Esame di Geometria 1 – parte II (laurea in Matematica)

prova scritta del 4 Settembre 2017

ESERCIZIO 1. Sia $\phi: \mathbb{Q}^5 \to \mathbb{Q}^5$ l'endomorfismo di matrice A rispetto alla base canonica

$$A = \begin{pmatrix} 1 & 1 & 0 & -1 & 1 \\ 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 3 & 0 & 3 \\ 1 & 1 & 1 & -1 & 0 \\ 0 & 0 & -3 & 0 & -3 \end{pmatrix}$$

- (a) Calcolare: polinomio caratteristico, polinomio minimo, forma canonica di Jordan J, filtrazione degli autospazi generalizzati per ϕ e una matrice invertibile P tale che $P^{-1}AP = J$.
- (b) Elencare tutte le possibili forme di Jordan in $M_5(\mathbb{Q})$ aventi polinomio minimo che divida $\lambda_{\phi}(x)$.
- (c) Sia $W := \operatorname{End}_{\mathbb{Q}}(\mathbb{Q}^5)$ e si consideri l'endomorfismo di W definito da: $L(f) := f \circ \phi^2$ per ogni $f \in W$. Si determini la forma canonica di Jordan di L e si calcoli la dimensione $\dim_{\mathbb{Q}} \mathbb{Q}[L]$.

Svolgimento. (a) $p_{\phi}(x) = x^5$, $\lambda_{\phi}(x) = x^3$, dim ker $(\phi) = 2$, dim ker $(\phi^2) = 4$, dim ker $(\phi^3) = 5$,

- (b) L'unico autovalore di ϕ è 0 ed essendo il polinomio minimo $\lambda_{\phi}(x) = x^3$ si possono avere al massimo blocchi di ordine 3 da cui si ottengono le seguenti forme di Jordan:
- (i) 1 blocco di ordine 3 e 2 blocchi di ordine 1;
- (ii) 1 blocco di ordine 3 e 1 blocco di ordine 2;
- (iii) 2 blocchi di ordine 2 e 1 blocco di ordine 1;
- (iv) 1 blocco di ordine 2 e 3 blocchi di ordine 1,
- (v) 5 blocchi di ordine 1.
- (c) Si ha: $\ker(L^k) = \{f \in W \mid f \circ \phi^{2k} = 0\} \cong \{f \in W \mid \operatorname{im}(\phi^{2k}) \leq \ker(f)\}$; inoltre $\dim\operatorname{im}(\phi^2) = 1$ mentre $\phi^3 = 0$ quindi anche $\phi^4 = 0$ da cui si ricava che $\ker(L^2) = W$ quindi $\dim\ker(L^2) = \dim W = 25$ mentre $\dim\ker(L) = 20$ da cui si ricava che la forma canonica di Jordan di L è formata da 5 blocchi $J_{2,0}$ di ordine 2 e autovalore 0 e 15 blocchi $J_{1,0}$ di ordine 1 e autovalore 0, $\dim_{\mathbb{Q}}\mathbb{Q}[L] = 2$ essendo il polinomio minimo di L uguale a $\lambda_L(x) = x^2$.

ESERCIZIO 2.

(a) Nello spazio euclideo \mathbb{E}^3 col riferimento canonico $\mathscr{R} = \{O; e_1, e_2, e_3\}$ si determinino i valori dei parametri reali a,b,c, in modo che la matrice $\begin{pmatrix} 1 & 0 & 0 & 0 \\ \sqrt{3} & 1/2 & \sqrt{3}/2 & a \\ 2 & 0 & 0 & b \\ 0 & \sqrt{3}/2 & -1/2 & c \end{pmatrix}$ sia la matrice associata ad una rigidità

rispetto a \mathcal{R} . Si classifichino tali rigidità e se ne determinino le sottovarietà lineari unite.

- (b) Si determini la distanza e i punti di minima distanza $\overline{R} \in r$ e $\overline{S} \in s$ fra le rette: $r: \begin{cases} x=1 \\ y=0 \end{cases}$ ed $s: \begin{cases} x+y=5 \\ z=0. \end{cases}$. Si determini l'equazione cartesiana dell'asse del segmento congiungente \overline{R} e \overline{S} .
- (c) Esiste una riflessione σ tale che $\sigma(r) = s$ e $\sigma(s) = r$?

