DMPe A-Un Padova 06 10 2005-M2A-E1

Corso di Matematica 2 (mod.A) per la Laurea in Matematica - esercizi per casa del 6 ottobre 2005

Cognome Nome Matricola

Lo studente è tenuto a consegnare l'elaborato svolto e firmato non più tardi di **Lunedì 10 ottobre 2005**, non oltre le ore 14.00, nella casella di posta a nome "Candilera", al quarto piano del Dip. Matematica, edificio Paolotti).

Lo studente dichiara di aver svolto autonomamente l'elaborato presente. Firma:

Notazione: Nel seguito si indicheranno con n_1, n_2, \ldots, n_6 le cifre del numero di matricola (ad esempio, se il proprio numero di matricola è 520431, $n_1 = 5$, $n_2 = 2$, $n_3 = 0$, $n_4 = 4$, $n_5 = 3$, $n_6 = 1$).

Esercizio (20 punti). Sia $n = n_1 + n_3 + n_5 + n_6$ e sia $\mathbf{n} = \{0, 1, \dots, n-1\}$. Si consideri l'applicazione $\sigma : \mathscr{P}(\mathbf{n}) \to \mathbb{N}$ definita ponendo

$$\sigma(A) = \begin{cases} \sum_{x \in A} x & \text{se } A \neq \emptyset \\ 0 & \text{altrimenti} \end{cases}$$

al variare di A in $\mathscr{P}(\mathbf{n})$.

- (a) Si trovino il massimo, M, ed il minimo, m, per la funzione σ .
- (b) Si dica se è vero che $\sigma(A \cup B) = \sigma(A) + \sigma(B) \sigma(A \cap B)$. Si dica se è vero che $\sigma(A \triangle B) = \sigma(A \setminus B) + \sigma(B \setminus A)$.
- (c) Si mostri che, per ogni k con $m \le k < M$, se $k \in \operatorname{im} \sigma$, allora $k+1 \in \operatorname{im} \sigma$. Si concluda che im $\sigma = [m, M] = \{ x \in \mathbb{N} \mid m \le x \le M \}$.
- (d) Si consideri la relazione di equivalenza indotta da σ su $\mathscr{P}(\mathbf{n})$ $(A \sim B \Leftrightarrow \sigma(A) = \sigma(B))$. È vero che ogni classe di equivalenza contiene un numero pari di elementi? È vero che [A] e $[\mathfrak{C}A]$ hanno lo stesso numero di elementi? Si dica per quali valori di n esiste un sottoinsieme A di \mathbf{n} tale che $A \sim \mathfrak{C}A$.
- (e) Si trovino due numeri naturali k_1 e k_2 , tali che $10^{k_1} \le |\mathscr{P}(\mathbf{n})| < 10^{k_1+1}$ e $10^{k_2} \le |\mathscr{P}(\mathbf{n})| \sim |< 10^{k_2+1}$. Ci sono valori di n per cui $k_1 = k_2$?

DMPeA-Un Padova	12.10.2005-M2A-E2

Corso di Matematica 2 (mod.A) per la Laurea in Matematica - esercizi per casa del 12 ottobre 2005

Cognome Nome Matricola

Lo studente è tenuto a consegnare l'elaborato svolto e firmato non più tardi di **Lunedì 17 ottobre 2005**, non oltre le ore 12.00, nella casella di posta a nome "Candilera", al quarto piano del Dip. Matematica, edificio Paolotti).

Lo studente dichiara di aver svolto autonomamente l'elaborato presente. Firma:

Notazione: Nel seguito si indicheranno con n_1, n_2, \ldots, n_6 le cifre del numero di matricola (ad esempio, se il proprio numero di matricola è 510243, $n_1 = 5$, $n_2 = 1$, $n_3 = 0$, $n_4 = 2$, $n_5 = 4$, $n_6 = 3$).

Esercizio (20 punti). Si consideri l'insieme $X = \{0, 1, 2, 3, 4, 5\}$ e si consideri l'insieme Y formato dalle cifre del proprio numero di matricola.

