prova di accertamento del 12 febbraio 2010 – Compito A

ESERCIZIO 1. Si consideri l'endomorfismo, $\phi: \mathbb{C}^5 \to \mathbb{C}^5$, di matrice

$$A = \begin{pmatrix} -1 & 6 & 1 & 0 & 0 \\ 1 & 0 & 0 & -1 & 1 \\ 0 & 0 & -3 & 0 & 0 \\ 0 & 0 & -1 & -2 & 2 \\ 0 & 0 & -2 & 2 & 1 \end{pmatrix}$$

rispetto alla base canonica.

- (a) Si calcoli il polinomio caratteristico di ϕ e si determinino gli autovalori e le loro molteplicità.
- (b) Per ogni autovalore si determinino la dimensione del sottospazio di autovettori relativo e il massimo periodo degli autovettori generalizzati. Si determini il polinomio minimo di ϕ .
- (c) Si determini una forma di Jordan, J, per la matrice di ϕ ed una matrice invertibile, P, tale che $A=PJP^{-1}$.
- (d) Sia $\nu : \mathbb{C}^5 \to \mathbb{C}^5$ un endomorfismo nilpotente tale che $\nu \circ \phi = \phi \circ \nu$ e che $\phi \nu$ sia diagonalizzabile. Si determini la matrice $N = \alpha_{\mathcal{E},\mathcal{E}}(\nu)$.

Svolgimento. (a) Il polinomio caratteristico è $P_{\phi}(X) = \det(X\mathbf{1}_5 - A) = (X-2)^2(X+3)^3$, da cui si leggono gli autovalori e le loro molteplicità.

(b) Si ha

$$A - 2\mathbf{1} = \begin{pmatrix} -3 & 6 & 1 & 0 & 0 \\ 1 & -2 & 0 & -1 & 1 \\ 0 & 0 & -5 & 0 & 0 \\ 0 & 0 & -1 & -4 & 2 \\ 0 & 0 & -2 & 2 & -1 \end{pmatrix}, \qquad A + 3\mathbf{1} = \begin{pmatrix} 2 & 6 & 1 & 0 & 0 \\ 1 & 3 & 0 & -1 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 & 2 \\ 0 & 0 & -2 & 2 & 4 \end{pmatrix};$$

e quindi $\operatorname{rk}(\phi - 2) = 4 \operatorname{erk}(\phi + 3) = 3$. Da cui si deduce

$$\dim \ker (\phi - 2) = 1$$
, $\dim \ker (\phi - 2)^2 = 2$; $\dim \ker (\phi + 3) = 2$, $\dim \ker (\phi + 3)^2 = 3$.

Quindi il polinomio minimo di ϕ è $\lambda_{\phi}(X) = (X-2)^2(X+3)^2$ e, per entrambo gli autovalori, 2 è il massimo periodo per un autovettore generalizzato.

(c) Si ha

$$(A-2\mathbf{1})^2 = \begin{pmatrix} 15 & -30 & -8 & -6 & 6 \\ -5 & 10 & 0 & 8 & -5 \\ 0 & 0 & 25 & 0 & 0 \\ 0 & 0 & 5 & 20 & -10 \\ 0 & 0 & 10 & -10 & 5 \end{pmatrix},$$

Quindi $v_2 = e_2 + 5e_4 + 10e_5 \in \ker(\phi - 2)^2 \setminus \ker(\phi - 2)$, e posto $v_1 = (\phi - 2)(v_2) = 6e_1 + 3e_2$, si ottiene una base di autovettori generalizzati per il blocco di Jordan relativo all'autovalore 2. Guardando al polinomio minimo e ricordando le dimensioni dei sottospazi coinvolti, si ha che $\ker(\phi + 3)^2 = \operatorname{im}(\phi - 2)^2$. Quindi $v_5 = -3e_2 - 10e_4 + 5e_5 \in \ker(\phi + 3)^2 \setminus \ker(\phi + 3)$ e $v_4 = (\phi + 3)(v_5) = -18e_1 + 6e_2$. Infine $v_3 = e_1 - 2e_3 + e_5$ appartiene a $\ker(\phi + 3)$, ma è linearmente indipendente da v_4 . Si ha così una base, $\mathcal{V} = \{v_1, \dots, v_5\}$, rispetto a cui ϕ ha matrice di Jordan, ovvero

$$J = \alpha_{\mathcal{V},\mathcal{V}}(\phi) = \begin{pmatrix} 2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & -3 & 0 & 0 \\ 0 & 0 & 0 & -3 & 1 \\ 0 & 0 & 0 & 0 & -3 \end{pmatrix}, \qquad P = \alpha_{\mathcal{V},\mathcal{E}}(id) = \begin{pmatrix} 6 & 0 & 1 & -18 & 0 \\ 3 & 1 & 0 & 6 & -3 \\ 0 & 0 & -2 & 0 & 0 \\ 0 & 5 & 0 & 0 & -10 \\ 0 & 10 & -1 & 0 & 5 \end{pmatrix}.$$

Lasciamo al lettore la verifica che AP = PJ.

(d) Si ha

ESERCIZIO 2. Nello spazio affine $\mathbb{A}(\mathbb{R}^4)$, si considerino i punti di coordinate

$$P_{0} = \begin{pmatrix} 1 \\ 0 \\ -2 \\ 1 \end{pmatrix}, \quad P_{1} = \begin{pmatrix} 2 \\ -1 \\ 0 \\ -1 \end{pmatrix}, \quad P_{2} = \begin{pmatrix} 1 \\ 0 \\ 1 \\ -2 \end{pmatrix}, \quad e \quad Q_{0} = \begin{pmatrix} 2 \\ 2 \\ 1 \\ 0 \end{pmatrix}, \quad Q_{1} = \begin{pmatrix} 1 \\ 0 \\ -1 \\ 1 \end{pmatrix}, \quad Q_{2} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 2 \end{pmatrix},$$

nel riferimento canonico.

- (a) Si determinino le dimensioni ed un sistema di equazioni cartesiane per le sottovarietà lineari $\mathbb{L} = P_0 \vee P_1 \vee P_2$ ed $\mathbb{M} = Q_0 \vee Q_1 \vee Q_2$. Si determini $\mathbb{L} \cap \mathbb{M}$.
- (b) Se è possibile proiettare i punti di $\mathbb{A}(\mathbb{R}^4)$ su \mathbb{L} parallelamente al sottospazio direttore di \mathbb{M} si scriva la matrice, A, di questa applicazione affine.
- (c) Si scriva la matrice, S, della simmetria di asse \mathbb{L} e direzione parallela ad \mathbb{M} .
- (d) Che relazioni ci sono tra S e la matrice, T, (sempre nel riferimento canonico) della simmetria di asse \mathbb{M} e direzione parallela ad \mathbb{L} ? Che dire della loro composizione? Si scrivano le matrici T ed ST.

Svolgimento. (a) Ciascuna delle due terne di punti è in posizione generale e si hanno i due piani di equazioni cartesiane

$$\mathbb{L}: \left\{ \begin{array}{l} X_1 + X_2 = 1 \\ X_3 + X_4 = -1 \end{array} \right. \quad \text{e} \quad \mathbb{M}: \left\{ \begin{array}{l} X_1 + X_4 = 2 \\ X_2 - X_3 = 1 \end{array} \right.;$$

ed
$$\mathbb{L} \cap \mathbb{M} = \{P\}$$
, con $P = \begin{pmatrix} 3/2 \\ -1/2 \\ -3/2 \\ 1/2 \end{pmatrix}$.

