ogni vettore v ∈ V , si ha v =∑n
i=1(v∗i ◦ v)vi [risp. per ogni vettore ξ ∈ V ∗, si ha ξ =

∑n
i=1(ξ ◦ vi)v∗i ].

Esercizio 2. Sia V uno spazio vettoriale di dimensione finita sul campo C e siano V = {v1, . . . , vn} e
W = {w1, . . . , wn} due basi di V . Indicate con V∗ = {v∗1 , . . . , v∗n} e W∗ = {w∗1 , . . . , w∗n} le rispettive basi
duali, siano P = (pij)1≤i,j≤n = αV,W(1V ) e Q = (qij)1≤i,j≤n = αW∗,V∗(1V ∗), le matrici dei cambiamenti
di base. Si mostri che Q = tP .

Esercizio 3. Sia V lo spazio vettoriale dei polinomi di R[X], di grado ≤ 3 e si consideri la sua base
{1, X,X2, X3}. Si mostri che l’applicazione φ : V → R, definita da P 7→ P (2), è un elemento di V ∗ e la
si scriva come combinazione dei vettori della base duale della base data.

Esercizio 4. Sia V uno spazio vettoriale di dimensione finita su C e sia S 6= ∅ un sottoinsieme di
V ∗ = HomC(V,C).

(a) È vero che gli elementi di S generano V ∗ se, e solo se,
⋂
ζ∈S

ker ζ = 〈0〉?

(b) È vero che gli elementi di S sono linearmente indipendenti se, e solo se, per ogni elemento ζ0 ∈ S,

esiste un vettore, v0 ∈ V , che appartiene a
⋂

ζ0 6=ζ∈S

ker ζ, ma non appartiene a ker ζ0?

Esercizio 5. Sia V = Q[X] lo spazio vettoriale di tutti i polinomi a coefficienti razionali e si considerino
la base {1, X,X2, . . . } di V ed il corrispondente sottoinsieme E = {ξ0, ξ1, ξ2, . . . } di V ∗ = HomQ(V,Q),
definito dalle condizioni ei(X

j) = δi,j per ogni coppia (i, j) di interi non-negativi. Si mostri che l’appli-
cazione φ : V → Q, definita da P 7→ P (1), è un elemento di V ∗, ma che non è possibile scriverla come
combinazione lineare finita degli elementi di E .

Esercizio 6. Sia V uno spazio vettoriale complesso di dimensione 4 e sia V ∗ il suo duale. Indichiamo
con {v1, . . . , v4} una base di V e con {v∗1 , . . . , v∗4} la base duale di V ∗. Si considerino i sottospazi di V ∗

Z = 〈2v∗1 − 3v∗2 − v∗4 , 3v∗2 − 2v∗3 + v∗4 , v
∗
1 + v∗4〉 e

Zλ = 〈λv∗1 + 2v∗2 − 3λv∗3 , (λ+ 1)v∗1 + 2v∗2 − 3v∗3 + v∗4 , 2λv
∗
2 − 3v∗3 + 2λv∗4〉 , λ ∈ C.

(a) Si calcolino, al variare di λ le dimensioni dei sottospazi Z⊥, Z⊥λ e Z⊥ + Z⊥λ .

(b) Si dica per quali valori di λ si ha Z⊥ + Z⊥λ = Z⊥ ⊕ Z⊥λ .

Esercizio 7. Sia data una base {v1, v2, v3, v4} dello spazio vettoriale reale V e si denoti, come di consueto,
con {v∗1 , v∗2 , v∗3 , v∗4} la base duale di V ∗. Si consideri al variare di λ tra i numeri reali, il sottospazio Sλ di
V ∗ generato dai vettori

(λ− 1)v∗1 + 2v∗2 − λv∗3 + 2λv∗4 , 2v∗1 − v∗3 + v∗4 ,

−(λ+ 1)v∗1 − λv∗2 + (λ+ 2)v∗3 − 2v∗4 , 2v∗1 + (λ− 2)v∗2 − 2v∗3 .

(a) Si determini al variare di λ la dimensione del sottospazio S⊥λ di V .

(b) Si determini l’intersezione di tutti i sottospazi Sλ di V ∗.

Esercizio 8. Si consideri lo spazio, V = R[X]≤3 dei polinomi, a coefficienti reali, di grado minore o
uguale a 3, con la base (canonica) B = {1, X,X2, X3}.
(a) È vero che V = {1, X − 1, (X − 2)2, (X − 3)3} è una base di V ? In caso affermativo si scrivano le
matrici di cambiamento di base αV,B(1) e αB,V(1).