- (1) Si dica quante funzioni iniettive (risp. suriettive, biiettive) ci sono da X su Y e quante da Y su X. Determinare le cardinalità di X^Y e di Y^X .
- (2) Si esibisca una biiezione tra $\mathbb{N} \setminus X$ ed $\mathbb{N} \setminus Y$ o si spieghi perché non esista. Si dica se esiste una biiezione tra $\mathbb{N} \setminus Y$ ed \mathbb{N} .
- (3) Considerando $Z = X \cup Y$ come sottoinsieme di \mathbb{N} , da cui eredita l'ordinamento, si contino le funzioni crescenti (ordinate) da X su Z. Detta $\chi : Z \to \{0,1\}$ la funzione caratteristica di X in Z, si descrivano $\chi_*(X)$, $\chi_*(Y)$ e $\chi^*(\chi_*(\{n_1,n_3\}))$.
- (4) Sia $\beta = n_5 5$. Si verifichi per induzione la seguente identità

$$P(n): \sum_{j=2}^{n} \frac{(\beta+1)j+3-\beta}{j^3-j} = \frac{[(\beta+3)n+4](n-1)}{2n(n+1)}.$$

(5) Si determini la costante c, tale che

$$\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots + \frac{1}{n(n+1)} = c - \frac{1}{n+1}$$

e si verifichi l'uguaglianza per induzione. Si determini una formula chiusa per la somma

$$S_n = \frac{1}{1 \cdot 2 \cdot 3} + \frac{1}{2 \cdot 3 \cdot 4} + \frac{1}{3 \cdot 4 \cdot 5} + \dots + \frac{1}{n(n+1)(n+2)}$$

e la si verifichi per induzione.

	Divi Cr-on.i adova	13.10.2000-W12/1-L5		
Corso di Matematica 2 (mod.A) per la Laurea in Matematica - esercizi per casa del 19 ottobre 2005				
(Cognome Nome Matricola			
ſ	Lo studente è tenuto a consegnare l'elaborato svolto e firmato non più tardi di lunedì 24 ottob	re 2005, non oltre		
	le ore 12.00, nella casella di posta a nome "Candilera", al quarto piano del Dip. Matematica, edit	ficio Paolotti).		

10 10 2005 M2A F3

Lo studente dichiara di aver svolto autonomamente l'elaborato presente. Firma:

Notazione: Nel seguito si indicheranno con n_1, n_2, \ldots, n_6 le cifre del numero di matricola (ad esempio, se il proprio numero di matricola è 510243, $n_1 = 5$, $n_2 = 1$, $n_3 = 0$, $n_4 = 2$, $n_5 = 4$, $n_6 = 3$).

Esercizio (20 punti).

DMPoA Un Padore

- (1) Siano $a = 6n_1n_46$ e $b = 3n_23^{(\dagger)}$. Si determini d = MCD(a, b) e si scriva d = am + bn con opportuni interi, m ed n, tali che |m| < |b|, |n| < |a|.
- (2) Si risolva la congruenza $aX \equiv d \cdot n_5 \mod b$.
- (3) Posto a' = a/d e b' = b/d, si determinino gli interi X soddisfacenti alle condizioni

$$\begin{cases} a'X \equiv n_6 \mod b' \\ 7X \equiv 2 \mod 11 \end{cases}$$

- (4) Sia $\phi: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ l'applicazione definita da $\phi(x,y) = ax by$. Si determini l'immagine di ϕ . Detta R_{ϕ} la relazione di equivalenza associata a ϕ , ovvero $(x,y)R_{\phi}(x',y') \Leftrightarrow \phi(x,y) = \phi(x',y')$, si descrivano tutti gli elementi della classe di equivalenza [(0,0)]. È vero o falso che per ogni elemento $(x,y) \in \mathbb{Z} \times \mathbb{Z}$ si ha $[(x,y)] = \{ (x+h,y+k) \mid (h,k) \in [(0,0)] \}$?
- (5) Nelle notazioni dei punti precedenti, si consideri l'applicazione $\psi: \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$, definita da $k \mapsto (b'k, a'k)$. È vero o falso che $\phi \circ \psi = 0$? È vero o falso che $\psi \circ \phi$ manda (m, n) su (a, b)? Indicata con $\overline{\psi}$ l'applicazione composta $\mathbb{Z} \xrightarrow{\psi} \mathbb{Z} \times \mathbb{Z} \xrightarrow{\pi} \mathbb{Z}/b\mathbb{Z} \times \mathbb{Z}/a\mathbb{Z}$, ove π è il prodotto delle proiezioni canoniche, si dica se $\overline{\psi}$ induce un'applicazione iniettiva $\mathbb{Z}/d\mathbb{Z} \to \mathbb{Z}/b\mathbb{Z} \times \mathbb{Z}/a\mathbb{Z}$.

