prova scritta del 2 dicembre 2011 – Compito A

ESERCIZIO 1. Si consideri il polinomio $P(X) = X^6 + 7X^3 - 8$

- (a) Trovare le radici di P(X) nel campo \mathbb{C} dei numeri complessi.
- (b) Trovare le fattorizzazioni di P(X) in $\mathbb{R}[X]$ e in $\mathbb{C}[X]$.

Svolgimento. (a) $t^2 + 7t - 8$ ha come radici 1 e -8. Dobbiamo trovare le radici cubiche di questi due numeri complessi, che sono ζ , $\bar{\zeta}$, 1, e -2, $-2\bar{\zeta}$, ove $\zeta = -\frac{1}{2} + i\frac{\sqrt{3}}{2} = e^{2\pi i/3}$.

(b) In
$$\mathbb{C}[X]$$
 si ha $P(X) = (X - 1)(X - \zeta)(X - \overline{\zeta})(X + 2)(X + 2\zeta)(X + 2\overline{\zeta})$.
In $\mathbb{R}[X]$ si ha $P(X) = (X - 1)(X + 2)(X^2 + X + 1)(X^2 - 2X + 4)$.

ESERCIZIO 2. Sia $\mathcal{V} = \{v_1, \dots, v_4\}$ una base dello spazio vettoriale V su \mathbb{Q} . Sia $U = \langle u_1, u_2, u_3 \rangle$, ove $u_1 = v_1 - v_3 + 2v_4$, $u_2 = 2v_1 - 3v_2 - 2v_3 - 2v_4$, $u_3 = -v_2 - 2v_4$, e sia W il sottospazio di V definito dal sistema di equazioni omogenee $\begin{cases} 2X_1 - X_2 + 2X_3 - X_4 = 0 \\ 2X_1 - 3X_2 + 6X_3 - X_4 = 0 \end{cases}$

- (a) Si determinino le rispettive dimensioni ed una base per i sottospazi U e W. Si determinino delle equazioni cartesiane per il sottoinsieme di V che si ottiene traslando tutti i vettori di U per il vettore $u_0 = v_1 v_2 v_3$.
- (b) Si determini la matrice $\alpha_{\mathcal{V},\mathcal{V}}(\pi)$ dell'endomorfismo $\pi:V\to V$ che si ottiene proiettando i vettori su U parallelamente a W.
- (c) Sia $\Phi : \operatorname{End}_{\mathbb{Q}}V \to \operatorname{End}_{\mathbb{Q}}V$ definito ponendo $\Phi(\phi) = \pi \circ \phi \phi \circ \pi$. Si determinino le dimensioni e delle basi per nucleo ed immagine di Φ . Si tratta di una proiezione? Si fissi una base opportuna di V e si scrivano le matrici degli elementi delle basi scelte per ker Φ ed im Φ .

Svolgimento. (a) I generatori di U sono linearmente dipendenti: $2u_1 - u_2 + 3u_3 = 0$. Quindi dim U = 2 ed i vettori u_1, u_2 ne formano una base. Il sistema che definisce W ha rango 2, essendo 5I - 3II - 2III = 0; il sottospazio ha quindi dimensione 2 ed una base è data dai vettori $w_1 = v_1 + 2v_4, w_2 = 2v_2 + v_3$. Equazioni cartesiane per il sottospazio U sono $\begin{cases} 2X_1 + 2X_2 - X_4 = 0 \\ 2X_2 - 2X_3 - X_4 = 0 \end{cases}$ da cui si vede che u_0 appartiene ad U e quindi il sottospazio non varia traslando per u_0 .

(b) La matrice cercata è

$$A = \alpha_{\mathcal{V},\mathcal{V}}(\pi) = \frac{1}{4} \begin{pmatrix} 2 & 2 & -4 & -1 \\ -4 & 0 & 0 & 2 \\ -2 & -2 & 4 & 1 \\ -4 & 4 & -8 & 2 \end{pmatrix}.$$

(c) Un omomorfismo, $\phi: V \to V$, appartiene a ker Φ se, e solo se, $\phi(U) \subseteq U$ e $\phi(W) \subseteq W$. Dunque $\ker \Phi \cong \operatorname{Hom}_{\mathbb{Q}}(U,U) \times \operatorname{Hom}_{\mathbb{Q}}(W,W)$ è un sottospazio di dimensione 8. I vettori u_1,u_2,w_1,w_2 sono una base, \mathcal{U} , di $V = U \oplus W$ e gli omomorfismi $\lambda_{i,j}, \lambda'_{i,j}$, per $1 \leq i,j \leq 2$, definiti da

$$\lambda_{i,j}(u_j) = u_i$$
 e $\lambda_{i,j}(x) = 0$ per ogni altro vettore della base \mathcal{U} ; $\lambda'_{i,j}(w_j) = w_i$ e $\lambda'_{i,j}(x) = 0$ per ogni altro vettore della base \mathcal{U} ;

sono una base di $\ker \Phi$.

Un omomorfismo, $\phi: V \to V$, appartiene a im Φ se, e solo se, $\phi(U) \subseteq W$ e $\phi(W) \subseteq U$. Dunque im $\Phi \cong \operatorname{Hom}_{\mathbb{Q}}(U,W) \times \operatorname{Hom}_{\mathbb{Q}}(W,U)$ si conferma essere un sottospazio di dimensione 8 di $\operatorname{End}_{\mathbb{Q}}V$. Gli omomorfismi $\nu_{i,j}, \nu'_{i,j}$, per $1 \leq i,j \leq 2$, definiti da

$$\nu_{i,j}(u_j) = w_i$$
 e $\nu_{i,j}(x) = 0$ per ogni altro vettore della base \mathcal{U} ; $\nu'_{i,j}(w_j) = u_i$ e $\nu'_{i,j}(x) = 0$ per ogni altro vettore della base \mathcal{U} ;

sono una base di im Φ .

 Φ non è una proiezione^(†), perché non induce l'identità su im Φ (ad es. $\Phi(\nu_{i,j}) = -\nu_{i,j}$).

Le matrici nella base \mathcal{U} degli omomorfismi che formano le basi date, costituiscono la base canonica di $M_n(\mathbb{Q})$. Infatti, si ha: $\alpha_{\mathcal{U},\mathcal{U}}(\lambda_{i,j}) = \varepsilon(i,j)$, $\alpha_{\mathcal{U},\mathcal{U}}(\lambda'_{i,j}) = \varepsilon(i+2,j+2)$, $\alpha_{\mathcal{U},\mathcal{U}}(\nu_{i,j}) = \varepsilon(i+2,j)$, $\alpha_{\mathcal{U},\mathcal{U}}(\nu'_{i,j}) = \varepsilon(i,j+2)$, per $1 \leq i,j \leq 2$.

ESERCIZIO 3. Siano V e W spazi vettoriali reali e siano date le rispettive basi $\mathcal{V} = \{v_1, \dots, v_4\}$ e $\mathcal{W} = \{w_1, \dots, w_3\}$. Si considerino gli omomorfismi $\phi : V \to V$ e $\psi : V \to W$ di matrici

$$A = \alpha_{\mathcal{V},\mathcal{V}}(\phi) = \begin{pmatrix} 1 & 2 & -2 & -1 \\ 3 & 0 & 12 & 9 \\ 0 & -1 & 3 & 2 \\ -1 & 2 & -10 & -7 \end{pmatrix} \qquad e \qquad B = \alpha_{\mathcal{V},\mathcal{W}}(\psi) = \begin{pmatrix} 1 & 0 & 4 & 3 \\ 0 & 2 & -6 & -4 \\ -1 & 1 & -7 & -5 \end{pmatrix}.$$

- (a) Si determinino i sottospazi $\ker \phi$, $\operatorname{im} \phi$, $\operatorname{ker} \psi$, $\operatorname{im} \psi$, scrivendo esplicitamente una base ed un sistema di equazioni cartesiane (minimo) per ciascuno di essi.
- (b) Si determinino tutte le applicazioni lineari $\xi: W \to V$ tali che $\phi = \xi \circ \psi$ e per ciascuna di esse si scriva la matrice $\alpha_{W,V}(\xi)$.
- (c) Si determinino tutte le applicazioni lineari $\eta: V \to W$ tali che $\psi = \eta \circ \phi$ e per ciascuna di esse si scriva la matrice $\alpha_{V,W}(\eta)$. È vero che $\eta \circ \xi = \mathrm{id}_W$?

Svolgimento. (a) Si ha

$$\ker \phi = \ker \psi = \langle 2v_1 - v_2 + v_3 - 2v_4, v_1 - v_2 - v_3 + v_4 \rangle,$$

$$\operatorname{im} \phi = \langle v_1 + 3v_2 - v_4, 2v_1 - v_3 + 2v_4 \rangle, \qquad \operatorname{im} \psi = \langle w_1 - w_3, 2w_2 + w_3 \rangle.$$

Le equazioni cartesiane sono

$$\ker \phi : \left\{ \begin{array}{l} X_1 + 2X_2 - 2X_3 + X_4 = 0 \\ X_1 + X_2 + X_3 + X_4 = 0 \end{array} \right., \quad \operatorname{im} \phi : \left\{ \begin{array}{l} 3X_1 - X_2 + 6X_3 = 0 \\ 3X_1 - 2X_2 - 3X_4 = 0 \end{array} \right., \quad \operatorname{im} \psi : 2Y_1 - Y_2 + 2Y_3 = 0.$$

(b) I vettori $\psi(v_1) = w_1 - w_3$, $\psi(v_2) = 2w_2 + w_3$ sono linearmente indipendenti e possiamo aggiungere a questi w_3 per ottenere una base, \mathcal{U} , di W. Le applicazioni cercate^(†) sono tutte e sole le applicazioni lineari, ξ , per cui $\xi(\psi(v_1)) = \phi(v_1)$, $\xi(\psi(v_2)) = \phi(v_2)$, mentre $\xi(w_3)$ può essere assegnato ad arbitrio. Si ha quindi

$$\alpha_{\mathcal{U},\mathcal{V}}(\xi) = \begin{pmatrix} 1 & 2 & a \\ 3 & 0 & b \\ 0 & -1 & c \\ -1 & 2 & d \end{pmatrix}, \qquad \alpha_{\mathcal{W},\mathcal{U}}(\mathrm{id}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1/2 & 0 \\ 1 & -1/2 & 1 \end{pmatrix},$$

da cui

$$\alpha_{\mathcal{W},\mathcal{V}}(\xi) = \alpha_{\mathcal{U},\mathcal{V}}(\xi)\alpha_{\mathcal{W},\mathcal{U}}(\mathrm{id}) = \begin{pmatrix} 1 & 1 & 0 \\ 3 & 0 & 0 \\ 0 & -1/2 & 0 \\ -1 & 1 & 0 \end{pmatrix} + \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} (2, -1, 2),$$

al variare di (a, b, c, d) in \mathbb{R}^4 .