Svolgimento. (a) La richiesta equivale a richiedere che la matrice dell'applicazione lineare soggiacente sia ortogonale e ciò avviene se e solo se a=c=0 e $b=\pm 1$.

Per b=1 la rigidità è priva di punti uniti quindi è una glissorotazione. L'autospazio di autovalore 1 per l'applicazione lineare soggiacente è: $V_1 = \langle \sqrt{3}e_1 + e_2 + e_3 \rangle$. Il vettore $v = {}^t(\sqrt{3}, 2, 0) = {}^t(\sqrt{3}, 1, 1) + {}^t(0, 1, -1)$

quindi la glissorotazione è composizione della traslazione t_w con $w = \sqrt{3}e_1 + e_2 + e_3$ con la rotazione ρ la cui matrice associata rispetto ad \mathcal{R} è:

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1/2 & \sqrt{3}/2 & 0 \\
1 & 0 & 0 & 1 \\
-1 & \sqrt{3}/2 & -1/2 & 0
\end{pmatrix}$$

Le sottovarietà lineari unite sono:

Punti: Tutti e soli i punti della retta $h: O - e_3 + \langle \sqrt{3}e_1 + e_2 + e_3 \rangle$ asse di rotazione;

Rette: l'asse di rotazione h;

Piani: i piani ortogonali all'asse di rotazione: $\pi_k : \sqrt{3}x + y + z = k$ con $k \in \mathbb{R}$.

Per b=-1 la rigidità è inversa ed ha un unico punto unito $C=O+\frac{3\sqrt{3}}{2}e_1-\frac{1}{2}e_2+\frac{5}{2}e_3$ quindi la rigidità è una rotoriflessione le cui sottovarietà lineari unite sono:

Punti: unico punto unito C:

Rette: l'asse di rotazione $C + V_{-1} = C + \langle -\sqrt{3}e_1 + 3e_2 + 3e_3 \rangle$;

Piani: il piano $C + \langle -\sqrt{3}e_1 + 3e_2 + 3e_3 \rangle^{\perp}$. (b) $\overline{R} = O + e_1; \overline{S} = O + 3e_1 + 2e_2$ quindi $d(r, s) = 2\sqrt{2}$. Notiamo che le rette r ed s sono sghembe. Ogni rigidità f che scambi r ed s tiene unita la retta $\overline{R} + \langle \overline{S} - \overline{R} \rangle$ (in quanto unica retta incidente ed ortogonale sia ad r che ad s), da cui si deduce che $f(\overline{R}) = \overline{S}$ e $f(\overline{S}) = \overline{R}$. Sia u_r un versore direttore di r e u_s un versore direttore di s. Sia nel caso di riflessioni che per glissoriflessioni l'applicazione lineare soggiacente dovrebbe essere un'endomorfismo di simmetria ortogonale assiale α che soddisfi: $\alpha(u_r) = \pm u_s$, $\alpha(u_s) = \pm u_r$. In entrambi i casi il sottospazio $\langle u_r, u_s \rangle$ sarebbe α -stabile e conterrebbe un autospazio di autovalore -1 e molteplicità 1 (nel caso dei segni positivi $\alpha(u_r - u_s) = -u_r + u_s$) quindi $u_r \times u_s$ dovrebbe essere un autovettore di autovalore 1. Essendo $\overline{S} - \overline{R} \subseteq \langle u_r \times u_s \rangle$ si avrebbe $f(\overline{S}) = f(\overline{R} + (\overline{S} - \overline{R})) = f(\overline{R}) + \alpha(\overline{S} - \overline{R}) = \overline{S} + (\overline{S} - \overline{R}) \neq \overline{R}$ che contraddice $f(\overline{S}) = \overline{R}$.

(c) x + y = 3.

ESERCIZIO 3.