 $^{^{(\}dagger)}$ N.B. le cifre vanno giustapposte e non moltiplicate tra loro. Ad esempio, se il numero di matricola è 510243, allora a=6526 e b=313.

Corso di Matematica 2 (mod.A) per la Laurea in Matematica - esercizi per casa del 26 ottobre 2005					
	Cognome Nome Matricola				
	Lo studente è tenuto a consegnare l'elaborato svolto e firmato non più tardi di mercoledì 2 novembre 2005 , non oltre le ore 12.00, nella casella di posta a nome "Candilera", al quarto piano del Dip. Matematica, edificio Paolotti).				

26.10.2005-M2A-E4

DMPeA-Un.Padova

Notazione: Nel seguito si indicheranno con n_1, n_2, \ldots, n_6 le cifre del numero di matricola (ad esempio, se il proprio numero di matricola è 510243, $n_1 = 5$, $n_2 = 1$, $n_3 = 0$, $n_4 = 2$, $n_5 = 4$, $n_6 = 3$).

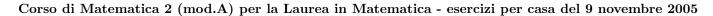
Lo studente dichiara di aver svolto autonomamente l'elaborato presente. Firma:

Esercizio (20 punti). Siano $a = n_1 + i(n_5 + 1)$ e $b = (n_2 + 1) - i(n_6 + 1)$ e si consideri la funzione di variabile complessa $f(z) = \frac{z-a}{bz-1}$.

- (1) Si determini il dominio D della funzione f, si trovi, se esiste, un sottoinsieme di D su cui f induce una biiezione e si scriva l'espressione della funzione inversa. Si determinino, se esistono, i punti uniti della funzione f.
- (2) Si determini l'insieme dei punti di D per cui |f(z)| > 2 e lo si rappresenti nel piano di Gauss.
- (3) Siano dati $\alpha, \gamma \in \mathbb{R}$ e $\beta \in \mathbb{C}$; si mostri che l'insieme $D = \{ z \in \mathbb{C} \mid \alpha z \overline{z} + \beta z + \overline{\beta} \overline{z} + \gamma = 0 \}$ è una circonferenza del piano di Gauss e si derminino centro e raggio in funzione dei numeri dati.
- (4) Si mostri che, se C è una circonferenza del piano di Gauss, allora $f_*(C)$ è una circonferenza oppure una retta. Si determinino le eventuali circonferenze, C, del piano di Gauss tali che $f_*(C)$ sia una retta. Si determinino le eventuali rette, r, del piano di Gauss tali che $f_*(r)$ sia un cerchio.
- (5) Sia $n = n_3 n_4$, ove si sono sostituite con 9 eventuali cifre uguali a $0^{(*)}$. Indicate con $1, \zeta, \zeta^2, \ldots, \zeta^{n-1}$ le soluzioni dell'equazione $z^n 1 = 0$, si scrivano tutti gli esponenti j per cui $\{ \zeta^{kj} \mid k = 1, \ldots, n \} = \{ \zeta^k \mid k = 1, \ldots, n \}$.

 $^{^{(*)}\,}$ Ad esempio, se il proprio numero di matricola è 510243, allora $n=92.\,$

DMPeA-Un.Padova	09 11 2005-M2A-E



Cognome Nome Matricola

Lo studente è tenuto a consegnare l'elaborato svolto e firmato non più tardi di lunedì 14 novembre 2005, non oltre le ore 12.00, nella casella di posta a nome "Candilera", al quarto piano del Dip. Matematica, edificio Paolotti).