(c) I vettori $\phi(v_1) = v_1 + 3v_2 - v_4$, $\phi(v_2) = 2v_1 - v_3 + 2v_4$ sono linearmente indipendenti e possiamo aggiungere a questi v_3, v_4 per ottenere una base, \mathcal{T} , di V. Le applicazioni cercate sono tutte e sole le

 $^{(\}dagger)~\grave{\rm E}~\Phi^2=\Phi\circ\Phi$ ad essere una proiezione. . .

^(†) Una condizione necessaria per l'esistenza di ξ è ker $\psi \subseteq \ker \phi$ (perché?). Nel caso in questione i due nuclei coincidono e quindi possiamo procedere a determinare le applicazioni cercate.

applicazioni lineari, η , per cui $\eta(\phi(v_1)) = \psi(v_1)$, $\eta(\phi(v_2)) = \psi(v_2)$, mentre $\eta(v_3)$ ed $\eta(v_4)$ possono essere assegnati ad arbitrio. Si ha quindi

$$\alpha_{\mathcal{T},\mathcal{W}}(\eta) = \begin{pmatrix} 1 & 0 & a & d \\ 0 & 2 & b & e \\ -1 & 1 & c & f \end{pmatrix}, \qquad \alpha_{\mathcal{V},\mathcal{T}}(\mathrm{id}) = \begin{pmatrix} 0 & 1/3 & 0 & 0 \\ 1/2 & -1/6 & 0 & 0 \\ 1/2 & -1/6 & 1 & 0 \\ -1 & 2/3 & 0 & 1 \end{pmatrix},$$

da cui

$$\alpha_{\mathcal{V},\mathcal{W}}(\eta) = \alpha_{\mathcal{T},\mathcal{W}}(\eta)\alpha_{\mathcal{V},\mathcal{T}}(\mathrm{id}) = \begin{pmatrix} 0 & 1/3 & 0 & 0 \\ 1 & -1/3 & 0 & 0 \\ 1/2 & -1/2 & 0 & 0 \end{pmatrix} + \begin{pmatrix} a & d \\ b & e \\ c & f \end{pmatrix} \begin{pmatrix} 3 & -1 & 6 & 0 \\ -3 & 2 & 0 & 3 \end{pmatrix},$$

al variare di (a, b, c, d, e, f) in \mathbb{R}^6 .

prova scritta del 2 dicembre 2011

Cognome	N. Matricola	
	Cognome	Cognome N. Matricola

ESERCIZIO 1. Si consideri il polinomio $P(X) = X^6 + 9X^3 + 8$

- (a) Trovare le radici di P(X) nel campo \mathbb{C} dei numeri complessi.
- (b) Trovare le fattorizzazioni di P(X) in $\mathbb{R}[X]$ e in $\mathbb{C}[X]$.

ESERCIZIO 2. Sia $\mathcal{V} = \{v_1, \dots, v_4\}$ una base dello spazio vettoriale V su \mathbb{Q} . Sia $U = \langle u_1, u_2, u_3 \rangle$, ove $u_1 = v_1 - v_2 - 2v_3, \ u_2 = 2v_1 - 2v_2 + 2v_3 + 3v_4, \ u_3 = 2v_3 + v_4, \ \text{e sia } W \ \text{il sottospazio di } V \ \text{definito dal sistema}$ di equazioni omogenee $\begin{cases} 2X_1 + 2X_2 - X_3 - X_4 = 0 \\ 6X_1 + 2X_2 - X_3 - 3X_4 = 0 \\ 2X_1 - 4X_2 + 2X_3 - X_4 = 0 \end{cases}$

- (a) Si determinino le rispettive dimensioni ed una base per i sottospazi U e W. Si determinino delle equazioni cartesiane per il sottoinsieme di V che si ottiene traslando tutti i vettori di U per il vettore $u_0 = v_1 - v_2 + v_4$.
- (b) Si determini la matrice $\alpha_{\mathcal{V},\mathcal{V}}(\pi)$ dell'endomorfismo $\pi:V\to V$ che si ottiene proiettando i vettori su Uparallelamente a W.
- (c) Sia $\Phi: \operatorname{End}_{\mathbb{Q}}V \to \operatorname{End}_{\mathbb{Q}}V$ definito ponendo $\Phi(\phi) = \pi \circ \phi \phi \circ \pi$. Si determinino le dimensioni e delle basi per nucleo ed immagine di Φ . Si tratta di una proiezione? Si fissi una base opportuna di V e si scrivano le matrici degli elementi delle basi scelte per $\ker \Phi$ ed $\operatorname{im} \Phi$.

ESERCIZIO 3. Siano V e W spazi vettoriali reali e siano date le rispettive basi $\mathcal{V} = \{v_1, \dots, v_4\}$ e $\mathcal{W} = \{w_1, \dots, w_3\}$. Si considerino gli omomorfismi $\phi: V \to V \in \psi: V \to W$ di matrici

$$A = \alpha_{\mathcal{V},\mathcal{V}}(\phi) = \begin{pmatrix} 0 & 9 & 3 & 12\\ 2 & -7 & -1 & -10\\ 2 & -1 & 1 & -2\\ -1 & 2 & 0 & 3 \end{pmatrix} \qquad e \qquad B = \alpha_{\mathcal{V},\mathcal{W}}(\psi) = \begin{pmatrix} 2 & -4 & 0 & -6\\ 0 & 3 & 1 & 4\\ 1 & -5 & -1 & -7 \end{pmatrix}.$$

- (a) Si determinino i sottospazi $\ker \phi$, $\operatorname{im} \phi$, $\ker \psi$, $\operatorname{im} \psi$, scrivendo esplicitamente una base ed un sistema di equazioni cartesiane (minimo) per ciascuno di essi.
- (b) Si determinino tutte le applicazioni lineari $\xi:W\to V$ tali che $\phi=\xi\circ\psi$ e per ciascuna di esse si scriva la matrice $\alpha_{W,V}(\xi)$.
- (c) Si determinino tutte le applicazioni lineari $\eta: V \to W$ tali che $\psi = \eta \circ \phi$ e per ciascuna di esse si scriva la matrice $\alpha_{\mathcal{V},\mathcal{W}}(\eta)$. È vero che $\eta \circ \xi = \mathrm{id}_{\mathcal{W}}$?

NON SCRIVERE NELLO SPAZIO SOTTOSTANTE

1	2	3

prova scritta del 2 dicembre 2011

Nome	Cognome	N. Matricola	

ESERCIZIO 1. Si consideri il polinomio $P(X) = X^6 - 7X^3 - 8$

- (a) Trovare le radici di P(X) nel campo \mathbb{C} dei numeri complessi.
- (b) Trovare le fattorizzazioni di P(X) in $\mathbb{R}[X]$ e in $\mathbb{C}[X]$.

ESERCIZIO 2. Sia $V = \{v_1, ..., v_4\}$ una base dello spazio vettoriale V su \mathbb{Q} . Sia $U = \langle u_1, u_2, u_3 \rangle$, ove $u_1 = 2v_2 + v_3 - v_4$, $u_2 = 3v_1 + 2v_2 - 2v_3 + 2v_4$, $u_3 = -v_1 - 2v_2$, e sia W il sottospazio di V definito dal sistema di equazioni omogenee $\begin{cases} X_1 + X_2 - 2X_3 - 2X_4 = 0 \\ 3X_1 + X_2 - 2X_3 - 6X_4 = 0 \end{cases}$

- (a) Si determinino le rispettive dimensioni ed una base per i sottospazi U e W. Si determinino delle equazioni cartesiane per il sottoinsieme di V che si ottiene traslando tutti i vettori di U per il vettore $u_0 = v_1 v_3 + v_4$.
- (b) Si determini la matrice $\alpha_{\mathcal{V},\mathcal{V}}(\pi)$ dell'endomorfismo $\pi:V\to V$ che si ottiene proiettando i vettori su U parallelamente a W.
- (c) Sia $\Phi : \operatorname{End}_{\mathbb{Q}}V \to \operatorname{End}_{\mathbb{Q}}V$ definito ponendo $\Phi(\phi) = \pi \circ \phi \phi \circ \pi$. Si determinino le dimensioni e delle basi per nucleo ed immagine di Φ . Si tratta di una proiezione? Si fissi una base opportuna di V e si scrivano le matrici degli elementi delle basi scelte per ker Φ ed im Φ .

ESERCIZIO 3. Siano V e W spazi vettoriali reali e siano date le rispettive basi $\mathcal{V} = \{v_1, \dots, v_4\}$ e $\mathcal{W} = \{w_1, \dots, w_3\}$. Si considerino gli omomorfismi $\phi : V \to V$ e $\psi : V \to W$ di matrici

$$A = \alpha_{\mathcal{V},\mathcal{V}}(\phi) = \begin{pmatrix} 3 & 0 & 2 & -1 \\ -2 & 1 & -1 & 2 \\ -10 & -1 & -7 & 2 \\ 12 & 3 & 9 & 0 \end{pmatrix} \qquad e \qquad B = \alpha_{\mathcal{V},\mathcal{W}}(\psi) = \begin{pmatrix} -7 & -1 & -5 & 1 \\ -6 & 0 & -4 & 2 \\ 4 & 1 & 3 & 0 \end{pmatrix}.$$

- (a) Si determinino i sottospazi $\ker \phi$, $\operatorname{im} \phi$, $\ker \psi$, $\operatorname{im} \psi$, scrivendo esplicitamente una base ed un sistema di equazioni cartesiane (minimo) per ciascuno di essi.
- (b) Si determinino tutte le applicazioni lineari $\xi: W \to V$ tali che $\phi = \xi \circ \psi$ e per ciascuna di esse si scriva la matrice $\alpha_{W,V}(\xi)$.
- (c) Si determinino tutte le applicazioni lineari $\eta: V \to W$ tali che $\psi = \eta \circ \phi$ e per ciascuna di esse si scriva la matrice $\alpha_{VW}(\eta)$. È vero che $\eta \circ \xi = \mathrm{id}_W$?

NON SCRIVERE NELLO SPAZIO SOTTOSTANTE

1	2	3

prova scritta del 2 dicembre 2011

Nome	Cognome	N. Matricola	

ESERCIZIO 1. Si consideri il polinomio $P(X) = X^6 - 9X^3 + 8$

- (a) Trovare le radici di P(X) nel campo \mathbb{C} dei numeri complessi.
- (b) Trovare le fattorizzazioni di P(X) in $\mathbb{R}[X]$ e in $\mathbb{C}[X]$.