(b) Detto U il sottospazio direttore di \mathbb{L} e W il sottospazio direttore di \mathbb{M} , si ha dim $U=2=\dim W$ e $U\cap W=\langle 0\rangle$; per cui $\mathbb{R}^4=U\oplus W$ e, per ogni punto, $X\in\mathbb{A}(\mathbb{R}^4)$, si ha che $(X+W)\cap\mathbb{L}$ è costituito da un unico punto. Ovvero $(X+W)\cap\mathbb{L}=\{p_{\mathbb{L}}^W(X)\}$, ove $p_{\mathbb{L}}^W:\mathbb{A}(\mathbb{R}^4)\to\mathbb{A}(\mathbb{R}^4)$ indica la proiezione su \mathbb{L} parallelamente a W. Dunque, se $X=O+x_1e_1+x_2e_2+x_3e_3+x_4e_4$, le coordinate di $p_{\mathbb{L}}^W(X)$ sono le soluzioni del sistema

$$\mathbb{L} \cap (X+W) : \begin{cases} X_1 + X_2 = 1 \\ X_3 + X_4 = -1 \\ X_1 + X_4 = x_1 + x_4 \end{cases}; \quad \text{ovvero} \quad \begin{cases} X_1 = 1 + \frac{1}{2}(x_1 - x_2 + x_3 + x_4) \\ X_2 = \frac{1}{2}(-x_1 + x_2 - x_3 - x_4) \\ X_3 = \frac{1}{2}(-x_1 - x_2 + x_3 - x_4) \\ X_4 = -1 + \frac{1}{2}(x_1 + x_2 - x_3 + x_4) \end{cases}.$$

Possiamo quindi scrivere la matrice nel riferimento canonico, ovvero

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 1/2 & -1/2 & 1/2 & 1/2 \\ 0 & -1/2 & 1/2 & -1/2 & -1/2 \\ 0 & -1/2 & -1/2 & 1/2 & -1/2 \\ -1 & 1/2 & 1/2 & -1/2 & 1/2 \end{pmatrix}.$$

(c) Sia $\sigma_{\mathbb{L}}^W: \mathbb{A}(\mathbb{R}^4) \to \mathbb{A}(\mathbb{R}^4)$ la simmetria di asse \mathbb{L} e direzione W. Per ogni punto $X \in \mathbb{A}(\mathbb{R}^4)$, si ha $\sigma_{\mathbb{L}}^W(X) = 2p_{\mathbb{L}}^W(X) - X$. Quindi $S = 2A - \mathbf{1}_5$, ovvero

$$S = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 2 & 0 & -1 & 1 & 1 \\ 0 & -1 & 0 & -1 & -1 \\ 0 & -1 & -1 & 0 & -1 \\ -2 & 1 & 1 & -1 & 0 \end{pmatrix}.$$

(d) Per una simmetria, σ , si ha $\sigma \circ \sigma = id$; quindi $S^2 = \mathbf{1}_5$. Inoltre la composizione tra $\sigma_{\mathbb{L}}^W$ e $\sigma_{\mathbb{M}}^U$ (in qualsiasi ordine) è la simmetria rispetto al punto di intersezione, $\{P\} = \mathbb{L} \cap \mathbb{M}$; ovvero l'omotetia di centro P e rapporto -1. Quindi

$$ST = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 3 & -1 & 0 & 0 & 0 \\ -1 & 0 & -1 & 0 & 0 \\ -3 & 0 & 0 & -1 & 0 \\ 1 & 0 & 0 & 0 & -1 \end{pmatrix} \qquad \text{e} \qquad T = S(ST) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & -1 & -1 \\ -1 & 1 & 0 & 1 & 1 \\ -3 & 1 & 1 & 0 & 1 \\ 3 & -1 & -1 & 1 & 0 \end{pmatrix}.$$

prova di accertamento del 12 febbraio 2010 – Compito ${\bf B}$

ESERCIZIO 1. Si consideri l'endomorfismo, $\phi: \mathbb{C}^5 \to \mathbb{C}^5$, di matrice

$$A = \begin{pmatrix} 5 & -7 & 0 & 0 & 1 \\ 2 & -4 & 1 & -1 & 0 \\ 0 & 0 & -2 & 0 & 0 \\ 0 & 0 & -2 & 0 & 2 \\ 0 & 0 & -3 & 3 & 1 \end{pmatrix}$$

rispetto alla base canonica.

- (a) Si calcoli il polinomio caratteristico di ϕ e si determinino gli autovalori e le loro molteplicità.
- (b) Per ogni autovalore si determinino la dimensione del sottospazio di autovettori relativo e il massimo periodo degli autovettori generalizzati. Si determini il polinomio minimo di ϕ .
- (c) Si determini una forma di Jordan, J, per la matrice di ϕ ed una matrice invertibile, P, tale che $A = PJP^{-1}$.
- (d) Sia $\delta: \mathbb{C}^5 \to \mathbb{C}^5$ un endomorfismo diagonalizzabile tale che $\delta \circ \phi = \phi \circ \delta$ e che $\phi \delta$ sia nilpotente. Si determini la matrice $D = \alpha_{\mathcal{E}, \mathcal{E}}(\delta)$.

Svolgimento. (a) Il polinomio caratteristico è $P_{\phi}(X) = \det(X\mathbf{1}_5 - A) = (X+2)^3(X-3)^2$, da cui si leggono gli autovalori e le loro molteplicità.

(b) Si ha

$$A + 2\mathbf{1} = \begin{pmatrix} 7 & -7 & 0 & 0 & 1 \\ 2 & -2 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -2 & 2 & 2 \\ 0 & 0 & -3 & 3 & 3 \end{pmatrix} \qquad A - 3\mathbf{1} = \begin{pmatrix} 2 & -7 & 0 & 0 & 1 \\ 2 & -7 & 1 & -1 & 0 \\ 0 & 0 & -5 & 0 & 0 \\ 0 & 0 & -2 & -3 & 2 \\ 0 & 0 & -3 & 3 & -2 \end{pmatrix}$$

e quindi $\operatorname{rk}(\phi+2)=3$ e $\operatorname{rk}(\phi-3)=4$. Da cui si deduce

$$\dim \ker (\phi - 3) = 1$$
, $\dim \ker (\phi - 3)^2 = 2$; $\dim \ker (\phi + 2) = 2$, $\dim \ker (\phi + 2)^2 = 3$.

Quindi il polinomio minimo di ϕ è $\lambda_{\phi}(X) = (X+2)^2(X-3)^2$ e, per entrambo gli autovalori, 2 è il massimo periodo per un autovettore generalizzato.

(c) Si ha

Quindi $v_5 = e_3 + e_5 \in \ker(\phi + 2)^2 \setminus \ker(\phi + 2)$ e $v_4 = (\phi + 2)(v_5) = e_1 + e_2$. Infine $v_3 = e_3 + e_4$ appartiene a $\ker(\phi + 2)$, ma è linearmente indipendente da v_4 . Guardando al polinomio minimo e ricordando le dimensioni dei sottospazi coinvolti, si ha che $\ker(\phi - 3)^2 = \operatorname{im}(\phi + 2)^2$. Quindi $v_2 = 2e_1 + 2e_4 + 3e_5 \in \ker(\phi - 3)^2 \setminus \ker(\phi - 3)$, e posto $v_1 = (\phi - 3)(v_2) = 7e_1 + 2e_2$, si ottiene una base, $\mathcal{V} = \{v_1, \dots, v_5\}$, rispetto a cui ϕ ha matrice di Jordan, ovvero

$$J = \alpha_{\mathcal{V},\mathcal{V}}(\phi) = \begin{pmatrix} 3 & 1 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 \\ 0 & 0 & -2 & 0 & 0 \\ 0 & 0 & 0 & -2 & 1 \\ 0 & 0 & 0 & 0 & -2 \end{pmatrix}, \qquad P = \alpha_{\mathcal{V},\mathcal{E}}(id) = \begin{pmatrix} 7 & 2 & 0 & 1 & 0 \\ 2 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 2 & 1 & 0 & 0 \\ 0 & 3 & 0 & 0 & 1 \end{pmatrix}.$$

Lasciamo al lettore la verifica che AP = PJ.

(d) Si ha

$$L = \alpha_{\mathcal{V},\mathcal{V}}(\delta) = \begin{pmatrix} 3 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 \\ 0 & 0 & -2 & 0 & 0 \\ 0 & 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & 0 & -2 \end{pmatrix}, \qquad D = \alpha_{\mathcal{E},\mathcal{E}}(\delta) = PLP^{-1} = \begin{pmatrix} 5 & -7 & 4/5 & -4/5 & -4/5 \\ 2 & -4 & 4/5 & -4/5 & -4/5 \\ 0 & 0 & -2 & 0 & 0 \\ 0 & 0 & -2 & 0 & 2 \\ 0 & 0 & -3 & 3 & 1 \end{pmatrix}.$$

ESERCIZIO 2. Nello spazio affine $\mathbb{A}(\mathbb{R}^4)$, si considerino i punti di coordinate

$$P_0 = \begin{pmatrix} 1 \\ -2 \\ 0 \\ 1 \end{pmatrix}, \quad P_1 = \begin{pmatrix} -1 \\ 0 \\ -1 \\ 2 \end{pmatrix}, \quad P_2 = \begin{pmatrix} -2 \\ 1 \\ 0 \\ 1 \end{pmatrix}, \quad e \quad Q_0 = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 2 \end{pmatrix}, \quad Q_1 = \begin{pmatrix} 1 \\ -1 \\ 0 \\ 1 \end{pmatrix}, \quad Q_2 = \begin{pmatrix} 2 \\ 0 \\ 1 \\ 0 \end{pmatrix}.$$

nel riferimento canonico.