Lo studente dichiara di aver svolto autonomamente l'elaborato presente. Firma:

Notazione: Nel seguito si indicheranno con n_1, n_2, \ldots, n_6 le cifre del numero di matricola (ad esempio, se il proprio numero di matricola è 510243, $n_1 = 5$, $n_2 = 1$, $n_3 = 0$, $n_4 = 2$, $n_5 = 4$, $n_6 = 3$). Chi sia sprovvisto del numero di matricola, ponga $n_1n_2 = 54$, $n_3n_4 = \text{mese di nascita}$, $n_5n_6 = \text{giorno di nascita}$.

Esercizio (20 punti). Nello spazio vettoriale \mathbb{R}^3 , si considerino i vettori:

$$u = \begin{pmatrix} n_1 - 4 \\ 0 \\ n_2 - 6 \end{pmatrix}, \qquad v = \begin{pmatrix} 0 \\ 5 - n_3 \\ n_4 - 5 \end{pmatrix}, \qquad w = \begin{pmatrix} 1 \\ -n_5 \\ 4 - n_6 \end{pmatrix}, \qquad t = \begin{pmatrix} n_2 \\ 9 - n_4 \\ 0 \end{pmatrix}.$$

- (1) Si verifichi se i quattro vettori sono linearmente indipendenti e, in caso contrario, si scriva una combinazione lineare nulla, non banale.
- (2) Si considerino i sottospazi $U = \langle u, v \rangle$ e $W = \langle w, t \rangle$ e si determinino le rispettive dimensioni. Si determinino i sottospazi $U \cap W$ ed U + W e si esibisca una base per ciascuno dei due sottospazi. Si ha $U + W = U \oplus W$?
- (3) Si dica quale tra i sottospazi $U, W, U \cap W, U + W$, contiene il vettore $r = \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix}$ e si scriva per ciascuno di questi sottospazi una base contenente il vettore r.
- (4) Ŝia p = 5 e si considerino u, v, w, t come vettori di \mathbb{F}_p^3 . Si risponda alla domanda (2) in questo nuovo contesto.
- (6) Sia p il più piccolo numero primo maggiore di $n_6 + 15$. Si contino le terne di vettori indipendenti nello spazio \mathbb{F}_n^{10} ed il numero di sottospazi di dimensione 3.

Corso di Matematica 2 (mod.A) per la Laurea in Matematica - esercizi per casa del 16 novembre 2005

Cognome Nome Matricola

Lo studente è tenuto a consegnare l'elaborato svolto e firmato non più tardi di lunedì 21 novembre 2005, non oltre le ore 12.00, nella casella di posta a nome "Candilera", al quarto piano del Dip. Matematica, edificio Paolotti).

Lo studente dichiara di aver svolto autonomamente l'elaborato presente. Firma:

Notazione: Nel seguito si indicheranno con n_1, n_2, \ldots, n_6 le cifre del numero di matricola (ad esempio, se il proprio numero di matricola è 510243, $n_1 = 5$, $n_2 = 1$, $n_3 = 0$, $n_4 = 2$, $n_5 = 4$, $n_6 = 3$).

Esercizio (20 punti). Si considerino in \mathbb{R}^4 i sottospazi

$$U = \left\langle \begin{pmatrix} n_2 - 2 \\ n_1 - 2 \\ 0 \\ n_2 - 2 \end{pmatrix}, \begin{pmatrix} n_4 + 3 \\ 0 \\ n_6 + 1 \\ 0 \end{pmatrix} \right\rangle \qquad \text{e} \qquad W = \left\langle \begin{pmatrix} 0 \\ n_1 - 2 \\ 0 \\ n_2 - 2 \end{pmatrix}, \begin{pmatrix} n_4 + 3 \\ 0 \\ n_6 + 1 \\ -n_4 - 3 \end{pmatrix} \right\rangle.$$

- (1) Si scrivano delle equazioni cartesiane per i sottospazi U e W, e si determinino $\dim U$, $\dim W$, $\dim (U \cap W)$, $\dim (U + W)$. È vero che $\mathbb{R}^4 = U \oplus W$?
- (2) Si mostri che, per ogni vettore $v \in \mathbb{R}^4$, esistono $u \in U$ e $w \in W$ tali che v = u + w. Si mostri che u e w sono univocamente determinati da v.
- (3) Si determinino i vettori u e w del punto precedente quando $v = v_0 = \begin{pmatrix} 2n_2 4 \\ n_1 2 \\ 0 \\ n_2 + n_4 + 1 \end{pmatrix}$. Si scrivano delle formule

esplicite per le coordinate dei vettori u e w quando $v = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ è un generico vettore di \mathbb{R}^4 .