ESERCIZIO 2. Sia $\mathcal{V} = \{v_1, \dots, v_4\}$ una base dello spazio vettoriale V su \mathbb{Q} . Sia $U = \langle u_1, u_2, u_3 \rangle$, ove ESERCEIZIO 2. Sia $V=\{v_1,\dots,v_4\}$ thia base define spazio vectoriale V su \mathbb{Q} . Sia $V=\{u_1,u_2,u_3\}$, ove $u_1=-v_1+2v_2+v_4,\ u_2=2v_1+2v_2+3v_3-2v_4,\ u_3=2v_2+v_3,\ e$ sia W il sottospazio di V definito dal $\begin{cases} 2X_1-X_2-X_3+2X_4=0\\ 6X_1-X_2-3X_3+2X_4=0\\ 2X_1+2X_2-X_3-4X_4=0 \end{cases}$ (a) Si determinino le rispettive dimensioni ed una base per i sottospazi U e W. Si determinino delle

- equazioni cartesiane per il sottoinsieme di V che si ottiene traslando tutti i vettori di U per il vettore $u_0 = v_1 + v_3 - v_4$.
- (b) Si determini la matrice $\alpha_{\mathcal{V},\mathcal{V}}(\pi)$ dell'endomorfismo $\pi:V\to V$ che si ottiene proiettando i vettori su Uparallelamente a W.
- (c) Sia $\Phi: \operatorname{End}_{\mathbb{Q}}V \to \operatorname{End}_{\mathbb{Q}}V$ definito ponendo $\Phi(\phi) = \pi \circ \phi \phi \circ \pi$. Si determinino le dimensioni e delle basi per nucleo ed immagine di Φ . Si tratta di una proiezione? Si fissi una base opportuna di V e si scrivano le matrici degli elementi delle basi scelte per $\ker \Phi$ ed $\operatorname{im} \Phi$.

ESERCIZIO 3. Siano V e W spazi vettoriali reali e siano date le rispettive basi $\mathcal{V} = \{v_1, \dots, v_4\}$ e $\mathcal{W} = \{w_1, \dots, w_3\}$. Si considerino gli omomorfismi $\phi: V \to V$ e $\psi: V \to W$ di matrici

$$A = \alpha_{\mathcal{V},\mathcal{V}}(\phi) = \begin{pmatrix} -7 & -10 & -1 & 2\\ 2 & 3 & 0 & -1\\ -1 & -2 & 1 & 2\\ 9 & 12 & 3 & 0 \end{pmatrix} \qquad e \qquad B = \alpha_{\mathcal{V},\mathcal{W}}(\psi) = \begin{pmatrix} 3 & 4 & 1 & 0\\ -5 & -7 & -1 & 1\\ -4 & -6 & 0 & 2 \end{pmatrix}.$$

- (a) Si determinino i sottospazi $\ker \phi$, $\operatorname{im} \phi$, $\operatorname{ker} \psi$, $\operatorname{im} \psi$, scrivendo esplicitamente una base ed un sistema di equazioni cartesiane (minimo) per ciascuno di essi.
- (b) Si determinino tutte le applicazioni lineari $\xi: W \to V$ tali che $\phi = \xi \circ \psi$ e per ciascuna di esse si scriva la matrice $\alpha_{W,V}(\xi)$.
- (c) Si determinino tutte le applicazioni lineari $\eta: V \to W$ tali che $\psi = \eta \circ \phi$ e per ciascuna di esse si scriva la matrice $\alpha_{\mathcal{V},\mathcal{W}}(\eta)$. È vero che $\eta \circ \xi = \mathrm{id}_{\mathcal{W}}$?

NON SCRIVERE NELLO SPAZIO SOTTOSTANTE

1	2	3

prova di accertamento del 3 febbraio 2012

ESERCIZIO 1. Sia $n \ge 1$ un numero intero e si consideri la matrice

$$K_n = \sum_{j=1}^n a\varepsilon(j,j) + \sum_{j=1}^{\left[\frac{n+1}{2}\right]} b\varepsilon(\left[\frac{n+1}{2}\right] + 1 - j,j) + \sum_{j=1}^{\left[\frac{n+1}{2}\right]} c\varepsilon(n+1-j,\left[\frac{n}{2}\right] + j),$$

ove a, b, c sono numeri reali e, come di consueto, [t] indica la parte intera del numero t (ovvero il più grande numero intero minore o uguale a t).

- (a) Si scrivano esplicitamente le matrici K_1 , K_2 , K_3 , K_4 e se ne calcolino i rispettivi determinanti.
- (b) Si calcolino i determinanti di K_5 e K_6 .
- (c) Si determini una formula ricorsiva per il determinante $\delta_n = \det K_n$. È vero che per $n \geq 2$ ciascuno dei δ_n è funzione polinomiale di δ_2 , δ_3 , δ_4 ? In caso affermativo si dia un'espressione esplicita per tali funzioni, altrimenti si dia un controesempio.

Svolgimento. (a) Si ha

$$K_1 = (a+b+c), K_2 = \begin{pmatrix} a+b & 0 \\ 0 & a+c \end{pmatrix}, K_3 = \begin{pmatrix} a & b & 0 \\ b & a & c \\ 0 & c & a \end{pmatrix}, K_4 = \begin{pmatrix} a & b & 0 & 0 \\ b & a & 0 & 0 \\ 0 & 0 & a & c \\ 0 & 0 & c & a \end{pmatrix};$$

e quindi $\delta_1 = a + b + c$, $\delta_2 = (a + b)(a + c)$, $\delta_3 = a(a^2 - b^2 - c^2)$, $\delta_4 = (a^2 - b^2)(a^2 - c^2)$.

(b) Si ha

$$\delta_5 = \det \begin{pmatrix} a & 0 & b & 0 & 0 \\ 0 & a+b & 0 & 0 & 0 \\ b & 0 & a & 0 & c \\ 0 & 0 & 0 & a+c & 0 \\ 0 & 0 & c & 0 & a \end{pmatrix} = \delta_2 \delta_3 \qquad \text{e} \qquad \delta_6 = \det \begin{pmatrix} a & 0 & b & 0 & 0 & 0 \\ 0 & a+b & 0 & 0 & 0 & 0 \\ b & 0 & a & 0 & 0 & 0 \\ 0 & 0 & 0 & a & 0 & c \\ 0 & 0 & 0 & a+c & 0 \\ 0 & 0 & 0 & c & 0 & a \end{pmatrix} = \delta_2 \delta_4.$$

Nel primo caso, lo si può vedere scambiando tra loro le prime due righe e le prime due colonne e poi portando la quarta riga al secondo posto e la quarta colonna al secondo posto. Nel secondo, scambiando tra loro le prime due righe e le prime due colonne e poi portando la quinta riga al secondo posto e la quinta colonna al secondo posto.

(c) Operando in modo analogo sulle righe e le colonne (scriverlo in modo esplicito!), si può affermare che, per $n \geq 5$, si ha

$$\delta_n = \left\{ \begin{array}{ll} \delta_2 \delta_{n-2} & \text{se } n \equiv 1,2 \mod 4 \\ \delta_4 \delta_{n-4} & \text{se } n \equiv 3,4 \mod 4 \end{array} \right. \quad \text{e quindi} \qquad \delta_n = \left\{ \begin{array}{ll} \delta_2 \delta_3 \delta_{n-5} & \text{se } n \equiv 1 \mod 4 \\ \delta_i \delta_{n-i} & \text{se } i \in \{2,3,4\} \text{ e } n \equiv i \mod 4 \end{array} \right.$$

Si può quindi dimostrare (ad esempio, per induzione su n) che

$$\delta_n = \delta_2^{1 - \left[\frac{n+1}{4}\right] + \left[\frac{n-1}{4}\right]} \delta_3^{\left[\frac{n+1}{2}\right] - \left[\frac{n}{2}\right]} \delta_4^{\left[\frac{n+2}{4}\right] + \left[\frac{n}{4}\right] - \left[\frac{n-1}{4}\right] - 1}$$

per $n \ge 2$.

ESERCIZIO 2. Sia V uno spazio vettoriale su \mathbb{Q} e sia $\mathcal{V} = \{v_1, \dots, v_5\}$ una sua base. Si considerino i sottospazi $U = \langle 2v_1 + v_2 + 4v_3 - 2v_4 + v_5, v_1 + 2v_3, v_1 - v_2 + 2v_3 + 2v_4 - v_5 \rangle$ e

$$W: \begin{cases} 2X_1 - X_2 - 2X_3 + 4X_5 = 0 \\ X_1 - X_3 + 2X_5 = 0 \\ X_1 + X_2 - X_3 + 2X_5 = 0 \end{cases}.$$

- (a) Si determinino le dimensioni e delle basi di U e W. Si verifichi che $V = U \oplus W$ e si scriva la matrice $\alpha_{V,V}(\pi)$ dell'endomorfismo $\pi: V \to V$ che proietta ogni vettore su U, parallelamente a W.
- (b) Sia $H = \langle 2v_1 + 3v_3 + v_4, 2v_1 + v_2 v_4 \rangle$ e si determinino nucleo ed immagine di $\pi_{|H}$. Si determinino i sottospazi U^{\perp} , W^{\perp} , H^{\perp} di V^* e si esibisca una base per ciascuno di questi sottospazi. Si dica se $V^* = H^{\perp} \oplus W^{\perp}$.
- (c) È vero che $H = \{u + \phi(u) \mid u \in U\}$ per un opportuno omomorfismo $\phi : U \to W$? In caso affermativo si scriva la matrice di ϕ nelle basi di U e W fissate al punto (a). È vero che $H^{\perp} = \{u^* + \psi(u^*) \mid u^* \in U^{\perp}\}$ per un opportuno omomorfismo $\psi : U^{\perp} \to W^{\perp}$? Che relazioni ci sono tra ψ e ϕ^* ?

Svolgimento. (a) I tre generatori di U sono linearmente dipendenti ed una sua base, \mathcal{U} , è data da $u_1 = v_1 + 2v_3$, $u_2 = v_2 - 2v_4 + v_5$. Anche le tre equazioni che definiscono W sono dipendenti (III = 3II - I) e tre soluzioni indipendenti del sistema formano la base \mathcal{W} , con $w_1 = v_1 + v_3$, $w_2 = v_4$, $w_3 = 2v_1 - v_5$.

La matrice cercata è
$$\alpha_{\mathcal{V},\mathcal{V}}(\pi) = \begin{pmatrix} -1 & 2 & 1 & 0 & -2 \\ 0 & 1 & 0 & 0 & 0 \\ -2 & 4 & 2 & 0 & -4 \\ 0 & -2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{pmatrix}.$$

(b) $\ker(\pi_{|H}) = \ker \pi \cap H = W \cap H = \langle 0 \rangle$, come si verifica sostituendo una combinazione lineare dei generatori di H nelle equazioni che definiscono W. Quindi $\dim(\operatorname{im}(\pi_{|H})) = \dim H - \dim \ker(\pi_{|H}) = 2 = \dim U$ e quindi $\operatorname{im}(\pi_{|H}) = U$. Ciò significa che π induce un isomorfismo tra H ed U.

Sia $\mathcal{V}^* = \{v_1^*, \dots, v_5^*\}$ la base duale di V^* . Una base di U^{\perp} è $\{2v_1^* - v_3^*, 2v_2^* + v_4^*, v_4^* + 2v_5^*\}$. Una base di W^{\perp} è $\{v_1^* - v_3^* + 2v_5^*, v_2^*\}$. Una base di H^{\perp} è $\{3v_1^* - 6v_2^* - 2v_3^*, 3v_2^* - v_3^* + 3v_4^*, v_5^*\}$. Infine, $H^{\perp} + W^{\perp} = (H \cap W)^{\perp} = V^*$, per quanto visto sopra. Applicando le relazioni di Grassmann si conclude che $V^* = H^{\perp} \oplus W^{\perp}$.