- (a) Si determinino le equazioni cartesiane delle sottovarietà lineari $\mathbb{L} = P_0 \vee P_1 \vee P_2$ ed $\mathbb{M} = Q_0 \vee Q_1 \vee Q_2$ e si determini $\mathbb{L} \cap \mathbb{M}$.
- (b) Se è possibile proiettare i punti di $\mathbb{A}(\mathbb{R}^4)$ su \mathbb{L} parallelamente al sottospazio direttore di \mathbb{M} si scriva la matrice, A, di questa applicazione affine.
- (c) Si scriva la matrice, S, della simmetria di asse \mathbb{L} e direzione parallela ad \mathbb{M} .
- (d) Che relazioni ci sono tra S e la matrice, T, della simmetria di asse \mathbb{M} e direzione parallela ad \mathbb{L} ? Che dire della loro composizione?

Svolgimento. (a) Ciascuna delle due terne di punti è in posizione generale e si hanno i due piani di equazioni cartesiane

$$\mathbb{L}: \left\{ \begin{array}{l} X_1 + X_2 = -1 \\ X_3 + X_4 = 1 \end{array} \right. \quad \text{e} \quad \mathbb{M}: \left\{ \begin{array}{l} X_1 + X_4 = 2 \\ X_2 - X_3 = -1 \end{array} \right.;$$

ed
$$\mathbb{L} \cap \mathbb{M} = \{P\}$$
, con $P = \begin{pmatrix} 1/2 \\ -3/2 \\ -1/2 \\ 3/2 \end{pmatrix}$.

(b) Detto U il sottospazio direttore di \mathbb{L} e W il sottospazio direttore di \mathbb{M} , si ha dim $U=2=\dim W$ e $U\cap W=\langle 0\rangle$; per cui $\mathbb{R}^4=U\oplus W$ e, per ogni punto, $X\in\mathbb{A}(\mathbb{R}^4)$, si ha che $(X+W)\cap\mathbb{L}$ è costituito da un unico punto. Ovvero $(X+W)\cap\mathbb{L}=\{p_{\mathbb{L}}^W(X)\}$, ove $p_{\mathbb{L}}^W:\mathbb{A}(\mathbb{R}^4)\to\mathbb{A}(\mathbb{R}^4)$ indica la proiezione su \mathbb{L} parallelamente a W. Dunque, se $X=O+x_1e_1+x_2e_2+x_3e_3+x_4e_4$, le coordinate di $p_{\mathbb{L}}^W(X)$ sono le soluzioni del sistema

$$\mathbb{L} \cap (X+W) : \begin{cases} X_1 + X_2 = -1 \\ X_3 + X_4 = 1 \\ X_1 + X_4 = x_1 + x_4 \end{cases}; \quad \text{ovvero} \quad \begin{cases} X_1 = -1 + \frac{1}{2}(x_1 - x_2 + x_3 + x_4) \\ X_2 = \frac{1}{2}(-x_1 + x_2 - x_3 - x_4) \\ X_3 = \frac{1}{2}(-x_1 - x_2 + x_3 - x_4) \\ X_4 = 1 + \frac{1}{2}(x_1 + x_2 - x_3 + x_4) \end{cases}.$$

Possiamo quindi scrivere la matrice nel riferimento canonico, ovvero

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ -1 & 1/2 & -1/2 & 1/2 & 1/2 \\ 0 & -1/2 & 1/2 & -1/2 & -1/2 \\ 0 & -1/2 & -1/2 & 1/2 & -1/2 \\ 1 & 1/2 & 1/2 & -1/2 & 1/2 \end{pmatrix}.$$

(c) Sia $\sigma_{\mathbb{L}}^W: \mathbb{A}(\mathbb{R}^4) \to \mathbb{A}(\mathbb{R}^4)$ la simmetria di asse \mathbb{L} e direzione W. Per ogni punto $X \in \mathbb{A}(\mathbb{R}^4)$, si ha $\sigma_{\mathbb{L}}^W(X) = 2p_{\mathbb{L}}^W(X) - X$. Quindi $S = 2A - \mathbf{1}_5$, ovvero

$$S = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ -2 & 0 & -1 & 1 & 1 \\ 0 & -1 & 0 & -1 & -1 \\ 0 & -1 & -1 & 0 & -1 \\ 2 & 1 & 1 & -1 & 0 \end{pmatrix}.$$

(d) Per una simmetria, σ , si ha $\sigma \circ \sigma = id$; quindi $S^2 = \mathbf{1}_5$. Inoltre la composizione tra $\sigma_{\mathbb{L}}^W$ e $\sigma_{\mathbb{M}}^U$ (in qualsiasi ordine) è la simmetria rispetto al punto di intersezione, $\{P\} = \mathbb{L} \cap \mathbb{M}$; ovvero l'omotetia di centro P e rapporto -1. Quindi

$$ST = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 & 0 \\ -3 & 0 & -1 & 0 & 0 \\ -1 & 0 & 0 & -1 & 0 \\ 3 & 0 & 0 & 0 & -1 \end{pmatrix} \qquad \text{e} \qquad T = S(ST) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 3 & 0 & 1 & -1 & -1 \\ -3 & 1 & 0 & 1 & 1 \\ -1 & 1 & 1 & 0 & 1 \\ 1 & -1 & -1 & 1 & 0 \end{pmatrix}.$$

prova di accertamento del 12 marzo 2010

ESERCIZIO 1. Nello spazio euclideo \mathbb{E}^4 , si considerino i punti di coordinate

$$P_1 = \begin{pmatrix} 2 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \quad P_2 = \begin{pmatrix} 2 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \quad e \quad Q_1 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 2 \end{pmatrix}, \quad Q_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 2 \end{pmatrix},$$

nel riferimento canonico.

- (a) Si determinino le equazioni cartesiane delle rette $r = P_1 \vee P_2$ ed $s = Q_1 \vee Q_2$ e se ne discuta la reciproca posizione.
- (b) Si determini, se esiste, un piano, τ , ortogonale ed incidente entrambe le rette e se ne scrivano le equazioni cartesiane.
- (c) Detti $R_1 = r \cap \tau$ ed $S_1 = s \cap \tau$, si calcoli il volume 3-dimensionale del tetraedro di vertici $P_1Q_1R_1S_1$ e la distanza tra le rette r ed s.
- (d) Si scrivano le matrici della proiezione ortogonale, π , e della simmetria ortogonale, σ , rispetto al piano τ . Esiste un sistema di riferimento ortonormale rispetto a cui π e σ hanno matrice (dell'applicazione affine) diagonale? In caso affermativo, come trovarlo?

Svolgimento. (a) Si ha

$$r: \begin{cases} X_1 = 2 \\ X_3 = 1 \\ X_2 - X_4 = 0 \end{cases} \quad \text{ed} \quad s: \begin{cases} X_2 = 1 \\ X_4 = 2 \\ X_1 - X_3 = 0 \end{cases}$$

e si tratta di due rette sghembe (ed ortogonali).

- (b) Le direzioni ortogonali sia ad r che ad s appartengono al sottospazio $T=\langle e_1-e_3,e_2-e_4\rangle$. Quindi τ è l'intersezione dell'iperpiano contenente la retta r e parallelo a T con l'iperpiano contenente la retta s e parallelo a T, ovvero τ : $\left\{ \begin{array}{l} X_1+X_3=3\\ X_2+X_4=3 \end{array} \right.$
- (c) Si ha $R_1 = \begin{pmatrix} 2\\3/2\\1\\3/2 \end{pmatrix}$ ed $S_1 = \begin{pmatrix} 3/2\\1\\3/2\\2 \end{pmatrix}$. Detta W la matrice (4×3) che ha come colonne le coordinate dei

vettori $Q_1 - P_1$, $R_1 - P_1$, $S_1 - P_1$ nel riferimento canonico, il volume cercato è $V = \frac{1}{6}\sqrt{\det tWW} = \frac{3}{4}$. La distanza tra le due rette è la distanza tra R_1 ed S_1 ed è uguale ad 1.