- (4) Sia $\pi_1 : \mathbb{R}^4 \to \mathbb{R}^4$ l'applicazione che manda $v \in \mathbb{R}^4$ in un vettore $u \in U$ tale che $v u \in W$. Si dica se π_1 è ben definita e se è un'applicazione lineare. In caso affermativo si determinino nucleo ed immagine di π_1 . È vero che $\pi_1 \circ \pi_1 = \pi_1$?
- (5) Sia $\pi_2 : \mathbb{R}^4 \to \mathbb{R}^4$ l'applicazione definita ponendo $\pi_2(v) = v \pi_1(v)$, per ogni $v \in \mathbb{R}^4$. Posto $\sigma_1(v) = \pi_1(v) \pi_2(v)$, per ogni $v \in \mathbb{R}^4$, si calcoli $\sigma_1(v_0)$, ove v_0 è il vettore definito al punto 3. Si determini il più grande sottospazio H di \mathbb{R}^4 tale che $\sigma_1(x) = x$ per ogni $x \in H$. Si determini $\sigma_1 \circ \sigma_1$. Posto $\sigma_2(v) = \pi_2(v) \pi_1(v)$, per ogni $v \in \mathbb{R}^4$, si risponda alle stesse domande.

DMPeA-Un.Padova	24.11.2005-M2A-E7
DMFeA-UII.Faqova	

Corso di Matematica 2 (mod.A) per la Laurea in Matematica - esercizi per casa del 24 novembre 2005

Cognomo	Nomo	Matricola
Cognome	Nome	

Lo studente è tenuto a consegnare l'elaborato svolto e firmato non più tardi di **lunedì 28 novembre 2005**, non oltre le ore 12.00, nella casella di posta a nome "Candilera", al quarto piano del Dip. Matematica, edificio Paolotti.

Lo studente dichiara di aver svolto autonomamente l'elaborato presente. Firma:

Notazione: Nel seguito si indicheranno con n_1, n_2, \ldots, n_6 le cifre del numero di matricola (ad esempio, se il proprio numero di matricola è 510243, $n_1 = 5$, $n_2 = 1$, $n_3 = 0$, $n_4 = 2$, $n_5 = 4$, $n_6 = 3$).

Esercizio (20 punti). Sia $n \in \{1, 2, 3, 4\}$ tale che $n \equiv n_6 \mod 4$. Sia $V = \mathbb{R}[X]_{\leq 3}$ lo spazio vettoriale dei polinomi a coefficienti reali, di grado minore o uguale a 3 e siano