(c) La proiezione, π , induce un isomorfismo tra H ed U e quindi, per ogni vettore $u \in U$ esiste un unico vettore $\phi(u) \in W$ tale che $u + \phi(u) \in H$ e questo definisce l'omomorfismo $\phi : U \to W$ ($\phi = (\mathrm{id} - \pi) \circ (\pi_{|H})^{-1}$).

Si ha
$$u_1 + w_1 + w_2 \in H$$
 e $u_2 + w_2 + w_3 \in H$, quindi $\alpha_{\mathcal{U}, \mathcal{W}}(\phi) = \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix}$.

Poiché $V^* = H^{\perp} \oplus W^{\perp}$, la proiezione id $-\pi^*$ induce un isomorfismo tra U^{\perp} ed H^{\perp} ; quindi, analogamente a quanto visto sopra, vi è un unico omomorfismo $\psi: U^{\perp} \to W^{\perp}$ tale che $H^{\perp} = \{ u^* + \psi(u^*) \mid u^* \in U^{\perp} \}$.

Infine, dal fatto che $V^* = U^{\perp} \oplus W^{\perp}$, si deduce che $U^{\perp} \cong V^*/W^{\perp} \cong W^*$ (esplicitare gli isomorfismi!) e, analogamente, $W^{\perp} \cong V^*/U^{\perp} \cong U^*$. Inoltre, per ogni $u \in U$ ed ogni $u^* \in U^{\perp}$, si ha $u + \phi(u) \in H$ e $u^* + \psi(u^*) \in H^{\perp}$, e quindi

$$0 = (u + \phi(u)) \circ (u^* + \psi(u^*)) = \phi(u) \circ u^* + u \circ \psi(u^*)$$

da cui si deduce che $\psi = -\phi^*$.

prova scritta del 8 febbraio 2012

ESERCIZIO 1. Si consideri il polinomio $P(X) = X^3 + X^2 + 3X - 5$.

- (a) Si verifichi che P(1)=0; si determinino le radici in $\mathbb C$ del polinomio P(X) e le si disegni nel piano di Gauss.
- (b) Si determinino le fattorizzazioni in fattori irriducibili di P(X) in $\mathbb{R}[X]$ ed in $\mathbb{C}[X]$.

Svolgimento. $P(X) = (X-1)(X^2+2X+5) = (X-1)(X+1+2i)(X+1-2i)$ e lasciamo al lettore il disegno.

ESERCIZIO 2. Si considerino i vettori $v = \binom{2-i}{1+2i}$ e $w = \binom{2i+1}{i-2}$ di \mathbb{C}^2 .

(a) Si determinino le dimensioni sui rispettivi campi di base, dei sottospazi $\langle v, w \rangle_{\mathbb{C}}$ e $\langle v, w \rangle_{\mathbb{R}}$.

- (b) Si dica se esiste un endomorfismo di \mathbb{C} -spazi vettoriali, $\phi:\mathbb{C}^2\to\mathbb{C}^2$, tale che $\phi(v)=v$ e $\phi(w)=v$ -w. In caso affermativo se ne scriva la matrice rispetto alla base canonica $\{e_1, e_2\}$. Si dica se esiste un endomorfismo di \mathbb{R} -spazi vettoriali, $\phi: \mathbb{C}^2 \to \mathbb{C}^2$, tale che $\phi(v) = v$ e $\phi(w) = -w$ e ker $\phi =$ $\left\langle \left(\begin{smallmatrix} 0 \\ 1-i \end{smallmatrix} \right), \left(\begin{smallmatrix} 0 \\ 1+i \end{smallmatrix} \right) \right\rangle_{\mathbb{R}}$. In caso affermativo se ne scriva la matrice rispetto alla base $\mathcal{R} = \{e_1, ie_1, e_2, ie_2\}$.
- (c) Nel caso in cui esista l'endomorfismo ϕ del punto precedente, si consideri l'endomorfismo $\alpha_t = 3id_{\mathbb{C}^2} t\phi$; si calcoli det α_t e si determini una base di ker α_t , al variare di t in \mathbb{C} o in \mathbb{R} (a seconda del caso).

Svolgimento. (a) w=iv e quindi $\langle v,w\rangle_{\mathbb{C}}=\langle v\rangle_{\mathbb{C}}$ ha dimensione 1 come \mathbb{C} -spazio vettoriale. I due vettori sono linearmente indipendenti su \mathbb{R} e quindi $\dim_{\mathbb{R}} \langle v, w \rangle_{\mathbb{R}} = 2$.

(b) Poiché w=iv non può esistere un'applicazione \mathbb{C} -lineare che soddisfi alle condizioni dette. I quattro vettori

$$v_1 = v = 2e_1 - ie_1 + e_2 + 2ie_2$$
, $v_2 = w = e_1 + 2ie_1 - 2e_2 + ie_2$, $v_3 = e_2 - ie_2$, $v_4 = e_2 + ie_2$,

sono una base, \mathcal{V} , di \mathbb{C}^2 come spazio vettoriale reale e quindi esiste un'unica applicazione lineare ϕ soddisfacente alle condizioni date, e si ha

da cui si conclude che $A=\alpha_{\mathcal{R},\mathcal{R}}(\phi)=PBP^{-1}=\begin{pmatrix} 3/5 & -4/5 & 0 & 0 \\ -4/5 & -1 & 0 & 0 \\ 4/5 & 1 & 0 & 0 \\ 3/5 & -4/5 & 0 & 0 \end{pmatrix}$.

(c) Il determinante di α_t è facile da calcolare utilizzando la base $\mathcal V$ ed è uguale a $9(9-t^2)$. Si ha $\ker \alpha_3 = \langle v \rangle_{\mathbb R}$, $\ker \alpha_{-3} = \langle w \rangle_{\mathbb{R}}$, e $\ker \alpha_t = \langle 0 \rangle_{\mathbb{R}}$, per tutti gli altri valori di $t \in \mathbb{R}$.

ESERCIZIO 3. Sia n un numero naturale fissato e si consideri l'applicazione $\phi_n: M_n(\mathbb{R}) \to M_n(\mathbb{R})$, definita da $\phi(A) = -^t A$.

- (a) Si verifichi che, per ogni numero naturale $n \geq 1$, ϕ_n è un'applicazione lineare ed una simmetria dello spazio $M_n(\mathbb{R})$. Si determinino, al variare di n, il sottospazio unito ed il sottospazio delle direzioni di riflessione per ϕ_n e le loro dimensioni.
- (b) Si calcoli det ϕ_n al variare di n.
- (c) Si identifichi lo spazio $M_n(\mathbb{R})$ con il suo duale tramite l'applicazione bilineare $g: M_n(\mathbb{R}) \times M_n(\mathbb{R}) \to \mathbb{R}$, $g(X,Y) = \operatorname{tr}({}^t XY)$, e si verifichi che tramite tale identificazione la base canonica $\{\varepsilon(i,j) \mid 1 \leq i,j \leq n\}$ di $M_n(\mathbb{R})$ coincide con la base duale. Che dire della trasposta di ϕ_n ?

Svolgimento. (a) ${}^t(A+B)={}^tA+{}^tB$ e ${}^t(cA)=c^tA$ per ogni scalare reale c. Quindi la trasposizione è un'applicazione lineare, così come lo è la moltiplicazione per lo scalare -1. Quindi ϕ_n è lineare in quanto composizione di applicazioni lineari. Inoltre $\phi_n(\phi_n(A))=-{}^t(-{}^tA)=A$ per ogni $A\in M_n(\mathbb{R})$ e quindi ϕ_n è una simmetria. $\phi_n(A)=A$ se, e solo se, ${}^tA=-A$ e quindi gli elementi uniti per ϕ_n formano il sottospazio, A_n , delle matrici antisimmetriche, di dimensione $\binom{n}{2}$. Una sua base è data dalle matrici $\varepsilon(i,j)-\varepsilon(j,i)$ per $1\leq i < j \leq n$. Le direzioni di riflessione sono le matrici, X, per cui $\phi_n(X)=-X$, ovvero le matrici simmetriche che formano uno sottospazio, S_n , di dimensione $\binom{n+1}{2}$. Una sua base è data dalle matrici $\varepsilon(i,j)+\varepsilon(j,i)$ per $1\leq i \leq j \leq n$.

- (b) $M_n(\mathbb{R}) = A_n \oplus S_n$ e quindi esiste una base fatta con vettori dei due sottospazi. Utilizzando tale base si calcola facilmente det $\phi_n = (-1)^{\binom{n+1}{2}}$ per ogni intero n > 1.
- (c) Per i vettori della base canonica, si ha

$$\operatorname{tr}({}^{t}\varepsilon(i,j)\varepsilon(h,k)) = \operatorname{tr}(\varepsilon(j,i)\varepsilon(h,k)) = \operatorname{tr}(\delta_{ih}\varepsilon(j,k)) = \delta_{ih}\delta_{jk}$$

da cui si conclude. Date due matrici, $A \in B$, in $M_n(\mathbb{R})$, si ha

$$g(\phi_n(A), B) = -\text{tr}(AB) = -\text{tr}(AB) = -\text{tr}(^t B^t A) = -\text{tr}(^t A^t B) = g(A, \phi_n(B))$$

e quindi ϕ_n coincide con la sua trasposta.

prova scritta del 28 febbraio 2012

ESERCIZIO 1. Si consideri il polinomio $P(X) = X^3 - 11X + 20$.

- (a) Si verifichi che P(-4) = 0; si determinino le radici in \mathbb{C} del polinomio P(X) e le si disegni nel piano di Gauss.
- (b) Si determinino le fattorizzazioni in fattori irriducibili di P(X) in $\mathbb{R}[X]$ ed in $\mathbb{C}[X]$.

Svolgimento. $P(X) = (X+4)(X^2-4X+5) = (X+4)(X-2+i)(X-2-i)$ e lasciamo al lettore il disegno.

ESERCIZIO 2. Sia V uno spazio vettoriale complesso e sia $\mathcal{V} = \{v_1, \dots, v_4\}$ una sua base. (a) Si dica se esiste un'applicazione lineare $\phi : V \to V$ soddisfacente alle seguenti condizioni

$$\phi(v_1 + 2v_2) = 2v_3 + 4v_4, \quad \phi(2v_3 + 4v_4) = v_1 + 2v_2, \quad \phi(v_1 - 4v_4) = 2v_3 - 2v_2,$$

$$\phi(2v_3 - 2v_2) = v_1 - 4v_4, \quad \phi(v_1) = v_1.$$

In caso positivo, si scriva la matrice $\alpha_{\mathcal{V},\mathcal{V}}(\phi)$ e si dica se $\phi \circ \phi = \mathrm{id}_V$. In caso negativo, si dica come modificare l'immagine di $v_1 + v_2$ affinché oltre alle condizioni date, si abbia $\phi \circ \phi = \mathrm{id}_V$.