(d) La matrice della proiezione ortogonale di \mathbb{R}^4 sul sottospazio T si ottiene come Q^tQ , ove Q è la matrice che ha come colonne le coordinate dei vettori di una base ortonormale di T, ovvero, indicata con j l'inclusione $j:T\to\mathbb{R}^4$, e con $T=\{t_1,t_2\}$ la base ortonormale di T, $t_1=\frac{e_1-e_3}{\|e_1-e_3\|}$, e $t_2=\frac{e_2-e_4}{\|e_2-e_4\|}$, si ha

$$Q = \alpha_{\mathcal{T}, \mathcal{E}}(j) = \begin{pmatrix} 1/\sqrt{2} & 0\\ 0 & 1/\sqrt{2}\\ -1/\sqrt{2} & 0\\ 0 & -1/\sqrt{2} \end{pmatrix} \quad \text{ed} \quad R = \alpha_{\mathcal{E}, \mathcal{E}}(\pi_T) = Q^t Q = \begin{pmatrix} 1/2 & 0 & -1/2 & 0\\ 0 & 1/2 & 0 & -1/2\\ -1/2 & 0 & 1/2 & 0\\ 0 & -1/2 & 0 & 1/2 \end{pmatrix}$$

Il vettore traslazione è $t_0 = (R - O) - \pi_T(R - O)$, ove R è un qualunque punto di τ e quindi le due matrici cercate sono

$$P = \alpha_{\mathcal{E},\mathcal{E}}(\pi) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 3/2 & 1/2 & 0 & -1/2 & 0 \\ 3/2 & 0 & 1/2 & 0 & -1/2 \\ 3/2 & -1/2 & 0 & 1/2 & 0 \\ 3/2 & 0 & -1/2 & 0 & 1/2 \end{pmatrix} \qquad \text{e} \qquad S = \alpha_{\mathcal{E},\mathcal{E}}(\sigma) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 3 & 0 & 0 & -1 & 0 \\ 3 & 0 & 0 & 0 & -1 \\ 3 & -1 & 0 & 0 & 0 \\ 3 & 0 & -1 & 0 & 0 \end{pmatrix}$$

ove si è indicato con \mathcal{E} il riferimento canonico in \mathbb{E}^4 .

Le proiezioni e le simmetrie ortogonali sono endomorfismi simmetrici negli spazi vettoriali e quindi, per il Teorema Spettrale, esiste una base ortonormale di autovettori (nel caso presente basta unire una base ortonormale di T ad una di T^{\perp}). Per avere un riferimento affine che diagonalizzi le due applicazioni, basta porre l'origine in un qualunque punto di τ e prendere la base ortonormale detta per i vettori. Indicato con U un tale riferimento, possiamo scrivere

$$X = \alpha_{\mathcal{U},\mathcal{E}}(id) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0\\ 3 & 1/\sqrt{2} & 0 & 1/\sqrt{2} & 0\\ 3 & 0 & 1/\sqrt{2} & 0 & 1/\sqrt{2}\\ 0 & -1/\sqrt{2} & 0 & 1/\sqrt{2} & 0\\ 0 & 0 & -1/\sqrt{2} & 0 & 1/\sqrt{2} \end{pmatrix}$$

e le matrici $X^{-1}PX$ ed $X^{-1}SX$ sono diagonali.

ESERCIZIO 2. nello spazio euclideo \mathbb{E}^3 si considerino le rette

$$r_1: \left\{ \begin{array}{l} 2X_1 - X_3 = 0 \\ 2X_2 - X_3 = 2 \end{array} \right. \quad ed \quad r_2: \left\{ \begin{array}{l} X_1 + X_3 = 1 \\ X_1 - X_2 = 0 \end{array} \right.$$

- (a) Si calcolino la distanza e l'angolo tra le rette r_1 ed r_2 .
- (b) Si scriva la matrice (nel riferimento canonico) della riflessione, $\rho_1:\mathbb{E}^3\to\mathbb{E}^3$, rispetto alla retta r_1 (rotazione di asse r_1 ed angolo π).
- (c) Si scriva la matrice (nel riferimento canonico) della riflessione, $\rho_2: \mathbb{E}^3 \to \mathbb{E}^3$, rispetto alla retta r_2 (rotazione di asse r_2 ed angolo π).
- (d) Si classifichi l'isometria $\rho_1 \circ \rho_2$ e si determinino eventuali punti o rette unite. Si dia una condizione sulla distanza e l'angolo tra le due rette affinché l'applicazione composta sia una rotazione (quale asse e quale angolo?).

Svolgimento. (a) La retta r_1 passa per il punto $R_1 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ ed è parallela al vettore $v_1 = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$. La retta r_2 passa per il punto $R_2=\begin{pmatrix}0\\0\\1\end{pmatrix}$ ed è parallela al vettore $v_2=\begin{pmatrix}1\\1\\-1\end{pmatrix}$. Le due rette sono perpendicolari, essendo $v_1\cdot v_2=0$, e la loro distanza è uguale a $\delta=\frac{|(R_2-R_1)\cdot v_1\times v_2|}{\|v_1\times v_2\|}=\frac{1}{\sqrt{2}}$.

- $(b) \text{ La matrice è } S_1 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -1/3 & -2/3 & 1/3 & 2/3 \\ 5/3 & 1/3 & -2/3 & 2/3 \\ -2/3 & 2/3 & 2/3 & 1/3 \end{pmatrix}.$ $(c) \text{ La matrice è } S_2 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 2/3 & -1/3 & 2/3 & -2/3 \\ 2/3 & 2/3 & -1/3 & -2/3 \\ 4/3 & -2/3 & -2/3 & -1/3 \end{pmatrix}.$
- (d) L'applicazione composta ha matrice

$$S_1 S_2 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1/3 & 0 & -1 & 0 \\ 7/3 & -1 & 0 & 0 \\ 2/3 & 0 & 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 4/3 & 0 & -1 & 0 \\ 4/3 & -1 & 0 & 0 \\ 2/3 & 0 & 0 & -1 \end{pmatrix}.$$

Si tratta di una rototraslazione, di asse la retta, s, ortogonale ad r_1 ed r_2 , ed incidente entrambe; l'angolo di rotazione è uguale a π ed è seguito da una traslazione parallela all'asse, di vettore $\begin{pmatrix} -1\\1\\2\end{pmatrix}$. Non vi sono punti uniti e l'unica retta (globalmente) unita è l'asse di rotazione, s.

La lunghezza del vettore traslazione è il doppio della distanza tra le due rette e quindi si ha una rotazione se, e solo se, le due rette sono incidenti. L'asse di rotazione è sempre la retta, s, ortogonale ad r_1 ed r_2 , ed incidente entrambe; l'angolo di rotazione dipende dall'angolo tra le due rette (in che modo?).

prova scritta del 16 marzo 2010

ESERCIZIO 1. Si consideri l'endomorfismo $\phi: \mathbb{Q}^5 \to \mathbb{Q}^5$ di matrice

$$A = \begin{pmatrix} -3 & 0 & 0 & -2 & 0 \\ 0 & 2 & 0 & 0 & 3 \\ 0 & 0 & -1 & 0 & 2 \\ 2 & 0 & 0 & 1 & 0 \\ 0 & -3 & 0 & 0 & -4 \end{pmatrix}$$

rispetto alla base canonica.

- (a) Si determini il polinomio caratteristico di ϕ . Si determinino le molteplicità e le nullità degli autovalori di ϕ .
- (b) Si determini il polinomio minimo di ϕ ed il massimo periodo di un autovettore generalizzato per ciascun autovalore di ϕ .
- (c) Si determini una matrice di Jordan, J, per ϕ ed una matrice invertibile, P, tale che $P^{-1}AP = J$.
- (d) Esistono matrici in $M_5(\mathbb{Q})$ che abbiano lo stesso polinomio minimo di A e che non siano simili ad A? Si determinino, a meno di simiglianza, tutte le matrici di $M_7(\mathbb{Q})$ che abbiano lo stesso polinomio minimo di ϕ e si scrivano per ciascuna di esse le dimensioni dei sottospazi di autovettori generalizzati.

Svolgimento. (a) Il polinomio caratteristico è $p_{\phi}(X) = (X+1)^5$ ed il rango di A+1 è uguale a 3; quindi vi è il solo autovalore -1 con molteplicità 5 e nullità 2.

(b) Si ha

Quindi il polinomio minimo di ϕ è $\lambda_{\phi}(X) = (X+1)^3$ e dunque 3 è il massimo periodo per un autovettore generalizzato.

(c) Una base rispetto a cui ϕ ha matrice di Jordan è $\mathcal{V} = \{v_1, \dots, v_5\}$, ove $v_1 = (\phi + 1)(v_2) = 2e_1 + 2e_4$, $v_2 = e_1, v_3 = (\phi + 1)^2(v_5) = -6e_3, v_4 = (\phi + 1)(v_5) = 3e_2 - 3e_5, v_5 = e_2$. Le matrici cercate sono quindi

$$J = \alpha_{\mathcal{V}, \mathcal{V}}(\phi) = \begin{pmatrix} -1 & 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 0 & -1 \end{pmatrix} \qquad \text{e} \qquad P = \alpha_{\mathcal{V}, \mathcal{E}}(id) = \begin{pmatrix} -2 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 1 \\ 0 & 0 & -6 & 0 & 0 \\ 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -3 & 0 \end{pmatrix}.$$

(d) Ogni matrice di Jordan in $M_5(\mathbb{Q})$ che abbia lo stesso polinomio minimo di A deve contenere un blocco

di ordine 3. La matrice $J' = \alpha_{\mathcal{V},\mathcal{V}}(\phi) = \begin{pmatrix} -1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 0 & -1 \end{pmatrix}$ ha lo stesso polinomio minimo, ma non è simile

a J (ad esempio perché dim $\ker(J'+1) > \dim \ker(\phi+1)$).