- $\pi : \mathbb{R}[X] \to V$ la proiezione su V nella direzione del sottospazio $\langle X^k | k \geq 4 \rangle$;
- $g: \mathbb{R}[X] \to \mathbb{R}[X]$ l'applicazione $P(X) \mapsto ((n+2) 2X + (n+1)X^2) P'(X)$, ove P'(X) è la derivata di P(X);
- $f: V \to V$ la composizione $V \xrightarrow{j} \mathbb{R}[X] \xrightarrow{g} \mathbb{R}[X] \xrightarrow{\pi} V$, ove j è l'inclusione $V \subset \mathbb{R}[X]$.
- (1) Verificare che f è un'applicazione lineare e scrivere la sua matrice rispetto alla base $\mathcal{B} = \{1, X, X^2, X^3\}$. Determinare le dimensioni di nucleo ed immagine di f ed una base per ciascuno dei due sottospazi.
- (2) Scrivere, se esiste, un polinomio $P_0(X) \in V$ tale che $P_0(1) = n_3$ ed $f(P_0) = (n+2) (4n+10)X + (4n+15)X^2 (4n+10)X^3$.
- (3) Dire se il sottoinsieme $A = \{ \psi \in \operatorname{End}_{\mathbb{R}} V \mid f \circ \psi = 0 \}$ è un sottospazio di $\operatorname{End}_{\mathbb{R}} V$. In caso affermativo, si consideri l'isomorfismo $\alpha_{\mathcal{B},\mathcal{B}} : \operatorname{End}_{\mathbb{R}} V \to M_4(\mathbb{R})$ e si determinino la dimensione ed una base del sottospazio $\alpha_{\mathcal{B},\mathcal{B}}(A)$.
- (4) Dire se il sottoinsieme $B = \{ \psi \in \operatorname{End}_{\mathbb{R}}V \mid \psi \circ f = 0 \}$ è un sottospazio di $\operatorname{End}_{\mathbb{R}}V$. In caso affermativo, si consideri l'isomorfismo $\alpha_{\mathcal{B},\mathcal{B}} : \operatorname{End}_{\mathbb{R}}V \to M_4(\mathbb{R})$ e si determinino la dimensione ed una base del sottospazio $\alpha_{\mathcal{B},\mathcal{B}}(B)$. Il sottoinsieme $C = \{ \psi \in \operatorname{End}_{\mathbb{R}}V \mid \psi \circ f = f \}$ è un sottospazio?
- (5) Sia p il più piccolo numero primo maggiore di $25 + n_3 + n_4$. Si contino le matrici di rango massimo in $M_{5\times3}(\mathbb{F}_p)$. Data una matrice, A, di rango massimo in $M_{5\times3}(\mathbb{F}_p)$, sia U il sottospazio di \mathbb{F}_p^5 generato dalle colonne di A. Si contino le matrici 5×3 che generano lo stesso sottospazio U.

Corso di Matematica 2 (mod.A) per la Laurea in Matematica - esercizi per casa del 30 novembre 2005

 $Cognome \ldots \ldots \ldots Nome \ldots \ldots \ldots .$ Matricola

Notazione: Nel seguito si indicheranno con n_1, n_2, \ldots, n_6 le cifre del numero di matricola (ad esempio, se il proprio numero di matricola è 510243, $n_1 = 5$, $n_2 = 1$, $n_3 = 0$, $n_4 = 2$, $n_5 = 4$, $n_6 = 3$).

Esercizio (20 punti). Si fissi $n \in \{1, 2, 3, 4\}$ in modo che $n \equiv n_6 \mod 4$ e si consideri, al variare del parametro $\lambda \in \mathbb{R}$, il sistema lineare

$$\Sigma_{\lambda} : \begin{cases} \lambda x_1 + (n-1)x_2 + nx_3 + nx_5 = 3 - 2n \\ \lambda x_1 + (n-\lambda)x_2 + \lambda x_3 + 3\lambda x_4 + (n+\lambda)x_5 = -2n - \lambda \\ 3(n-\lambda)x_3 + (3\lambda - 1)x_4 - 3\lambda x_5 = 1 \\ \lambda x_1 + (n-1)x_2 + \lambda x_3 + (n+\lambda)x_5 = 3 - 2n - \lambda \end{cases}.$$

- (1) Utilizzando il metodo di riduzione di Gauss, si determini una matrice a scalini G, riga-equivalente alla matrice completa del sistema.
- (2) Si determinino, al variare di λ , i ranghi delle matrici completa ed incompleta del sistema.
- (3) Si scrivano, quando esistono, le soluzioni del sistema Σ_{λ} in funzione del parametro λ .
- (4) Si scrivano le matrici elementari corrispondenti alle operazioni elementari utilizzate nel procedimento di riduzione di Gauss
- (5) Sia A una matrice di rango massimo in $M_{5\times 3}(\mathbb{F}_p)$ e sia U il sottospazio di \mathbb{F}_p^5 generato dalle colonne di A. Si contino le matrici 5×3 che generano lo stesso sottospazio U. Si contino i sottospazi W di \mathbb{F}_p^5 tali che $\mathbb{F}_p^5 = U \oplus W$.