- (b) Si determini la decomposizione $V=U\oplus W$ ove U è il sottospazio lasciato invariante da ϕ (asse di simmetria) e W è il sottospazio delle direzioni di simmetria per ϕ .
- (c) Sia T uno spazio vettoriale di dimensione n su \mathbb{C} e si consideri l'applicazione Φ : $Hom_{\mathbb{C}}(T,V) \to Hom_{\mathbb{C}}(T,V)$ definita da $\Phi(\xi) = \phi \circ \xi$. Si mostri che Φ è una simmetria dello spazio $Hom_{\mathbb{C}}(T,V)$ e si determinino la decomposizione in somma diretta ad essa associata (direzioni unite e direzioni di simmetria) e le dimensioni dei relativi sottospazi. Si calcoli $det(2id \Phi)$.

Svolgimento. (a) I vettori

$$w_1 = v_1$$
, $w_2 = v_1 + 2v_2$, $w_3 = 2v_3 + 4v_4$, $w_4 = v_1 - 4v_4$,

sono linearmente indipendenti e formano quindi una base, $W = \{w_1, \dots, w_4\}$, di V. Si possono quindi assegnare le immagini dei vettori della base secondo quanto scritto sopra ed ottenere un'applicazione lineare, $\phi: V \to V$. Essendo, $2v_3 - 2v_2 = -w_2 + w_3 + w_4$, si ottiene $\phi(2v_3 - 2v_2) = \phi(-w_2 + w_3 + w_4) = -(2v_3 + 4v_4) + (v_1 + 2v_2) + (2v_3 - 2v_2) = v_1 - 4v_4$ e sono soddisfatte tutte le condizioni richieste. Si ha quindi

$$P = \alpha_{\mathcal{W}, \mathcal{V}}(\mathrm{id}) = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 4 & -4 \end{pmatrix}, \quad B = \alpha_{\mathcal{W}, \mathcal{W}}(\phi) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad P^{-1} = \alpha_{\mathcal{V}, \mathcal{W}}(\mathrm{id}) = \begin{pmatrix} 1 & -1/2 & -1/2 & 1/4 \\ 0 & 1/2 & 0 & 0 \\ 0 & 0 & 1/2 & 0 \\ 0 & 0 & 1/2 & -1/4 \end{pmatrix},$$

$$A = PBP^{-1} = \alpha_{\mathcal{V}, \mathcal{V}}(\phi) = \begin{pmatrix} 1 & -1/2 & 0 & 1/4 \\ 0 & 0 & 0 & 1/2 \\ 0 & 1 & 1 & -1/2 \\ 0 & 2 & 0 & 0 \end{pmatrix}.$$

 $A^2 = B^2 = \mathbf{1}_4$ e quindi ϕ è una simmetria.

- (b) $U = \langle v_i + \phi(v_i) | i = 1, \dots, 4 \rangle = \langle v_1, v_1 2v_2 2v_3 4v_4, v_3, v_1 + 2v_2 2v_3 + 4v_4 \rangle = \langle v_1, v_3, v_2 + 2v_4 \rangle$ e $W = \langle v_i \phi(v_i) | i = 1, \dots, 4 \rangle = \langle v_1 + 2v_2 2v_3 4v_4 \rangle$.
- (c) Per ogni $\xi \in \operatorname{Hom}_{\mathbb{C}}(T,V)$, si ha $\Phi(\Phi(\xi)) = \phi \circ (\phi \circ \xi) = \xi$ e quindi $\Phi^2 = \operatorname{id} e \Phi$ è una simmetria di $\operatorname{Hom}_{\mathbb{C}}(T,V)$. Essendo $V = U \oplus W$, si ha $\operatorname{Hom}_{\mathbb{C}}(T,V) \cong \operatorname{Hom}_{\mathbb{C}}(T,U) \oplus \operatorname{Hom}_{\mathbb{C}}(T,W)$ (esplicitare l'isomorfismo!) e il sottospazio $\operatorname{Hom}_{\mathbb{C}}(T,U)$, di dimensione 3n, è il sottospazio delle direzioni unite, mentre $\operatorname{Hom}_{\mathbb{C}}(T,W)$, di dimensione n, è il sottospazio delle direzioni di simmetria. Infine, se ξ è una direzione unita, si ha $(2\operatorname{id} -\Phi)(\xi) = \xi$; mentre, se η è una direzione di simmetria, si ha $(2\operatorname{id} -\Phi)(\eta) = 3\eta$. Quindi, prendendo una base fatta di direzioni unite e di direzioni di simmetria per Φ , si calcola facilmente $\operatorname{det}(2\operatorname{id} -\Phi) = 3^n$.

ESERCIZIO 3. Si consideri la matrice

$$A = \begin{pmatrix} 4 & 2 & -6 & -2 & 6 \\ 2 & 1 & -3 & -1 & 3 \\ -6 & -3 & 9 & 3 & -9 \\ 0 & 0 & 0 & 0 & 0 \\ 4 & 2 & -6 & -2 & 6 \end{pmatrix} \in M_5(\mathbb{Q}).$$

- (a) Si determini il rango di A e si determinino, se esistono, una matrice colonna $c \in M_{5\times 1}(\mathbb{Q})$ ed una matrice riga $r \in M_{1\times 5}(\mathbb{Q})$, tali che A = cr. È vero che, per ogni intero $n \geq 2$, qualsiasi matrice di rango 1 in $M_n(\mathbb{Q})$ è prodotto di una colonna per una riga? La colonna e la riga in questione, se esistono, sono univocamente determinate?
- (b) Sia $n \geq 2$ e siano $A_1 = c_1 r_1$ ed $A_2 = c_2 r_2$ due matrici in $M_n(\mathbb{Q})$, prodotto di una colonna $0 \neq c_i \in$ $M_{n\times 1}(\mathbb{Q})$ e di una riga $0\neq r_i\in M_{1\times n}(\mathbb{Q})$, (i=1,2). Si descrivano nucleo ed immagine di A_1 , A_2 ed $A_1 + A_2$ in relazione alle dimensioni dei sottospazi $\langle c_1, c_2 \rangle$ e $\langle r_1, r_2 \rangle$.
- (c) Sia

$$B = \begin{pmatrix} 3 & 1 & 4 & 2 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 2 & -1 & 1 & 3 & 5 \\ 0 & 1 & 1 & -1 & -3 \end{pmatrix} \in M_5(\mathbb{Q}).$$

Si determini r = rkB. Si determinino, se esistono, r matrici di rango 1, B_1, \ldots, B_r tali che B = $B_1 + \cdots + B_r$. Le matrici in questione, se esistono, sono univocamente determinate (a meno dell'ordine)? Se non sono uniche, come possono variare?

Svolgimento. (a) La matrice A ha rango 1, come si può vedere facilmente applicando il procedimento di

Svolgimento. (a) La matrice A na rango 1, como $c = \begin{pmatrix} 2 \\ 1 \\ -3 \\ 0 \end{pmatrix}$ ed r = (2,1,-3,-1,3), si verifica con un calcolo

diretto che A = cr.

Più in generale, se una matrice $A \in M_n(\mathbb{Q})$ ha rango 1, tutte le sue colonne a_1, \ldots, a_n sono multipli di una di queste, ovvero esiste una colonna $a \neq 0$ di A e degli scalari, $\alpha_1, \ldots, \alpha_n$, tali che $a_i = \alpha_i a$, per $i=1,\ldots,n$. Indicata con b la riga $(\alpha_1,\ldots,\alpha_n)$, si ha quindi A=ab. La colonna a è determinata a meno del prodotto per uno scalare $\rho \neq 0$ e, posto $a' = \rho a$, si ha A = a'b' con $b' = (\rho^{-1}b)$.

(b) Poiché le righe e le colonne non possono essere nulle, entrambo le matrici A_1 ed A_2 hanno rango esattamente uguale ad 1 e im $A_i = \langle c_i \rangle$, ker $A_i = \langle r_i \rangle^{\perp}$, ove $\mathbb{Q}^n = M_{n \times 1}(\mathbb{Q})$ e $\mathbb{Q}^{n*} = M_{1 \times n}(\mathbb{Q})$.

Se dim $\langle c_1, c_2 \rangle = 2 = \dim \langle r_1, r_2 \rangle$, dato un vettore $x \in \mathbb{Q}^n$, si ha $(A_1 + A_2)x = c_1(r_1 \circ x) + c_2(r_2 \circ x)$ (col tondino indichiamo la dualità canonica, ovvero il prodotto riga per colonna) e quindi im $(A_1 + A_2) \subseteq \langle c_1, c_2 \rangle$ ed i due sottospazi sono uguali perché, essendo r_1 ed r_2 linearmente indipendenti in \mathbb{Q}^{n*} , esistono vettori x_1, x_2 in \mathbb{Q}^n , tali che $r_1 \circ x_1 = 1 = r_2 \circ x_2$ e $r_1 \circ x_2 = 0 = r_2 \circ x_1$ (perché?). D'altro canto, essendo c_1 e c_2 linearmente indipendenti in \mathbb{Q}^n , un vettore x appartiene al nucleo di $A_1 + A_2$ se, e solo se, $r_1 \circ x = 0 = r_2 \circ x$.

Dunque, $\ker(A_1 + A_2) = \langle r_1, r_2 \rangle^{\perp}$. Se, invece $\dim \langle c_1, c_2 \rangle = 1$ e $c_1 = \alpha_1 c$, $c_2 = \alpha_2 c$ per un vettore $c \in \mathbb{Q}^n$ ed α_1 , α_2 in \mathbb{Q} , allora $\operatorname{im}(A_1 + A_2) = \langle c \rangle$ e $\operatorname{ker}(A_1 + A_2) = \langle \alpha_1 r_1 + \alpha_2 r_2 \rangle^{\perp}$. Analogamente, se $r_1 = \alpha_1 r$, $r_2 = \alpha_2 r$, per un vettore $r \in \mathbb{Q}^{n*}$ ed α_1 , α_2 in \mathbb{Q} , allora im $(A_1 + A_2) = \langle \alpha_1 c_1 + \alpha_2 c_2 \rangle$ e ker $(A_1 + A_2) = \langle r \rangle^{\perp}$.

(c) Applicando la tecnica di eliminazione alle righe o alle colonne di B, si verifica facilmente che rk B=2. In particolare, se consideriamo i vettori

$$v_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \qquad v_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \qquad v_3 = \begin{pmatrix} -1 \\ -1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \qquad v_4 = \begin{pmatrix} -1 \\ 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \qquad v_5 = \begin{pmatrix} -1 \\ 3 \\ 0 \\ 0 \\ 1 \end{pmatrix},$$

si ha che v_3, v_4, v_5 sono una base del nucleo di B ed i vettori v_1 e v_2 li completano ad una base di \mathbb{Q}^5 . Infine, i vettori

$$w_1 = Bv_1 = \begin{pmatrix} 3\\1\\0\\2\\0 \end{pmatrix}, \qquad w_2 = Bv_2 = \begin{pmatrix} 1\\0\\0\\-1\\1 \end{pmatrix}$$

sono una base dell'immagine di B. Se consideriamo la base duale v_1^*,\dots,v_5^* di $\mathbb{Q}^{5\,*},$ ovvero,

$$v_1^* = (1,0,1,1,1) \,, \quad v_2^* = (0,1,1,-1,-3) \,, \quad v_3^* = (0,0,1,0,0) \,, \quad v_4^* = (0,0,0,1,0) \,, \quad v_5^* = (0,0,0,0,1) \,,$$

si ha $B = w_1 v_1^* + w_2 v_2^{*(\dagger)}$, prodotto di colonne per righe.