Vi sono 4 matrici di Jordan in $M_7(\mathbb{Q})$ che abbiano polinomio minimo $(X+1)^3$ e rappresentano ciascuna una distinta classe di simiglianza. Le matrici sono

Le corrispondenti sequenze (dim $\ker(\phi+1)$, dim $\ker(\phi+1)^2$, dim $\ker(\phi+1)^3$), sono (5,6,7), (4,6,7), (3,6,7), (3,5,7).

ESERCIZIO 2. In \mathbb{E}^3 con sistema di riferimento canonico (O,\mathcal{E}) sia σ la rotazione intorno all'asse delle $y, O + \langle e_2 \rangle$ (orientato dal vettore e_2) e di angolo orientato $\pi/3$; sia $\rho = \rho_p$ la riflessione rispetto al piano p: x + y + z = 3.

- (a) Determinare le equazioni (o la matrice) nel riferimento canonico, (O, \mathcal{E}) , delle isometrie ρ , σ , $e f = \rho \circ \sigma$.
- (b) Trovare un punto fisso di f.
- (c) Verificare che f una riflessione rotatoria (roto-riflessione).
- (d) Sia φ la riflessione rispetto al piano di equazione y=0, determinare le equazioni e tutti i piani uniti dell'isometria $g = \sigma^2 \circ \varphi \circ \sigma$.

Svolgimento. (a) La base $\mathcal{V} = \{v_1, \dots, v_3\}$ con $v_1 = e_3, v_2 = e_1, v_3 = e_2$ è una base ortonormale equirientata $\operatorname{con} \mathcal{E} = \{e_1, \dots, e_3\}$. Indicando $\operatorname{con} \mathcal{V}$ il sistema di riferimento (O, \mathcal{V}) , e $\operatorname{con} \mathcal{E}$ il riferimento canonico, (O, \mathcal{E}) , la rotazione σ ha matrici

$$\alpha_{\mathcal{V},\mathcal{V}}(\sigma) = \begin{pmatrix} 1 & 0 & 0 & 0\\ 0 \cos(\pi/3) & -\sin(\pi/3) & 0\\ 0 & \sin(\pi/3) & \cos(\pi/3) & 0\\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad e \qquad \alpha_{\mathcal{E},\mathcal{E}}(\sigma) = \begin{pmatrix} 1 & 0 & 0 & 0\\ 0 & 1/2 & 0 & \frac{\sqrt{3}}{2}\\ 0 & 0 & 1 & 0\\ 0 & -\sqrt{3}/2 & 0 & 1/2 \end{pmatrix}.$$

Per scrivere le equazioni di ρ , osserviamo che $\vec{n} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ è un vettore normale al piano **p**. Quindi se il punto

P ha coordinate $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$, allora $\rho(P) = \begin{pmatrix} x \\ y \\ z \end{pmatrix} + 2t \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, dove $t \in \mathbb{R}$ è tale che $\begin{pmatrix} x \\ y \\ z \end{pmatrix} + t \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \in \mathbf{p}$. Dall'equazione del piano si ricava t = 1 - (x + y + z)/3, quindi ρ ha equazioni

$$\rho\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2+x/3-2y/3-2z/3 \\ 2-2x/3+y/3-2z/3 \\ 2-2x/3-2y/3+z/3 \end{pmatrix} \qquad \text{e quindi matrice} \qquad \alpha_{\mathcal{E},\mathcal{E}}(\rho) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 2 & 1/3 & -2/3 & -2/3 \\ 2 & -2/3 & 1/3 & -2/3 \\ 2 & -2/3 & -2/3 & 1/3 \end{pmatrix}.$$

Moltiplicando le due matrici otteniamo la matrice di $f = \rho \circ \sigma$:

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 2 & (1/3)\sqrt{3} + 1/6 & -2/3 & (1/6)\sqrt{3} - 1/3 \\ 2 & (1/3)\sqrt{3} - 1/3 & 1/3 & -(1/3)\sqrt{3} - 1/3 \\ 2 & -(1/6)\sqrt{3} - 1/3 & -2/3 & -(1/3)\sqrt{3} + 1/6 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 6 & 0 & 0 & 0 \\ 12 & 2\sqrt{3} + 1 & -4 & \sqrt{3} - 2 \\ 12 & 2\sqrt{3} - 2 & 2 & -2\sqrt{3} - 2 \\ 12 & 2\sqrt{3} - 2 & 4 & -2\sqrt{3} + 1 \end{pmatrix}$$

- (b) L'isometria f ha almeno un punto fisso, che è l'intersezione dell'asse di rotazione (i cui punti sono fissi per la rotazione σ) col piano di riflessione (i cui punti sono fissi per la riflessione ρ), cioè il punto (0,3,0).
- (c) Poiché è la composizione di una rotazione con una riflessione, f è un'isometria inversa, con almeno un punto fisso, quindi è una riflessione (con un piano di punti fissi) o una riflessione rotatoria (con un solo punto fisso).

Se chiamiamo A la matrice dell'applicazione lineare associata a f, e b la colonna $b = \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix}$, i punti fissi

hanno coordinate $p = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ con Ap + b = p, quindi risolvono il sistema $(A - \mathbf{1})p = -b$. Poiché la matrice

$$A - \mathbf{1} = \frac{1}{6} \begin{pmatrix} 2\sqrt{3} - 5 & -4 & \sqrt{3} - 2\\ 2\sqrt{3} - 2 & -4 & -2\sqrt{3} - 2\\ -\sqrt{3} - 2 & -4 & -2\sqrt{3} - 5 \end{pmatrix}$$

chiaramente non ha rango 1, non ci puo' essere un piano di punti fissi, quindi f è una riflessione rotatoria.

(d) Poiché le matrici di φ e σ sono

$$\alpha_{\mathcal{E},\mathcal{E}}(\varphi) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad e \qquad \alpha_{\mathcal{E},\mathcal{E}}(\sigma) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1/2 & 0 & \frac{\sqrt{3}}{2} \\ 0 & 0 & 1 & 0 \\ 0 & -\sqrt{3}/2 & 0 & 1/2 \end{pmatrix},$$

vediamo che $\varphi \circ \sigma = \sigma \circ \varphi$, quindi $g = \sigma^2 \circ \varphi \circ \sigma = \varphi \circ \sigma^3$ dove σ^3 è la rotazione di angolo π intorno all'asse delle g. La matrice di σ^3 è $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$ e quindi la matrice di g è

$$B = \alpha_{\mathcal{E}, \mathcal{E}}(g) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}.$$

Calcolando gli autovettori della matrice tB , si ottiene che i piani uniti sono tutti e soli quelli con equazione Ax + By + Cz = 0, con A, B, C costanti reali. Questi sono quindi tutti e soli i piani passanti per il punto O = (0,0,0).

prova scritta del 29 marzo 2010

ESERCIZIO 1. Si consideri l'endomorfismo $\phi: \mathbb{Q}^5 \to \mathbb{Q}^5$ di matrice

$$A = \begin{pmatrix} 3 & 0 & 0 & -4 & 2 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 10 & -3 & 0 & -5 \\ 1 & 0 & 0 & -2 & 2 \\ 0 & -4 & 2 & 0 & 4 \end{pmatrix}$$

rispetto alla base canonica.

- (a) Si determini il polinomio caratteristico di φ. Si determinino le molteplicità e le nullità degli autovalori di φ.
- (b) Si determini il polinomio minimo di ϕ ed il massimo periodo di un autovettore generalizzato per ciascun autovalore di ϕ .
- (c) Si determini una matrice di Jordan, J, per ϕ ed una matrice invertibile, P, tale che $P^{-1}AP = J$.
- (d) Si scriva la matrice, C, compagna del polinomio caratteristico di ϕ . È vero che C è simile ad A? (giustificare la risposta)

Svolgimento. (a) Il polinomio caratteristico è $p_{\phi}(X) = (X+1)^3(X-2)^2$. Il rango di A+1 è uguale a 4, mentre il rango di A-2 è uguale a 3; quindi ϕ ha i due autovalori, -1 e 2, con molteplicità 3 e 2 e nullità 1 e 2, rispettivamente.