(b) Sia B∗ = {δ0, δ1, δ2, δ3} ⊂ V ∗, ove δk(P (X)) = P (k)(0)
k! per ogni P (X) in V e k = 0, . . . , 3. Si verifichi

che B∗ è la base duale di B in V ∗. Scrivere gli elementi della base V∗, duale di V, come combinazione
lineare degli elementi di B∗.

Esercizio 9. Si consideri lo spazio, V = K[X]≤n dei polinomi, a coefficienti nel campo K, di grado minore
o uguale a n e sia V ∗ lo spazio vettoriale duale. Si verifichi che le forme lineari non nulle, ξ0, . . . , ξn, sono
una base di V ∗ nei casi seguenti:

(a) Esistono x0, . . . , xn in K, a due a due distinti, tali che ξj(P ) = P (xj) per ogni P ∈ V e per ogni
j = 0, . . . , n.

1



(b) Esiste x0 ∈ K tale che ξj(P ) = P (j)(x0) per ogni j = 0, . . . , n.

In ciascuno dei due casi si scriva la corrispondente base duale di V .

Esercizio 10. Si consideri lo spazio, V = K[X]≤n dei polinomi di grado minore o uguale a n, a coefficienti
nel campo K, di caratteristica 0, e sia V ∗ lo spazio vettoriale duale. Si verifichi che le forme lineari
ξ0, . . . , ξn, definite da ξj(P ) = P ′(j) per ogni P ∈ V , sono linearmente dipendenti.

Esercizio 11. Siano V e W spazi vettoriali su C, V = {v1, . . . , vn} e W = {w1, . . . , wm} basi di tali
spazi, φ : V → W e φ∗ : W ∗ → V ∗ due applicazioni lineari, l’una trasposta dell’altra. Si verifichi che, se
A = αV,W(φ), allora tA = αW∗,V∗(φ∗), ove V∗ e W∗ sono le basi duali delle basi date.

Esercizio 12. Sia V uno spazio vettoriale sul campo C e sia V ∗ lo spazio vettoriale duale. Dati v∗, w∗ ∈
V ∗, si consideri l’applicazione (detta prodotto tensoriale delle forme lineari v∗ e w∗)

v∗ ⊗ w∗ : V × V → C

(x, y) 7→ (v∗ ◦ x)(w∗ ◦ y).

(a) Si mostri che v∗⊗w∗ è un’applicazione bilineare e si verifichi che, per ogni coppia di vettori v∗, w∗ ∈ V ∗
e per ogni costante c ∈ C, si ha (cv∗)⊗ w∗ = c(v∗ ⊗ w∗) = v∗ ⊗ (cw∗).
(b) Si mostri che, presi comunque u∗, v∗, w∗ ∈ V ∗, si ha (u∗+v∗)⊗w∗ = u∗⊗w∗+v∗⊗w∗ e u∗⊗(v∗+w∗) =
u∗ ⊗ v∗ + u∗ ⊗ w∗.
(c) Fissata una base V = {v1, . . . , vn} dello spazio V e la rispettiva base duale V∗ = {v∗1 , . . . , v∗n} di
V ∗, si mostri che l’insieme

{
v∗i ⊗ v∗j | 1 ≤ i, j ≤ n

}
è una base dello spazio vettoriale Bil(V, V,C) delle

applicazioni bilineari su V .
(d) Estendere la definizione ad r forme lineari.

Esercizio 13. Siano V uno spazio vettoriale di dimensione 4, V = {v1, . . . , v4} una base di V e V∗ =
{v∗1 , . . . , v∗4} la relativa base duale. Date le forme lineari v∗ = 2v∗1 −v∗3 +v∗4 e w∗ = v∗1 −3v∗2 −v∗3 si calcoli
l’applicazione bilineare v∗ ⊗ w∗ su una generica coppia di vettori di V .

Esercizio 14. Siano V uno spazio vettoriale di dimensione finita e φ : V → V ∗ un isomorfismo. Si
definisca che g : V × V → C ponendo g(v, w) = v ◦ φ(w), per ogni (v, w) ∈ V × V
(a) Si verifichi che g è un’applicazione bilineare, non degenere e che per ogni (v, w) ∈ V × V si ha
g(w, v) = v ◦ φ∗(w), ove φ∗ è l’applicazione trasposta di φ.

(b) si verifichi che g è simmetrica oppure alternante se, e solo se, per ogni coppia di vettori v, w ∈ V si
ha g(v, w) = 0 ⇔ g(w, v) = 0.