Possiamo modificare la scelta della base \mathcal{V} , prendendo come v_1, v_2 una qualsiasi altra coppia di generatori di un complementare del nucleo di B. In corrispondenza a questa coppia, sono univocamente determinati i vettori $w_1 = Bv_1$ e $w_2 = Bv_2$ ed i vettori v_1^*, v_2^* , ortogonali al nucleo di B, e tali che $v_i^* \circ v_j = \delta_{ij}$ per $1 \leq i, j \leq 2$.

Detta $\phi: \mathbb{Q}^5 \to \mathbb{Q}^5$ l'applicazione lineare di matrice B rispetto alla base canonica, nelle notazioni del sesto foglio di esercizi, si potrebbe scrivere $\phi = w_1 \otimes v_1^* + w_2 \otimes v_2^* = \phi(v_1) \otimes v_1^* + \phi(v_2) \otimes v_2^*$.

prova scritta del 27 giugno 2012

ESERCIZIO 1. Si consideri il numero complesso $z_0 = 2 - i$.

- (a) Si verifichi che l'applicazione $\phi_{z_0}\mathbb{C} \to \mathbb{C}$, definita da $\phi_{z_0}(z) = z_0 z$, per ogni $z \in \mathbb{C}$, è un'applicazione \mathbb{R} -lineare e se ne scriva la matrice nella base canonica, $\mathcal{I} = \{1, i\}$. Si calcoli det ϕ_{z_0} .
- (b) Identificando il piano di Gauss col piano euclideo, per cui la base \mathcal{I} è ortonormale, si mostri che ϕ_{z_0} è composizione di una dilatazione e di una rotazione (che commutano). Si scrivano le corrispondenti matrici nella base canonica.

Svolgimento. (a) La matrice cercata è $A = \alpha_{\mathcal{I},\mathcal{I}}(\phi_{z_0}) = \begin{pmatrix} 2 & 1 \\ -1 & 2 \end{pmatrix}$ e det $\phi_{z_0} = 5 = |z_0|^2$.

(b)
$$z_0 = |z_0|e^{i\operatorname{Arg} z_0} = \sqrt{5} \left(\frac{2}{\sqrt{5}} + i\frac{1}{\sqrt{5}}\right)$$
. Quindi $A = \begin{pmatrix} \sqrt{5} & 0 \\ 0 & \sqrt{5} \end{pmatrix} \begin{pmatrix} 2/\sqrt{5} & 1/\sqrt{5} \\ -1/\sqrt{5} & 2/\sqrt{5} \end{pmatrix}$.

ESERCIZIO 2. Si considerino le matrici

$$A_0 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & -1 \end{pmatrix} \in M_{4 \times 3}(\mathbb{Q}) \qquad e \qquad B_0 = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 2 \\ 1 & 1 & 0 & 0 \end{pmatrix} \in M_{3 \times 4}(\mathbb{Q}).$$

- (a) Si determinino nucleo ed immagine delle applicazioni lineari associate alle due matrici (nelle basi canoniche di \mathbb{Q}^3 e \mathbb{Q}^4) e si scrivano delle equazioni cartesiane per ciascuno dei sottospazi così determinati.
- (b) Si determinino tutte le inverse destre, sinistre o bilatere per ciascuna delle due matrici.
- (c) Sia $\Phi: M_3(\mathbb{Q}) \to M_4(\mathbb{Q})$ l'applicazione lineare definita ponendo $\Phi(X) = A_0XB_0$ per ogni $X \in M_3(\mathbb{Q})$. Si determinino nucleo ed immagine di Φ indicando, in particolare le dimensioni e delle equazioni cartesiane per ciascuno di questi sottospazi (le coordinate vanno riferite alla base canonica dello spazio delle matrici).
- (d) Sia S l'insieme delle applicazioni lineari $\Psi: M_4(\mathbb{Q}) \to M_3(\mathbb{Q})$ tali che $\Psi \circ \Phi = \mathrm{id}_{M_3(\mathbb{Q})}$. Sia D l'insieme delle applicazioni lineari $\chi: M_4(\mathbb{Q}) \to M_3(\mathbb{Q})$ tali che $\Phi \circ \chi = \mathrm{id}_{M_4(\mathbb{Q})}$. Si dimostri che S e D sono sottovarietà lineari di $\mathbb{A}(\mathrm{Hom}_{\mathbb{Q}}(M_4(\mathbb{Q}), M_3(\mathbb{Q})))$ e se ne calcolino le dimensioni. Che relazioni ci sono con le inverse delle matrici A_0 e B_0 ?

Svolgimento. (a) A_0 e B_0 hanno entrambe rango 3 (si vedano, ad esempio, il minore estratto dalle prime tre righe della prima ed il minore estratto dalle ultime tre colonne della seconda). Dunque, il nucleo di A_0 è $\langle 0 \rangle$, mentre l'immagine di A_0 è l'iperpiano di equazione $X_1 - X_2 - X_3 + X_4 = 0$.

Analogamente, l'immagine di B_0 è tutto \mathbb{Q}^3 , mentre il nucleo ha dimensione 1 ed è generato dal vettore $\begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}$. In particolare delle equazioni cartesiane sono date dal sistema lineare omogeneo di matrice B_0 .

- (b) A_0 ha solo inverse sinistre del tipo $A_1 + \begin{pmatrix} a a a & a \\ b b b & b \\ c c c & c \end{pmatrix}$, ove $A_1 = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 1 & 0 \end{pmatrix}$.

 Analogamente, B_0 ha solo inverse destre del tipo $B_1 + \begin{pmatrix} a & b & c \\ -a b c \\ -a b c \\ a & b & c \end{pmatrix}$, ove $B_1 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \\ -1/2 & 1/2 & -1/2 \end{pmatrix}$.
- (c) Φ è iniettiva, perché, se $\Phi(X) = A_0 X B_0 = 0$, moltiplicando a sinistra per A_1 ed a destra per B_1 , si deduce che X = 0. Quindi im Φ è un sottospazio di dimensione $9 = \dim_{\mathbb{Q}} M_3 \mathbb{Q}$, ed una matrice $X = (X_{ij})_{1 \le i,j \le 4}$

appartiene a questo sottospazio se, e solo se, sono soddisfatte le equazioni omogenee

$$\begin{cases} x_{11} - x_{21} - x_{31} + x_{41} = 0 \\ x_{12} - x_{22} - x_{32} + x_{42} = 0 \\ x_{13} - x_{23} - x_{33} + x_{43} = 0 \\ x_{14} - x_{24} - x_{34} + x_{44} = 0 \\ x_{11} - x_{12} - x_{13} + x_{14} = 0 \\ x_{21} - x_{22} - x_{23} + x_{24} = 0 \\ x_{31} - x_{32} - x_{33} + x_{34} = 0 \\ x_{41} - x_{42} - x_{43} + x_{44} = 0 \end{cases}$$

Il sistema ha rango 7 (si potrebbe cancellare un'equazione).

(d) Φ è iniettiva, ma non suriettiva, quindi ha solo inverse sinistre, per cui l'insieme D è la sottovarietà lineare vuota, di dimensione -1. Per quanto riguarda S, si tratta di una sottovarietà lineare passante per l'applicazione Ψ_1 ($\Psi_1(Y) = A_1YB_1$) e di dimensione 63. Detto K un complementare di im Φ in $M_4(\mathbb{Q})$ (dim \mathbb{Q} K=7), il sottospazio direttore è isomorfo a $\operatorname{Hom}_{\mathbb{Q}}(K,M_3(\mathbb{Q}))$ che ha quindi la dimensione indicata sopra. Le inverse sinistre di Φ che si ottengono in modo analogo a Ψ_1 , prendendo delle altre inverse in luogo di A_1 e B_1 , formano una sottovarietà lineare di dimensione 6 contenuta in S.

prova scritta del 11 luglio 2012

ESERCIZIO 1. Si identifichi il piano di Gauss con il piano euclideo reale, per cui i vettori 1, i formano una base ortonormale e si considerino i numeri complessi a = 2 - i e b = 2 - 3i.

- (a) Si verifichi che l'applicazione $f: \mathbb{C} \to \mathbb{C}$, definita da $z \mapsto az + b$, è un'affinità del piano euclideo. Si scriva la matrice di f nel riferimento $\mathcal{I} = \{O, 1, i\}$
- (b) Si mostri che f è una similitudine del piano euclideo reale, ovvero si determini una costante reale positiva, λ tale che, per ogni coppia di numeri complessi, z_1 , z_2 , si abbia $||f(z_1) - f(z_2)|| = \lambda ||z_1 - z_2||$. È vero che esiste un'omotetia del piano euclideo reale che composta dopo f produce una rotazione? È vero che esiste un'omotetia del piano euclideo reale che composta dopo f produce una simmetria rispetto ad una retta?

Svolgimento. (a) L'applicazione è affine come applicazione complessa e quindi, a maggior ragione, come applicazione dello spazio reale. L'applicazione lineare associata è $z \mapsto az$ e la matrice di f nel riferimento \mathcal{I}

 $A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 2 & 1 \\ -3 & -1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \sqrt{5} & 0 \\ 0 & 0 & \sqrt{5} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 2/\sqrt{5} & 2/\sqrt{5} & 1/\sqrt{5} \\ -3/\sqrt{5} & -1/\sqrt{5} & 2/\sqrt{5} \end{pmatrix}.$

(b) La decomposizione al punto precedente fa vedere che f è composizione di un'isometria diretta (rotazione) e di un'omotetia di centro l'origine e coefficiente di dilatazione $\lambda = \sqrt{5}$. Quindi composta con l'omotetia inversa produce una rotazione, ma non può mai produrre una simmetria perché le omotetie del piano hanno tutte determinante positivo così come f.

ESERCIZIO 2. Si considerino le matrici

$$A_0 = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{pmatrix} \in M_{3 \times 4}(\mathbb{C}). \qquad e \qquad B_0 = \begin{pmatrix} 0 & 2 & 1 \\ -1 & 0 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} \in M_{4 \times 3}(\mathbb{C})$$

- (a) Si determinino nucleo ed immagine delle applicazioni lineari associate alle due matrici (nelle basi canoniche di \mathbb{C}^3 e \mathbb{C}^4) e si scrivano delle equazioni cartesiane per ciascuno dei sottospazi così determinati.
- (b) Si determinino tutte le inverse destre, sinistre o bilatere per ciascuna delle due matrici.
- (c) Sia $\Phi: M_4(\mathbb{C}) \to M_3(\mathbb{C})$ l'applicazione lineare definita ponendo $\Phi(X) = A_0XB_0$ per ogni $X \in M_4(\mathbb{C})$. Si determinino nucleo ed immagine di Φ indicando in particolare delle basi per ciascuno di questi sottospazi.
- (d) Per ogni numero naturale n, si identifichi lo spazio vettoriale $M_n(\mathbb{C})$ col suo duale tramite l'applicazione bilineare non degenere $(A, B) \mapsto \operatorname{tr}^t AB$. Cosa si può dire dell'applicazione trasposta di Φ ? Indicata con $\varepsilon_n(ij)$ la base canonica di $M_n(\mathbb{C})$, scrivere la matrice di Φ^* nelle basi canoniche.