(1) Nello spazio affine A⁴(ℚ) col riferimento canonico R = {O; e₁, ..., e₄} si determini la matrice della proiezione sulla sottovarietà lineare L : { x₁ + x₄ = 1 / x₃ = 0 lungo la direzione W = ⟨e₁ + e₂, e₃⟩.
(2) Data M : { x₁ = 0 / x₃ = 1 si determini la posizione reciproca di L e M, si calcoli L ∩ M e L ∨ M.

- (3) Dato $P = O + 2e_3$ si determini un piano \mathbb{T} contenente P tale che dim $(\mathbb{T} \vee \mathbb{L}) = \dim(\mathbb{T} \vee \mathbb{M}) = 3$.

Svolgimento. (1)

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & -1 \\ 1 & -1 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

- (2) \mathbb{L} e \mathbb{M} sono disgiunte $\mathbb{L} \cap \mathbb{M} = \emptyset$ quindi dim $\mathbb{L} \cap \mathbb{M} = -1$, $V_{\mathbb{L}} \cap V_{\mathbb{M}} = \langle e_2 \rangle$ e $\mathbb{L} \vee \mathbb{M} = \mathbb{A}^4(\mathbb{Q})$.
- (3) $P \notin \mathbb{L} \cup \mathbb{M}$ quindi dim $P \vee \mathbb{L} = \dim P \vee \mathbb{M} = 3$. Se imponiamo che dim $(\mathbb{T} \vee \mathbb{L}) = \dim(\mathbb{T} \vee \mathbb{M}) = 3$ si ottiene $P \vee \mathbb{L} = \mathbb{T} \vee \mathbb{L}$ e $P \vee \mathbb{M} = \mathbb{T} \vee \mathbb{M}$ da cui $\mathbb{T} = (P \vee \mathbb{L}) \cap (P \vee \mathbb{M})$. L'equazione dell'iperpiano contenente P e \mathbb{L} si trova con il fascio di iperpiani di sostegno \mathbb{L} : $\alpha(x_1+x_4-1)+\beta x_1=0$ ed imponendo che passi per $P=O+2e_3$ si ricava l'equazione $2x_1+x_3+2x_4=2$ operando analogamente per $P\vee\mathbb{M}$ si ricava l'equazione $x_1=0$ quindi un sistema di equazioni cartesiane per \mathbb{T} è: $\begin{cases} 2x_1+x_3+2x_4=2\\ x_1=0 \end{cases}$

ESERCIZIO 4. Sia V uno spazio di dimensione n sul campo \mathbb{C} e ϕ un endomorfismo di V tale che $\{\phi^{2k}(v) \mid k=0,\ldots,n-1\}$ sia insieme di vettori linearmente indipendenti per un opportuno $v \in V$. Sapendo che gli unici autovalori di ϕ^2 sono 0 e 1 calcolare le possibili forme canoniche di Jordan di ϕ .

Svolgimento. L'endomorfismo ϕ^2 ammette un vettore ciclico quindi $\lambda_{\phi^2}(x) = p_{\phi^2}(x)$ da cui si ricava che la forma canonica di Jordan di ϕ^2 ha per ogni autovalore un solo blocco di ordine massimo pari alla molteplicità algebrica dell'autovalore. Essendo 0 autovalore di ϕ^2 (e ricordando che per ogni endomorfismo ψ di V dim $\ker(\psi)$ coincide con il numero di blocchi di Jordan di autovalore 0 per ψ) si ricava che dim $\ker(\phi^2) = 1$, allora 0 risulta autovalore anche di ϕ con filtrazione dei nuclei che si stabilizza con $\ker(\phi) = \ker(\phi^2)$ e $\dim(\ker(\phi)) = \dim(\ker(\phi^2)) = 1$ coincide con la molteplicità algebrica dell'autovalore 0 per l'endomorfismo ϕ (e anche per ϕ^2).

Da cui si ricava che la formula canonica di Jordan per ϕ^2 è formata da un blocco $J_{1,0}$ e un blocco $J_{n-1,1}$. Allora ϕ può essere solo:

- (1) un blocco $J_{1,0}$ e un blocco $J_{n-1,1}$,
- (2) un blocco $J_{1,0}$ e un blocco $J_{n-1,-1}$.