Esercizio 15. Si consideri lo spazio vettoriale Mn(C) delle matrici quadrate di ordine n, ad elementi
nel campo C. Si mostri che, fissata comunque una forma lineare α : Mn(C) → C, esiste una matrice
A ∈Mn(C) tale che α(X) = tr(AX) per ogni X ∈Mn(C). Si deduca da ciò il fatto che, per ogni spazio
vettoriale di dimensione finita V , lo spazio vettoriale HomC(V, V ) è canonicamente isomorfo al suo duale.

Esercizio 16. Sia V uno spazio vettoriale di dimensione finita sul campo C. Dati comunque due vettori
v∗ e w∗ appartenenti allo spazio duale V ∗, si consideri l’applicazione

v∗ ∧ w∗ :V × V → C

(x, y) 7→ (v∗ ◦ x)(w∗ ◦ y)− (w∗ ◦ x)(v∗ ◦ y)(1)

(a) Si mostri che v∗∧w∗ è un’applicazione bilineare alternante e si verifichi che per ogni coppia di vettori
v∗, w∗ ∈ V ∗ e per ogni costante c ∈ C, si ha (cv∗)∧w∗ = c(v∗ ∧w∗) = v∗ ∧ (cw∗) e v∗ ∧w∗ = −w∗ ∧ v∗.1

1L’applicazione bilineare alternante v∗ ∧ w∗ è detta il prodotto esterno delle forme lineari v∗ e w∗. Si potrebbe mo-
strare che, data una base V = {v1, . . . , vn} dello spazio V e la rispettiva base duale V∗ = {v∗1 , . . . , v∗n} di V ∗, l’insieme{
v∗i ∧ v∗j | 1 ≤ i < j ≤ n

}
è una base dello spazio A2(V ) delle applicazioni bilineari alternanti su V . La definizione di

prodotto esterno può essere estesa a più forme lineari, ovvero, dati w∗1 , . . . , w
∗
r ∈ V ∗, si definisce l’applicazione r-lineare

alternante

w∗1 ∧ · · · ∧ w∗r :V × · · · × V︸ ︷︷ ︸
r copie

→ C

(x1, . . . , xr) 7→
∑
σ∈Σr

(sgnσ)(w∗1 ◦ xσ(1)) · · · (w∗r ◦ xσ(r))(2)

dove Σr indica l’insieme delle permutazioni su r oggetti. Anche in questo caso, con le notazioni fissate sopra, l’insieme{
v∗i1 ∧ · · · ∧ v

∗
ir
| 1 ≤ i1 < · · · < ir ≤ n

}
è una base dello spazio Ar(V )
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(b) Si mostri che le applicazioni v∗1 ∧w∗1 6= 0 6= v∗2 ∧w∗2 sono proporzionali se, e solo se, 〈v∗1 , w∗1〉 = 〈v∗2 , w∗2〉
in V ∗.

(c) Nel caso in cui dimV = 4, V = {v1, . . . , v4} è una base di V e V∗ = {v∗1 , . . . , v∗4} è la relativa base duale,
si calcoli su una generica coppia di vettori di V l’applicazione bilineare v∗ ∧w∗, ove v∗ = 2v∗1 − v∗3 + v∗4 e
w∗ = v∗1 − 3v∗2 − v∗3 .

Esercizio 17. Siano V e W spazi vettoriali di dimensione finita sul campo C e siano fissate le basi
V = {v1, . . . , vn} di V , W = {w1, . . . , wm} di W e la base duale V∗ = {v∗1 , . . . , v∗n} di V ∗. Fissati v∗ ∈ V ∗
e w ∈W si consideri l’applicazione w ⊗ v∗ : V →W definita da x 7→ w(v∗ ◦ x) per ogni x ∈ V .

(a) Si verifichi che w ⊗ v∗ ∈ HomC(V,W ) e si determinino nucleo ed immagine. Si verifichi inoltre che
nello spazio vettoriale HomC(V,W ) si ha

• (w1 + w2)⊗ v∗ = w1 ⊗ v∗ + w2 ⊗ v∗ per ogni w1, w2 ∈W e v∗ ∈ V ∗;
• w ⊗ (v∗1 + v∗2) = w ⊗ v∗1 + w ⊗ v∗2 per ogni w ∈W e v∗1 , v

∗
2 ∈ V ∗;

• (aw)⊗ v∗ = a(w ⊗ v∗) = w ⊗ (av∗) per ogni w ∈W , v∗ ∈ V ∗ e a ∈ C.