Svolgimento. (a) A_0 e B_0 hanno entrambe rango 3 (si vedano, ad esempio, il minore estratto dalle prime tre colonne della prima ed il minore estratto dalle ultime tre righe della seconda). Dunque, l'immagine di A_0 è

 \mathbb{C}^3 , mentre il nucleo di A_0 è generato dal vettore $\begin{pmatrix} 1 \\ -1 \\ -1 \\ 1 \end{pmatrix}$ e delle equazioni cartesiane per il nucleo sono date dal sistema lineare omogeneo di matrice A_0 .

Il nucleo di B_0 è $\langle 0 \rangle$, mentre l'immagine è l'iperpiano di equazione $X_1 - X_2 - X_3 + X_4 = 0$.

- If nucleo di B_0 e (0), mentre i miniagnic conjections at A_1 .

 (b) A_0 ha solo inverse destre del tipo $B_1 + \begin{pmatrix} a & b & c \\ -a b c \\ -a b c \\ a & b & c \end{pmatrix}$, ove $B_1 = \begin{pmatrix} 0 & 1 & 0 \\ -1/2 & -1/2 & 1/2 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$.

 Analogamente, B_0 ha solo inverse sinistre del tipo $A_1 + \begin{pmatrix} a a a & a \\ b b b & b \\ c c c & c \end{pmatrix}$, ove $A_1 = \begin{pmatrix} -1 & 0 & 1 & 0 \\ 1/2 & 0 & 0 & -1/2 \\ 0 & 0 & 0 & 1 \end{pmatrix}$.
- (c) Φ è suriettiva, perché, comunque si prenda $Y \in M_3(\mathbb{C})$ e si consideri la matrice $X = A_1YB_1 \in M_4(\mathbb{C})$, si ha $\Phi(X) = A_0(A_1YB_1)B_0 = (A_0A_1)Y(B_1B_0) = Y$, e quindi $Y \in \operatorname{im}\Phi$. Una base dell'immagine è quindi la base canonica di $M_3(\mathbb{C})$.

 $\ker \Phi$ è un sottospazio di dimensione 7 di $M_4(\mathbb{C})$. Una matrice $X = (x_{ij})_{1 \leq i,j \leq 4}$ appartiene a questo sottospazio se, e solo se, $X(\operatorname{im} B_0) \subseteq \ker A_0$; ovvero sta nel sottospazio generato dalle matrici

che non sono una base del nucleo, ma solo dei generatori (per ottenere una base basta cancellare una qualsiasi di queste matrici).

(d)
$$\Phi^*: M_3(\mathbb{C}) \to M_4(\mathbb{C})$$
 è iniettiva, perché $\ker \Phi^* = (\operatorname{im} \Phi)^{\perp} = \langle 0 \rangle$. Inoltre, $\operatorname{im} \Phi^* = (\ker \Phi)^{\perp}$. Infine

$$\Phi^*(\varepsilon_3(ij)) \circ \varepsilon_4(hk) = \varepsilon_3(ij) \circ \Phi(\varepsilon_4(hk)) = \operatorname{tr}(\varepsilon_3(ji)A_0\varepsilon_4(hk)B_0) = a_{ih}b_{kj}$$

che permette di calcolare la matrice di Φ^* (come?).

prova scritta del 5 settembre 2012

ESERCIZIO 1. Siano z_1 e z_2 le radici del polinomio $P(X) = X^2 + iX + 1 \in \mathbb{C}[X]$. Si determinino modulo e argomento del numero complesso $(z_1^2 z_2 + z_1 z_2^2)^3$.

Svolgimento. $z_1^2 z_2 + z_1 z_2^2 = (z_1 + z_2) z_1 z_2 = -i$ e $(-i)^3 = i$. Quindi il modulo è 1 e l'argomento $\frac{\pi}{2}$.

ESERCIZIO 2. Sia V uno spazio vettoriale sul campo C e sia W un suo sottospazio. È vero che, per ogni spazio vettoriale T su C, si ha

$$\operatorname{Hom}_{C}\left(V/W,T\right)\cong\ker\left(\operatorname{Hom}_{C}\left(V,T\right)\overset{R}{\longrightarrow}\operatorname{Hom}_{C}\left(W,T\right)\right),$$

ove l'applicazione R associa ad ogni omomorfismo $f:V\to T$ la sua restrizione al sottospazio W? [In caso affermativo dare una dimostrazione in caso negativo proporre un controesempio.]

Svolgimento. È vero, e l'identificazione (canonica) tra i due insiemi è la seguente. Grazie alla proiezione canonica $\pi:V\to V/W$, dato un omomorfismo $u:V/W\to T$, possiamo considerare l'applicazione composta $u\circ\pi$, che è un elemento del nucleo di R. Viceversa, dato un omomorfismo $f:V\to T$ che si annulli sui vettori di W, è ben definita l'applicazione (lineare) che ad ogni elemento x+W di V/W associa f(x). Infatti, il valore di f(x) non dipende dal rappresentante scelto per x+W e l'applicazione è lineare. Queste due corrispondenze sono l'una l'inversa dell'altra.

ESERCIZIO 3. Sia V uno spazio vettoriale reale e $\mathcal{V} = \{v_1, \dots, v_5\}$ una sua base. Si consideri l'endomorfismo $\phi: V \to V$ di matrice

$$A = \alpha_{\mathcal{V}, \mathcal{V}}(\phi) = \begin{pmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -2 & -6 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 3 & 7 \\ 0 & 0 & 0 & -1 & -3 \end{pmatrix}.$$

- (a) Si determinino nucleo ed immagine di ϕ ed i sottospazi $\ker \phi + \operatorname{im} \phi$ e $\ker \phi \cap \operatorname{im} \phi$ scrivendo esplicitamente una base per ciascun sottospazio.
- (b) Si scrivano delle basi per i sottospazi $\ker \phi^n$ e $\operatorname{im} \phi^n$ al variare di n tra i numeri interi positivi e si dica se esistano degli interi n tali che $\ker \phi^n \oplus \operatorname{im} \phi^n$.
- (c) Sia $\Phi: M_5(\mathbb{R}) \to M_5(\mathbb{R})$ l'applicazione lineare definita ponendo $\Phi(X) = AXA$ per ogni $X \in M_5(\mathbb{R})$. Si determinino nucleo ed immagine di Φ e le loro dimensioni, giustificando chiaramente la risposta.
- (d) È vero che esistono due matrici rettangolari, B_0 e C_0 , tali che ogni elemento di im Φ si scriva come B_0XC_0 al variare di X in $M_3(\mathbb{R})$? In caso affermativo, si dica come determinare tali matrici e se la corrispondenza $M_3(\mathbb{R}) \to \mathrm{im}\Phi$, che manda X su B_0XC_0 , è un isomorfismo di spazi vettoriali?

Svolgimento. (a) Si ha

$$\ker \phi = \left\langle \begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ -2 \\ 0 \\ 3 \\ -1 \end{pmatrix} \right\rangle, \quad \operatorname{im} \phi = \left\langle \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ -2 \\ 0 \\ 3 \\ -1 \end{pmatrix} \right\rangle,$$

$$\ker \phi \cap \operatorname{im} \phi = \left\langle \begin{pmatrix} 0 \\ -2 \\ 0 \\ 3 \\ -1 \end{pmatrix} \right\rangle, \quad \ker \phi + \operatorname{im} \phi = \left\langle \begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ -2 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \right\rangle.$$

(b) Si ha

$$\ker \phi^2 = \left\langle \begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ -2 \\ 0 \\ 3 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \right\rangle, \quad \operatorname{im} \phi^2 = \left\langle \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ -2 \\ 0 \\ 3 \\ -1 \end{pmatrix} \right\rangle,$$
$$\ker \phi^n = \left\langle \begin{pmatrix} 1 \\ 0 \\ 0 \\ -1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right\rangle, \quad \operatorname{im} \phi^n = \left\langle \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} \right\rangle \quad \text{per ogni } n \ge 3.$$

In particolare, $V = \ker \phi^n \oplus \operatorname{im} \phi^n$ per ogni $n \geq 3$.

(c) Identifichiamo $M_5(\mathbb{R})$ con $\operatorname{Hom}_{\mathbb{R}}(V,V)$, tramite l'isomorfismo $\alpha_{V,V}: \operatorname{Hom}_{\mathbb{R}}(V,V) \to M_5(\mathbb{R})$. Un'applicazione lineare $\xi: V \to V$ appartiene a $\ker \Phi$ se, e solo se, $\xi(\operatorname{im} \phi) \subseteq \ker \phi$. Viste le dimensioni di nucleo ed immagine di ϕ , si deduce che ξ varia in un sottospazio vettoriale di dimensione 16 (i vettori di $\operatorname{im} \phi$ devono essere mandati in vettori di $\operatorname{ker} \phi$, mentre i vettori di un complementare di $\operatorname{im} \phi$ possono essere mandati in arbitrari vettori di V).

Un'applicazione lineare $\eta:V\to V$ appartiene a im Φ se, e solo se, im $\eta\subseteq \mathrm{im}\phi$ e $\mathrm{ker}\eta\supseteq \mathrm{ker}\phi$. Infatti, se indichiamo con W un complementare di $\mathrm{ker}\phi$ e con w_1,w_2,w_3 una sua base, i vettori $\phi(w_1),\phi(w_2),\phi(w_3)$ formano una base di $\mathrm{im}\phi$, che possiamo completare con dei vettori u_4,u_5 , ad una base di V. I vettori $\eta(w_i),$ i=1,2,3, appartengono ad $\mathrm{im}\phi$ e quindi esistono dei vettori x_i tali che $\eta(w_i)=\phi(x_i)$, per i=1,2,3. Se consideriamo l'applicazione lineare, $\xi:V\to V$, definita da $\xi(\phi(w_i))=x_i$, per i=1,2,3, e $\xi(u_4)=\xi(u_5)=0$, si ha $\eta=\phi\circ\xi\circ\phi$.