(b) Si ha

$$A + \mathbf{1} = \begin{pmatrix} 4 & 0 & 0 & -4 & 2 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 10 & -2 & 0 & -5 \\ 1 & 0 & 0 & -1 & 2 \\ 0 & -4 & 2 & 0 & 5 \end{pmatrix}, \qquad (A + \mathbf{1})^2 = \begin{pmatrix} 12 - 8 & 4 & -12 & 10 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -6 & 0 & -15 \\ 3 & -8 & 4 & -3 & 10 \\ 0 & 0 & 6 & 0 & 15 \end{pmatrix}, \qquad (A + \mathbf{1})^3 = \begin{pmatrix} 36 & 0 & 12 & -36 & 30 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -18 & 0 & -45 \\ 9 & 0 & 12 & -9 & 30 \\ 0 & 0 & 18 & 0 & 45 \end{pmatrix}$$

е

$$A - \mathbf{2} = \begin{pmatrix} 1 & 0 & 0 & -4 & 2 \\ 0 & -3 & 0 & 0 & 0 \\ 0 & 10 & -5 & 0 & -5 \\ 1 & 0 & 0 & -4 & 2 \\ 0 & -4 & 2 & 0 & 2 \end{pmatrix}.$$

Quindi il polinomio minimo di ϕ è $\lambda_{\phi}(X) = (X+1)^3(X-2)$ e dunque 3 è il massimo periodo per un autovettore generalizzato relativo all'autovalore -1, mentre tutti gli autovettori generalizzati (non nulli) relativi all'autovalore 2 han periodo 1, ovvero sono autovettori.

(c) Una base rispetto a cui ϕ ha matrice di Jordan è $\mathcal{V} = \{v_1, \dots, v_5\}$, ove $v_1 = 4e_1 + e_4$, $v_2 = 2e_1 - 3e_3 + 2e_4 + 3e_5$, $v_3 = (\phi + 1)^2(v_5) = -8e_1 - 8e_4$, $v_4 = (\phi + 1)(v_5) = 10e_3 - 4e_5$, $v_5 = e_2$. Le matrici cercate sono quindi

$$J = \alpha_{\mathcal{V}, \mathcal{V}}(\phi) = \begin{pmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 0 & -1 \end{pmatrix} \qquad \text{e} \qquad P = \alpha_{\mathcal{V}, \mathcal{E}}(id) = \begin{pmatrix} 4 & 2 & -8 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & -3 & 0 & 10 & 0 \\ 1 & 2 & -8 & 0 & 0 \\ 0 & 3 & 0 & -4 & 0 \end{pmatrix}.$$

(d) La matrice compagna del polinomio caratteristico di ϕ è

$$C = \begin{pmatrix} 0 & 0 & 0 & 0 & -4 \\ 1 & 0 & 0 & 0 & -8 \\ 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & 5 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix}$$

che ha polinomio minimo uguale al polinomio caratteristico, $p_{\phi}(X)$. Quindi C non è simile ad A, perché le due matrici non hanno lo stesso polinomio minimo.

ESERCIZIO 2. In $\mathbb{E}^3(\mathbb{R})$ con sistema di riferimento canonico, (O, \mathcal{E}) , si consideri il punto $P = O + e_2 + e_3$. Sia ρ la rotazione intorno all'asse $r = P + \langle e_1 \rangle$ (orientato dal vettore e_1), di angolo orientato $\pi/6$; e sia σ la riflessione rispetto al piano $\mathbf{p} = P + \langle e_1 - e_2, e_1 + e_2 \rangle$.

- (a) Determinare le matrici (o le equazioni) nel sistema di riferimento (O, \mathcal{E}) delle isometrie ρ , σ , e $f = \sigma \circ \rho$.
- (b) Che tipo di isometria è f? Descrivere le caratteristiche di f (se è composizione di riflessioni traslazioni e rotazioni, determinare le equazioni del piano di riflessione, dell'asse di rotazione e l'angolo di rotazione, il vettore di traslazione).
- (c) Sia τ la traslazione di vettore $e_1 e_3$. Che tipo di isometria $g = \sigma \circ \tau \circ \rho \circ \sigma$? Descrivere le caratteristiche di g. Che dire dei piani uniti di g?
- (d) Si discutano rette piani e punti uniti di ρ pensata come trasformazione dello spazio hermitiano.

Svolgimento. (a) La rotazione ρ e la simmetria σ hanno matrici

$$\alpha_{\mathcal{E},\mathcal{E}}(\rho) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ \frac{3-\sqrt{3}}{2} & 0 & \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1-\sqrt{3}}{2} & 0 & \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix} \qquad \alpha_{\mathcal{E},\mathcal{E}}(\sigma) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 2 & 0 & 0 & -1 \end{pmatrix}, \quad \text{quindi} \quad \alpha_{\mathcal{E},\mathcal{E}}(f) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ \frac{3-\sqrt{3}}{2} & 0 & \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{3+\sqrt{3}}{2} & 0 & -\frac{1}{2} & -\frac{\sqrt{3}}{2} \end{pmatrix}.$$

- (b) L'isometria f è una riflessione rispetto al piano $P + \langle e_1, e_2 + (\sqrt{3} 2)e_3 \rangle$, di equazione $Y + (\sqrt{3} + 2)Z = \sqrt{3} + 3$.
- (c) L'isometria g ha matrice

$$\alpha_{\mathcal{E},\mathcal{E}}(g) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ \frac{1-\sqrt{3}}{2} & 0 & \frac{\sqrt{3}}{2} & \frac{1}{2} \\ \frac{1-3\sqrt{3}}{2} & 0 & -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix}.$$

Si tratta quindi di una rototraslazione. L'asse di rotazione ha equazioni $\left\{ \begin{array}{l} (\sqrt{3}-2)Y+Z=\sqrt{3}-1 \\ Y-(\sqrt{3}-2)Z=1-3\sqrt{3} \end{array} \right.$ L'angolo di rotazione è $-\frac{\pi}{6}$. Non ci sono piani uniti.

(d) Sul corpo complesso la matrice di una rotazione è diagonalizzabile, quindi...

prova scritta del 13 luglio 2010

ESERCIZIO 1. Si consideri l'endomorfismo $\phi: \mathbb{Q}^5 \to \mathbb{Q}^5$ di matrice

$$A = \begin{pmatrix} 2 & 0 & -1 & -2 & 0 \\ -2 & 4 & -2 & -2 & -1 \\ 1 & 0 & 4 & 2 & 0 \\ 0 & 0 & 0 & 3 & 0 \\ -1 & 1 & -1 & -1 & 2 \end{pmatrix}$$

rispetto alla base canonica.

- (a) Si determini il polinomio caratteristico di ϕ . Si determinino molteplicità e nullità degli autovalori di ϕ .
- (b) Si determini il polinomio minimo di ϕ ed il massimo periodo di un autovettore generalizzato per ciascun autovalore di ϕ . Gli autovettori di periodo massimo formano un sottospazio? Qual'è la dimensione del sottospazio generato da questi vettori?
- (c) Si determini una matrice di Jordan, J, per ϕ ed una matrice invertibile, P, tale che $P^{-1}AP = J$.
- (d) È vero che esiste un fascio di iperpiani di \mathbb{Q}^5 su ciascuno dei quali ϕ induce un endomorfismo? In caso affermativo, trovare le equazioni cartesiane degli iperpiani in questione.

Svolgimento. (a) Il polinomio caratteristico è $p_{\phi}(X) = (X-3)^5$. Il rango di A-3 è uguale a 3 e quindi ϕ ha il solo autovalore 3 con molteplicità 5 e nullità 2.

(b) Si ha

Il polinomio minimo di ϕ è $\lambda_{\phi}(X) = (X-3)^3$ e dunque 3 è il massimo periodo per un autovettore generalizzato. Gli autovettori generalizzati di periodo massimo sono il complementare di un sottospazio proprio e quindi non formano un sottospazio, ma generano tutto lo spazio \mathbb{Q}^5 .

(c) Una base rispetto a cui ϕ ha matrice di Jordan è $\mathcal{V} = \{v_1, \dots, v_5\}$, ove $v_1 = (\phi - 3)(v_2) = e_1 - e_3$, $v_2 = e_1 - e_4$, $v_3 = (\phi - 3)^2(v_5) = -e_2 - e_5$, $v_4 = (\phi - 3)(v_5) = -e_1 - 2e_2 + e_3 - e_5$, $v_5 = e_1$. Le matrici cercate sono quindi

$$J = \alpha_{\mathcal{V},\mathcal{V}}(\phi) = \begin{pmatrix} 3 & 1 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 \\ 0 & 0 & 3 & 1 & 0 \\ 0 & 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 0 & 3 \end{pmatrix} \qquad \text{e} \qquad P = \alpha_{\mathcal{V},\mathcal{E}}(id) = \begin{pmatrix} 1 & 1 & 0 & -1 & 1 \\ 0 & 0 & -1 & -2 & 0 \\ -1 & 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & -1 & 0 \end{pmatrix}.$$

(d) Gli iperpiani di \mathbb{Q}^5 sono in corrispondenza con i vettori non nulli dello spazio duale e, in particolare, gli iperpiani uniti corrispondono ai vettori $v^* \neq 0$ del duale, per cui

$$\{x \mid v^* \circ x = 0\} = \{x \mid v^* \circ \phi(x) = 0\}.$$

Ricordando che $v^* \circ \phi(x) = \phi^*(v^*) \circ x$ per ogni $x \in \mathbb{Q}^5$, si conclude che v^* deve essere un autovettore per ϕ^* . Dunque un fascio di iperpiani uniti per ϕ esiste, perché vi è un sottospazio di dimensione 2 di autovettori relativi a ϕ^* . Se consideriamo la base duale, $\mathcal{V}^* = \{v_1^*, \dots, v_5^*\}$, della base rispetto a cui ϕ ha matrice di Jordan, gli iperpiani cercati sono $\{x \in \mathbb{Q}^5 \mid (\lambda v_2^* + \mu v_5^*)^* \circ x = 0\}$, al variare dei parametri omogenei (λ, μ) . Utilizzando la matrice $\alpha_{\mathcal{V}^*,\mathcal{E}^*}(id) = {}^tP^{-1}$, si trovano le equazioni cartesiane $\lambda x_4 + \mu(x_1 + x_3) = 0$.