È vero che l’applicazione y∗ 7→ (y∗ ◦ w)v∗ di W ∗ → V ∗ è la trasposta di w ⊗ v∗?

(b) Siano n = 5 ed m = 4 e si considerino i vettori v∗ = 3v∗1 − v∗3 + 5v∗5 e w = w1 − 2w2 + 3w4. Si
determinino nucleo ed imagine di w ⊗ v∗ e la matrice αV,W(w ⊗ v∗).

(c) In generale, dati v∗ = a1v
∗
1 + · · ·+anv

∗
n e w = b1w1+ · · ·+bmwm, che relazioni ci sono tra le colonne

di coordinate a =

(
a1
...
an

)
, b =

(
b1
...
bm

)
e la matrice αV,W(w ⊗ v∗).

(d) Si indichi con W ⊗C V ∗ il sottospazio di HomC(V,W ) generato su C dalle applicazioni del tipo
w⊗ v∗, al variare di v∗ ∈ V ∗ e di w ∈W . Si determini la dimensione di tale sottospazio esibendone
una base e si concluda che W ⊗C V ∗ = HomC(V,W ). [sugg. Si considerino gli elementi del tipo
wi ⊗ v∗j , ove W = {w1, . . . , wm} e V∗ = {v∗1 , . . . , v∗n} sono le basi descritte sopra.]

(e) Siano v∗ ∈ V ∗ e w ∈ W . Che relazioni ci sono tra l’omomorfismo w ⊗ v∗ ∈ HomC(V,W ) definito
sopra e l’applicazione bilineare w ⊗ v∗ : W ∗ × V → C definita nell’Esercizio 12?

Esercizio 18. Siano U , V e W tre spazi vettoriali di dimensione finita sul campo C e, seguendo l’esercizio
precedente, identifichiamo V ⊗CU∗ con HomC(U, V ) e W⊗CV ∗ con HomC(V,W ). Identificando W⊗CU∗
con HomC(U,W ), come si descrive la composizione di applicazioni lineari? In particolare, dati v ⊗ u∗ e
w ⊗ v∗, con u∗ ∈ U∗, v ∈ V , v∗ ∈ V ∗, w ∈W ; che dire dell’applicazione composta (w ⊗ v∗) ◦ (v ⊗ u∗)?
Esercizio 19. Sia V uno spazio vettoriale di dimensione finita sul campo C. Si consideri l’applicazione
τ : HomC(V, V ) ∼= V ⊗C V ∗ → C definita da v ⊗ w∗ 7→ w∗ ◦ v.

(a) Si verifichi che si tratta di un’applicazione lineare. Si fissi una base V = {v1, . . . , vn} di V e si
scrivano le relazioni esistenti tra τ(φ) e la matrice αV,V(φ).

(b) È vero che, fissata comunque un’applicazione lineare, ξ : HomC(V, V ) → C, esiste un (unico)
omomorfismo ψ0 : V → V tale che ξ(φ) = τ(ψ0 ◦ φ) per ogni φ ∈ HomC(V, V )?

(c) È vero che, fissata comunque un’applicazione lineare, ξ : HomC(V, V ) → C, esiste un (unico)
omomorfismo ψ1 : V → V tale che ξ(φ) = τ(φ ◦ ψ1) per ogni φ ∈ HomC(V, V )? È φ0 = φ1?

Esercizio 20. Siano U , V e W spazi vettoriali di dimensione finita sul campo C.

(a) Si mostri che c’è un isomorfismo canonico V ∗ ⊗C U∗ ∼= (U ⊗C V )∗.

(b) Dall’isomorfismo canonico W ⊗C (V ∗ ⊗C U∗) ∼= (W ⊗C V ∗)⊗C U∗ si deduca l’isomorfismo

HomC(U ⊗C V,W ) ∼= HomC(U,HomC(V,W ))

e lo si scriva esplicitamente in termini di applicazioni lineari.

Si ponga A0(V ) = C ed A1(V ) = V ∗, allora il prodotto cos̀ı definito per gli elementi della base V∗ = {v∗1 , . . . , v∗n} di V ∗

si può estendere per linearità ad un prodotto, compatibile con la moltiplicazione per costanti, su tutto l’insieme

A(V ) =
dimV⊕
r=0

Ar(V )

che rende A(V ) una C-algebra associativa e non-commutativa, detta l’algebra esterna su V ∗ ed usualmente indicata col
simbolo Λ(V ∗). Per dualità si può definire in modo analogo l’algebra Λ(V ).
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