(d) Si ha

$$\ker \phi^{\perp} = \langle v_1^* + v_3^*, 3v_2^* + 2v_4^*, v_4^* + 3v_5^* \rangle \qquad \text{e} \qquad \operatorname{im} \phi = \langle v_1 + v_3, v_4, 2v_2 + v_5 \rangle.$$

Consideriamo quindi le matrici

$$B_0 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 2 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \mathbf{e} \qquad C_0 = \begin{pmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 3 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 & 3 \end{pmatrix}.$$

Presa una qualsiasi matrice $X \in M_3(\mathbb{R})$, l'applicazione lineare $\eta: V \to V$ tale che $\alpha_{\mathcal{V},\mathcal{V}}(\eta) = B_0XC_0$, manda a zero i vettori di ker ϕ ed ha l'immagine contenuta in im ϕ . La corrispondenza $M_3(\mathbb{R}) \to \text{im}\Phi$, che manda X su B_0XC_0 , è un omomorfismo di spazi vettoriali che è iniettivo, perché B_0 e C_0 hanno entrambo rango 3 e perciò B_0 è invertibile a sinistra e C_0 è invertibile a destra (spiegarsi bene questo fatto!). Quindi la corrispondenza è un isomorfismo. Dalla costruzione è chiaro come fare a determinare altre possibili matrici B_0 e C_0 che risolvano il problema dato.

prova scritta del 19 settembre 2012

ESERCIZIO 1. Sia $f: \mathbb{A}^1(\mathbb{C}) \to \mathbb{A}^1(\mathbb{C})$ un'applicazione affine. È vero che se f assume lo stesso valore su due punti distinti allora assume lo stesso valore su tutti i punti? È vero che esiste un'applicazione affine $f: \mathbb{A}^1(\mathbb{C}) \to \mathbb{A}^1(\mathbb{C})$ tale che f(1+i) = 1+i e f(1-i) = 3-i? In caso affermativo, si determini l'espressione di f nel riferimento canonico di $\mathbb{A}^1(\mathbb{C})$.

Svolgimento. Un'applicazione affine della retta complessa si scrive nel riferimento canonico nella forma $z \mapsto az + b$, per opportuni numeri complessi a, b. Se $z_1 \neq z_2$ e $az_1 + b = az_2 + b$, allora a = 0 e l'applicazione manda tutti i punti della retta complessa in b.

Per trovare l'applicazione in questione, basta risolvere il sistema lineare $\begin{cases} a(1+i)+b=1+i\\ a(1-i)+b=3-i \end{cases}$, che porge $a=1+i,\,b=1-i$.

ESERCIZIO 2. Siano V e W spazi vettoriali sul campo \mathbb{Q} e siano $\mathcal{V} = \{v_1, \dots, v_5\}$ e $\mathcal{W} = \{w_1, \dots, w_4\}$ delle rispettive basi. Data l'applicazione lineare $\phi: V \to W$ di matrice

$$A = \alpha_{\mathcal{V}, \mathcal{W}}(\phi) = \begin{pmatrix} 1 & 1 & 0 & 3 & 2 \\ 0 & 2 & 2 & 2 & 2 \\ -1 & 0 & 1 & -2 & -1 \\ 1 & 1 & 0 & 3 & 2 \end{pmatrix},$$

si determinino delle basi per il nucleo e l'immagine di ϕ . Detto r il rango di ϕ , determinare (se esistono) r vettori w_1, \ldots, w_r in W ed r forme lineari ξ_1, \ldots, ξ_r in V^* tali che $\phi = w_1 \otimes \xi_1 + \cdots + w_r \otimes \xi_r$ e si scrivano le matrici nelle basi date delle applicazioni $w_i \otimes \xi_i$, $i = 1, \ldots, r$.

Svolgimento. L'omomorfismo ϕ ha rango 2 e

$$\operatorname{im} \phi = \langle w_1 - w_3 + w_4, 2w_2 + w_3 \rangle, \quad \ker \phi = \langle v_1 - v_2 + v_3, 3v_1 + v_3 - v_4, 2v_1 + v_3 - v_5 \rangle.$$

I vettori v_1 e v_3 , generano un complementare di ker ϕ , perché le loro immagini tramite ϕ costituiscono la base dell'immagine scritta sopra. In particolare, $v_1 + \ker \phi$ e $v_3 + \ker \phi$ sono una base di $V/\ker \phi$ e $\ker \phi^{\perp} \subset V^*$ si può identificare con il duale di $V/\ker \phi$ [in che modo?]. Le forme lineari $\xi_1 = v_1^* + v_2^* + 3v_4^* + 2v_5^*$ e $\xi_2 = v_2^* + v_3^* + v_4^* + v_5^*$ sono la base di $\ker \phi^{\perp}$ duale della base fissata e quindi

$$\phi = \phi(v_1) \otimes \xi_1 + \phi(v_3) \otimes \xi_2 = (w_1 - w_3 + w_4) \otimes (v_1^* + v_2^* + 3v_4^* + 2v_5^*) + (2w_2 + w_3) \otimes (v_2^* + v_3^* + v_4^* + v_5^*).$$

In termini di matrici si ha

$$A = \begin{pmatrix} 1 & 1 & 0 & 3 & 2 \\ 0 & 2 & 2 & 2 & 2 \\ -1 & 0 & 1 & -2 & -1 \\ 1 & 1 & 0 & 3 & 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ -1 \\ 1 \end{pmatrix} (1 & 1 & 0 & 3 & 2) + \begin{pmatrix} 0 \\ 2 \\ 1 \\ 0 \end{pmatrix} (0 & 1 & 1 & 1 & 1)$$

che è una decomposizione del tipo richiesto.

ESERCIZIO 3. Si consideri lo spazio vettoriale \mathbb{R}^7 dotato della base canonica $\mathcal{E} = \{e_1, \dots, e_7\}$, e siano fissati i sottospazi $V = \langle e_1, e_2, e_3, e_4 \rangle$ e $W = \langle e_5, e_6, e_7 \rangle$.

(a) Si determinino, se esistono, le applicazioni lineari $\phi: V \to W$ soddisfacenti alle condizioni

$$\phi(e_1 + e_3) = e_5 + e_6 + 2e_7, \qquad \phi(e_2 + e_4) = 3e_5 + 3e_6 + 6e_7,$$

$$\phi(e_1 + e_2 + e_3) = e_5 + 3e_6 + 7e_7, \qquad \phi(e_2 - e_3 + e_4) = 4e_5 + 2e_6 + 3e_7.$$

e se ne scriva la matrice nelle basi date. Di tali applicazioni si determinino nucleo ed immagine, scrivendo esplicitamente una base per ciascun sottospazio.

- (b) Si consideri il sottoinsieme $U=\left\{\,v+\phi(v)\in\mathbb{R}^7\mid v\in V\,\,\right\}$. Si mostri che U è un sottospazio, detto il grafico dell'applicazione lineare ϕ , e si determinino la dimensione e delle equazioni cartesiane per U. Vi sono relazioni con il rango di ϕ ? Si determinino delle eventuali basi per i sottospazi $U \cap V$ e $U \cap W$.
- (c) Si diano condizioni necessarie e sufficienti affinché un sottospazio G di \mathbb{R}^7 sia il grafico di un'applicazione lineare $\psi: V \to W$.
- (d) Sia \mathbb{R}^{7*} lo spazio duale di \mathbb{R}^7 con la base duale $\mathcal{E}^* = \{e_1^*, \dots, e_7^*\}$. Si determinino una base e delle equazioni cartesiane per il sottospazio U^{\perp} e si dica che relazioni vi sono (se ve ne sono) tra questo sottospazio ed il grafico dell'applicazione trasposta $\phi^*: W^* \to V^*$.

Svolgimento. (a) I vettori $e_1 + e_3$, $e_2 + e_4$, $e_1 + e_2 + e_3$, $e_2 - e_3 + e_4$ sono una base di V e quindi l'applicazione lineare ϕ esiste ed è unica. Detta B la sua matrice nella basi date, si ha

$$B = \begin{pmatrix} 2 & 0 & -1 & 3 \\ 0 & 2 & 1 & 1 \\ -1 & 5 & 3 & 1 \end{pmatrix}. \quad \operatorname{im} \phi = \langle 2e_5 - e_7, 2e_6 + 5e_7 \rangle, \quad \ker \phi = \langle e_1 - e_2 + 2e_3, 2e_1 + e_3 - e_4 \rangle.$$

(b) La verifica che U è sottospazio è immediata. Infatti, $0 = 0 + \phi(0) \in U$ e, dati v_1, v_2 in V ed a_1, a_2 in

(b) La vernica che
$$U$$
 e sottospazio e infinediata. Hilatti, $0 = 0 + \phi(0) \in U$ e, dati v_1, v_2 in V ed a_1, a_2 in \mathbb{Q} , si ha $a_1(v_1 + \phi(v_1)) + a_2(v_2 + \phi(v_2)) = (a_1v_1 + a_2v_2) + \phi(a_1v_1 + a_2v_2) \in U$, perché ϕ è lineare.

Un vettore $\begin{pmatrix} x_1 \\ \vdots \\ x_7 \end{pmatrix}$ appartiene ad U se, e solo se, $\begin{cases} x_5 = 2x_1 - x_3 + 3x_4 \\ x_6 = 2x_2 + x_3 + x_4 \end{cases}$ e quindi si tratta di $x_7 = -x_1 + 5x_2 + 3x_3 + x_4$

un sottospazio di dimensione 4 (soluzione di un sistema lineare omogeneo di rango 3 in 7 incognite). La dimensione di U coincide con la dimensione di V, indipendentemente dal rango di ϕ . In particolare, i vettori di $U \cap V$ hanno le ultime tre componenti uguali a 0 e quindi sono i vettori di ker ϕ , una cui base è scritta sopra; mentre $U\cap W=\langle 0\rangle$ e non c'è una base.

- (c) Un sottospazio G di $\mathbb{R}^7 = V \oplus W$ è il grafico di un omomorfismo $\psi : V \to W$ se, e solo se, dim $G = \dim V$ e $G \cap W = \langle 0 \rangle$. Sotto queste ipotesi, la restrizione a G della proiezione su V, parallelamente a W, è un'applicazione iniettiva (il suo nucleo è $G \cap W$) e quindi, per motivi di dimensione, è suriettiva su V. Quindi, per ogni vettore $x \in V$ esiste un unico vettore $x + w \in G$, con $w \in W$. L'applicazione $x \mapsto w$ è l'omomorfismo cercato e quindi le condizioni date sono sufficienti. Lasciamo al lettore la verifica che le condizioni sono anche necessarie.
- (d) I vettori $e_1 + \phi(e_1), \dots, e_4 + \phi(e_4)$ sono una base di U, quindi un vettore $y_1 e_1^* + \dots + y_7 e_7^*$ appartiene a U^{\perp} se, e solo se, le sue coordinate soddisfano al sistema

$$\begin{cases} Y_1 + 2Y_5 - Y_7 = 0 \\ Y_2 + 2Y_6 + 5Y_7 = 0 \\ Y_3 - Y_5 + Y_6 + 3Y_7 = 0 \\ Y_4 + 3Y_5 + Y_6 + Y_7 = 0 \end{cases}$$

ed una base è data dai vettori

$$2e_1^* - e_3^* + 3e_4^* - e_5^*, \quad 2e_2^* + e_3^* + e_4^* - e_6^*, \quad -e_1^* + 5e_2^* + 3e_3^* + e_4^* - e_7^*.$$

Il sottospazio $V^{\perp}=\langle e_5^*,e_6^*,e_7^*\rangle$ si identifica con W^* prendendo la base data come base duale della base e_5,e_6,e_7 di W; ed analogamente si identifica $W^{\perp}=\langle e_1^*,e_2^*,e_3^*,e_4^*\rangle$ con lo spazio V^* . Con queste identificazioni U^\perp è il grafico di $-\phi^*.$