ESERCIZIO 2. In $\mathbb{E}^3(\mathbb{R})$ con sistema di riferimento canonico, (O, \mathcal{E}) , si consideri l'affinità, $f: E^3(\mathbb{R}) \to \mathbb{E}^3(\mathbb{R})$, di matrice

$$T = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 3\sqrt{3} & 1/2 & 0 & \sqrt{3}/2 \\ 2 & 0 & -1 & 0 \\ 3 & \sqrt{3}/2 & 0 & -1/2 \end{pmatrix}.$$

- (a) f è un'isometria? Che tipo di isometria è f? Descrivere le caratteristiche di f (se è composizione di riflessioni traslazioni e rotazioni, determinare le equazioni del piano di riflessione, dell'asse di rotazione e l'angolo di rotazione, il vettore di traslazione).
- (b) Si consideri la traslazione, τ , che manda f(O) su (O). Si dica che tipo di isometria è $\tau \circ f$.
- (c) Si considerino i punti, ..., $f^{-1}(O)$, O, f(O), $f^{2}(O)$, È vero che questi punti stanno tutti su uno stesso piano? In caso affermativo si scriva l'equazione cartesiana del piano.
- (d) Esistono sistemi di riferimento, diversi da quello canonico, rispetto ai quali la matrice di f è ancora T?

Svolgimento. (a) det T=1 e la trasformazione lineare associata ad f è la rotazione di angolo π ed asse $\langle \sqrt{3}e_1+e_3\rangle$. Il vettore traslazione si decompone come t_1+t_2 , ove $t_1=2e_2$ è perpendicolare all'asse e $t_2=3\sqrt{3}e_1+3e_3$ è parallelo all'asse. Dunque f è una rototraslazione; ottenuta facendo seguire la traslazione di vettore t_2 alla rotazione di angolo π ed asse $h=O+e_2+\langle \sqrt{3}e_1+e_3\rangle$.

- (b) L'isometria $\tau \circ f$ è la rotazione di angolo π ed asse $O + \langle \sqrt{3}e_1 + e_3 \rangle$.
- (c) Tutti i punti stanno nel piano per l'origine, parallelo al sottospazio $\langle t_1, t_2 \rangle$. Quindi il piano ha equazione $X_1 \sqrt{3}X_3 = 0$.
- (d) Ad esempio, se cambio l'origine con il punto $O' = O + t_1$, non cambia la matrice di f...

prova scritta del 13 settembre 2010

ESERCIZIO 1. Si consideri l'endomorfismo $\phi: \mathbb{Q}^5 \to \mathbb{Q}^5$ di matrice

$$A = \begin{pmatrix} -5 & 0 & 0 & 0 & 2\\ 0 & 2 & 0 & 0 & 0\\ -1 & 1 & 6 & 9 & 2\\ 1 & 0 & -4 & -7 & -2\\ -7 & 0 & 0 & 0 & 4 \end{pmatrix}$$

rispetto alla base canonica.

- (a) Si determini il polinomio caratteristico di ϕ . Si determinino molteplicità e nullità degli autovalori di ϕ .
- (b) Si determini il polinomio minimo di ϕ ed il massimo periodo di un autovettore generalizzato per ciascun autovalore di ϕ . Gli autovettori generalizzati di periodo massimo formano un sottospazio? Qual'è la dimensione del sottospazio generato da questi vettori?
- (c) Si determini una matrice di Jordan, J, per ϕ ed una matrice invertibile, P, tale che $P^{-1}AP = J$.
- (d) È vero che per ogni polinomio di grado positivo, $P(X) \in \mathbb{R}[X]$, esiste una matrice $A \in M_2(\mathbb{R})$ tale che P(A) = 0? Giustificare la risposta e, in caso positivo, spiegare come si possa determinare la matrice.

Svolgimento. (a) Il polinomio caratteristico è $p_{\phi}(X) = (X-2)^3(X+3)^2$. Il rango di A-2 è uguale a 3 e il rango di A+3 è uguale a 4 quindi ϕ ha l'autovalore 2 con molteplicità 3 e nullità 2 e l'autovalore -3 con molteplicità 2 e nullità 1.

(b) Si ha

$$A+3\mathbf{1} = \begin{pmatrix} -2 & 0 & 0 & 0 & 2 \\ 0 & 5 & 0 & 0 & 0 \\ -1 & 1 & 9 & 9 & 2 \\ 1 & 0 & -4 & -4 & -2 \\ -7 & 0 & 0 & 0 & 7 \end{pmatrix}, \qquad A-2\mathbf{1} = \begin{pmatrix} -7 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 \\ -1 & 1 & 4 & 9 & 2 \\ 1 & 0 & -4 & -9 & -2 \\ -7 & 0 & 0 & 0 & 2 \end{pmatrix}, \qquad (A-2\mathbf{1})^2 = \begin{pmatrix} 35 & 0 & 0 & 0 & -10 \\ 0 & 0 & 0 & 0 & 0 \\ -2 & 4 & -20 & -45 & -8 \\ 2 & -4 & 20 & 45 & 8 \\ 35 & 0 & 0 & 0 & -10 \end{pmatrix}.$$

Il polinomio minimo di ϕ è $\lambda_{\phi}(X) = (X-2)^2(X+3)^2$ e dunque 2 è il massimo periodo per un autovettore generalizzato relativo ad uno qualsiasi degli autovalori. Gli autovettori generalizzati di periodo massimo non formano un sottospazio, ma generano tutto lo spazio \mathbb{Q}^5 (perché?).

(c) Per determinare una base rispetto a cui ϕ ha matrice di Jordan può essere utile ricordare che im $(\phi-2)^2=\ker(\phi+3)^2$. La base cercata è $\mathcal{V}=\{v_1,\ldots,v_5\}$, ove $v_1=2e_1-3e_3+7e_5$, $v_2=(\phi-2)(v_3)=9e_3-4e_4$, $v_3=5e_2+e_3$, $v_4=(\phi+3)(v_5)=e_3-e_4$, $v_5=e_1+e_5$. Le matrici cercate sono quindi

$$J = \alpha_{\mathcal{V},\mathcal{V}}(\phi) = \begin{pmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & -3 & 1 \\ 0 & 0 & 0 & 0 & -3 \end{pmatrix} \qquad \text{e} \qquad P = \alpha_{\mathcal{V},\mathcal{E}}(id) = \begin{pmatrix} 2 & 0 & 0 & 0 & 1 \\ 0 & 0 & 5 & 0 & 0 \\ -3 & 9 & 1 & 1 & 0 \\ 0 & -4 & 0 - 1 & 0 \\ 7 & 0 & 0 & 0 & 1 \end{pmatrix}.$$

(d) Ogni polinomio di grado 1 in $\mathbb{R}^{[X]}$ si annulla in un opportuna matrice scalare. Ogni polinomio di grado maggiore o uguale a 2 è divisibile per un polinomio di grado 2, Q(X). La matrice compagna, C, di Q(X) sta in $M_2(\mathbb{R})$ e Q(C) = 0 (ad esempio, per il Teorema di Hamilton-Cayley).

ESERCIZIO 2. In $\mathbb{E}^3(\mathbb{R})$ con sistema di riferimento canonico, (O, \mathcal{E}) , si consideri l'affinità, $f: E^3(\mathbb{R}) \to \mathbb{E}^3(\mathbb{R})$, di matrice

$$T = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1/2 & 0 & -\sqrt{3}/2 \\ 2 & 0 & 1 & 0 \\ \sqrt{3} & -\sqrt{3}/2 & 0 & -1/2 \end{pmatrix}.$$

- (a) f è un'isometria? Che tipo di isometria è f? Descrivere le caratteristiche di f (se è composizione di riflessioni traslazioni e rotazioni, determinare le equazioni del piano di riflessione, dell'asse di rotazione e l'angolo di rotazione, il vettore di traslazione).
- (b) Si consideri la traslazione, τ , che manda f(O) su (O). Si dica che tipo di isometria è $\tau \circ f$.
- (c) Si determinino tutte le sottovarietà lineari \mathbb{L} di $\mathbb{E}^3(\mathbb{R})$ tali che $f(\mathbb{L}) \subseteq \mathbb{L}$.
- (d) Esistono sistemi di riferimento, diversi da quello canonico, rispetto ai quali la matrice di f è ancora T?

Svolgimento. (a) det T=-1 e la trasformazione lineare associata ad f è la riflessione rispetto al sottospazio $\langle n_0 \rangle^{\perp}$, dove $n_0 = \frac{1}{2}e_1 + \frac{\sqrt{3}}{2}e_3$. Il vettore traslazione si decompone come $t_1 + t_2$, ove $t_1 = 2e_2$ è perpendicolare ad n_0 e $t_2 = 2n_0$. Dunque f è una glissoriflessione; ottenuta facendo seguire la traslazione di vettore t_1 alla riflessione rispetto al piano $\pi = O + n_0 + \langle n_0 \rangle^{\perp}$, di equazione $\pi : x + \sqrt{3}z = 2$.

- (b) L'isometria $\tau \circ f$ è la riflessione rispetto al piano $x + \sqrt{3}z = 0$.
- (c) A parte il vuoto e tutto lo spazio che sono lasciate invariate da ogni affinità, non vi sono punti uniti per f (come in ogni glissoriflessione). Il piano $\pi: x+\sqrt{3}z=2$ resta unito così come i piani del fascio parallelo al sottospazio $\langle e_2, n_0 \rangle$. Sono unite le rette del piano π , parallele al vettore e_2 , ovvero le rette di equazioni $r_k: \begin{cases} x+\sqrt{3}z=2\\ \sqrt{3}x-z=k \end{cases}$, al variare di $k\in\mathbb{R}$.
- (d) Ad esempio, se cambio l'origine con il punto $O'=O+e_2$, non cambia la matrice di f...

prova scritta del 20 settembre 2010

ESERCIZIO 1. Si consideri l'endomorfismo $\phi: \mathbb{Q}^5 \to \mathbb{Q}^5$ di matrice

$$A = \begin{pmatrix} 4 & 0 & -1 & 3 & 0 \\ 0 & 3 & 0 & 0 & 2 \\ 1 & 0 & 6 & -3 & 0 \\ 0 & 1 & 0 & 5 & 1 \\ 0 & -2 & 0 & 0 & 7 \end{pmatrix}$$

rispetto alla base canonica.

- (a) Si determini il polinomio caratteristico di ϕ . Si determinino molteplicità e nullità degli autovalori di ϕ .
- (b) Si determini il polinomio minimo di ϕ ed il massimo periodo di un autovettore generalizzato per ciascun autovalore di ϕ . Si determini, se esiste, una base di V fatta di autovettori generalizzati di periodo massimo.
- (c) Si determini una matrice di Jordan, J, per ϕ ed una matrice invertibile, P, tale che $P^{-1}AP = J$.
- (d) Qual è la massima potenza di 5 che divide ogni entrata della matrice J^{25} ? Dato un primo p > 5, qual è la massima potenza di p che divide tutte le entrate di J^{p^2} poste al di fuori della diagonale principale?

Svolgimento. (a) Il polinomio caratteristico è $p_{\phi}(X) = (X-5)^5$. Il rango di A-5 è uguale a 3 e quindi ϕ ha l'autovalore 5 con molteplicità 5 e nullità 2.

(b) Si ha

e $(A-5\mathbf{1})^4=\mathbf{0}$. Il polinomio minimo di ϕ è $\lambda_{\phi}(X)=(X-5)^4$ e dunque 4 è il massimo periodo per un autovettore generalizzato. Si può prendere la base $\{e_1+e_2,e_2,e_2+e_3,e_2+e_4,e_5\}$.

(c) La base cercata è $\mathcal{V} = \{v_1, \dots, v_5\}$, ove $v_1 = 3e_1 + e_4$, $v_2 = (\phi - 5)^3(v_5) = 12e_1 - 12e_3$, $v_3 = (\phi - 5)^2(v_5) = 3e_1 - 3e_3 + 4e_4$, $v_4 = (\phi - 5)(v_5) = 2e_2 + e_4 + 2e_4$, $v_5 = e_5$. Le matrici cercate sono quindi

$$J = \alpha_{\mathcal{V}, \mathcal{V}}(\phi) = \begin{pmatrix} 5 & 0 & 0 & 0 & 0 \\ 0 & 5 & 1 & 0 & 0 \\ 0 & 0 & 5 & 1 & 0 \\ 0 & 0 & 0 & 5 & 1 \\ 0 & 0 & 0 & 0 & 5 \end{pmatrix} \qquad \text{e} \qquad P = \alpha_{\mathcal{V}, \mathcal{E}}(id) = \begin{pmatrix} 3 & 12 & 3 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & -12 & -3 & 0 & 0 \\ 1 & 0 & 4 & 1 & 0 \\ 0 & 0 & 0 & 2 & 1 \end{pmatrix}.$$

(d) $J = 5\mathbf{1}_5 + N$ con $N^4 = \mathbf{0}$. Allora, per ogni intero positivo, k, dalla formula del binomio di Newton, si ricava

$$J^{k} = 5^{k} \mathbf{1}_{5} + k 5^{k-1} N + {k \choose 2} 5^{k-2} N^{2} + {k \choose 3} 5^{k-3} N^{3},$$

da cui si deduce che 5^{24} divide tutte le entrate di J^{25} e che p^2 è la massima potenza di p che divida tutte le entrate di J^{p^2} poste al di fuori della diagonale principale.

ESERCIZIO 2. In $\mathbb{E}^3(\mathbb{R})$ con sistema di riferimento canonico, (O, \mathcal{E}) , si consideri l'affinità, $f: E^3(\mathbb{R}) \to \mathbb{E}^3(\mathbb{R})$, di matrice

$$T = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 2/3 & 1/3 & -2/3 & -2/3 \\ 2/3 & -2/3 & 1/3 & -2/3 \\ 2/3 & -2/3 & -2/3 & 1/3 \end{pmatrix}.$$

- (a) f è un'isometria? Che tipo di isometria è f? Descrivere le caratteristiche di f (se è composizione di riflessioni traslazioni e rotazioni, determinare le equazioni del piano di riflessione, dell'asse di rotazione e l'angolo di rotazione, il vettore di traslazione).
- (b) Si scriva la matrice dell'isometria, g, che si ottiene componendo la riflessione rispetto al piano τ : x-2y+z=1 seguita dalla traslazione di vettore $v_0=3e_2$.
- (c) Si classifichi l'isometria composta $g \circ f$.
- (d) Si classifichi l'isometria composta $f \circ g$.

(b) Il piano $\tau: x-2y+z=1$ passa per il punto $O+p_0$, ove $p_0=\begin{pmatrix}1\\0\\0\end{pmatrix}$, ed è ortogonale al vettore $n_1=e_1-2e_2+e_3$. Quindi la riflessione rispetto a questo piano manda il punto X=O+x nel punto $O+p_0+\left((x-p_0)-2\frac{(x-p_0)\cdot n_1}{n_1\cdot n_1}n_1\right)$. Componendola con la traslazione di vettore $v_0=3e_2$, si ottiene la trasformazione g, di matrice

$$S = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1/3 & 2/3 & 2/3 & -1/3 \\ 7/3 & 2/3 & -1/3 & 2/3 \\ 1/3 & -1/3 & 2/3 & 2/3 \end{pmatrix}.$$

g è una glissoriflessione, ovvero la riflessione rispetto al piano $\tau': x-2y+z=-2$, seguita dalla traslazione parallela al vettore $e_1+e_2+e_3$, parallelo al piano di riflessione.

 $(c) \ g \circ f \ \text{\`e} \ \text{la rotazione di angolo} \ \pi \ \text{ed asse} \ h = O + \frac{1}{2}e_1 + \frac{3}{2}e_2 + \frac{1}{2}e_3 + \langle e_1 - e_3 \rangle, \ \text{di equazione} \ \begin{cases} 2x + 2y + 2z = 5 \\ x - 2y + z = -2 \end{cases}.$

(d)
$$f \circ g$$
 ha matrice $TS = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -1 & 0 & 0 & -1 \\ 1 & 0 & -1 & 0 \\ -1 & -1 & 0 & 0 \end{pmatrix}$. Quindi è la rotazione di angolo π ed asse $h' = O - \frac{1}{2}e_1 + \frac{1}{2}e_2 - \frac{1}{2}e_3 + \langle e_1 - e_3 \rangle$,