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Introduction

Let R be a complete discrete valuation ring with perfect residue field k of positive character-
istic p and field of fractions K. In this paper we consider a K-1-motive MK as in [15] and its
associated Barsotti-Tate group. This last does not in general extend to a Barsotti-Tate group
over R. However, with some assumptions, it extends to a logarithmic Barsotti-Tate group over
R. This follows from [15] and Kato’s results on finite logarithmic group schemes. Once chosen
a uniformizing parameter π of R, any logarithmic Barsotti-Tate group over R is described by
two data (G,N) where G is a classical Barsotti-Tate group over R and N is a homomorphism
of classical Barsotti-Tate groups. Moreover, if R = W (k), N induces a W (k)-homomorphism
N : M(Gk) → M(Gk) on Dieudonné modules such that FNV = N and N 2 = 0. In the first
part of the paper we recall these constructions and we show how to relate N with the “geomet-
ric monodromy” introduced by Raynaud. In the second part of the paper we give an explicit
description of N in terms of additive extensions and integrals. In the last part of the paper
we describe how to recover the logarithmic Barsotti-Tate group attached to a 1-motive from
concrete schemes endowed with a suitable logarithmic structure.

1. 1-motives

Definition 1. Let S be a scheme. An S-1-motive M = [u : Y → G] is a two term complex (in
degree -1, 0) of commutative group schemes over S such that:

i) Y is an S-group scheme that locally for the étale topology on S is isomorphic to a constant
group of type Zr,

ii) G is an S-group scheme extension of an abelian scheme A over S by a torus T ,

iii) u is an S-homomorphism Y → G.

Morphisms of S-1-motives are usual morphisms of complexes.
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Definition 2. Let MK be a K-1-motive. One says that MK

i) has good reduction if MK extends to a 1-motive over R, i.e. if
– YK is not ramified over R,
– TK has good reduction over R,
– AK has good reduction over R,
– uK extends to a homomorphism u : Y → G.

(Hence GK extends to a semi-abelian R-group scheme G.)

ii) has semistable reduction if
– YK is not ramified over R,
– TK has good reduction over R,
– AK has semistable reduction over R.

(Hence GK extends to a smooth R-group scheme with semi-abelian special fibre.1)

iii) has potentially semistable (resp. good) reduction if it acquires semistable (resp. good) reduc-
tion after a finite extension of K.

iv) is strict if GK has potentially good reduction.

Observe that any K-1-motive has potentially semistable reduction. However, even if we allow
base change, the morphism uK does not in general extend over R. A simple example is the Tate
curve uK : Z → Gm,K with uK(1) = π the uniformizing element. It has semistable reduction but
no good reduction.

In the following we will consider only K-1-motives or R-1-motives. For more details see
Raynaud’s paper [15]. We recall now a definition from [10] 4.6.1.

Definition 3. A log 1-motive over R is a triple (Y,G, uK) where Y , G are commutative group
schemes over R with Y (resp. G) satisfying condition i) (resp. ii)) in Definition 1 for S =
Spec (R) and uK : YK → GK is a homomorphism on generic fibres.

Observe that if (Y,G, uK) is log 1-motive then [uK : YK → GK ] is a strict K-1-motive.

1.1. The Barsotti-Tate group attached to a K-1-motive

Let n be any positive integer and denote by nH the kernel of n-multiplication on a group H. For
any K-1-motive MK = [uK : YK → GK ] one can construct an exact sequence of finite n-torsion
group schemes over K:

(1) η(n, uK) : 0 → nGK → nMK → YK/nYK → 0

where nMK is the cokernel of the homomorphism

YK
(−n,−uK)−→ YK ×GK

GK ;

1 Cf. [15] §4.
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here the fibre product is taken with respect to uK on YK and the n-multiplication on GK . As
explained in [15] 3.1, nMK is the H−1(C(M,n)) with C(M,n) the cone of the n-multiplication
on the 1-motive MK , i.e.

C(M,n) : YK −→ YK ⊕GK −→ GK

y 7→ (−nx,−uK(y))
(y, g) 7→ uK(y)− ng

in degree −2, −1, 0.

Definition 4. The p-divisible group or Barsotti-Tate group of the K-1-motive MK is lim
→

(pmMK).

In the previous notations we have then an exact sequence of BT-groups:

0 → lim
→

(pmGK) → lim
→

(pmMK) → lim
→

(YK/p
mYK) → 0.

It is clear that if MK has good reduction then lim
→

(prMK) extends to a BT-group over R. We
want to understand what happens in the general case. We state now a result that we will need
later.

Lemma 1. Let notations be as above.

i) Consider the following diagram obtained via push-out by uK :

0 // YK

uK

��

−n // YK

��

// YK/nYK

��

// 0

0 // GK
// YK qYK

GK
// YK/nYK

// 0

The short exact sequence η(n, uK) in (1) is isomorphic to the sequence of kernels for the
n-multiplication of the lower sequence.

ii) Consider the following diagram obtained via pull-back by uK

0 //
nGK

��

// YK ×GK
GK

��

// YK

uK

��

// 0

0 //
nGK

// GK
n // GK

// 0

The short exact sequence η(n, uK) in (1) is isomorphic to sequence of cokernels for the
n-multiplication of the upper sequence.

Raynaud shows in [15] that to any K-1-motive it is possible to associate in a canonical way a
K-1-motive with potentially good reduction M ′K having the same BT-groups. His construction
makes use of rigid analytic methods. As a consequence, working with BT-groups attached to a
K-1-motive, one can always assume the K-1-motive to be strict. We will do so in the sequel.
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1.2. Geometric monodromy

Given a strict K-1-motive, the failure of good reduction is controlled by a pairing, the so-called
geometric monodromy. To define it we need to recall some facts on the Poincaré bundle.

Remark 1. Let MK = [uK : YK → GK ] be a K-1-motive with Y ∗K be the group of characters
of the torus part TK of GK and AK the abelian variety GK/TK . It is known2 that to give a
1-motive as above is equivalent to giving morphisms hK : YK → AK , h∗K : Y ∗K → A∗K (with A∗K
the dual variety of AK) and a trivialization sK : YK ×Y ∗K → PK of the pull-back via hK ×h∗K of
the biextension PK . Suppose that GK has good reduction. Then both AK and the dual abelian
variety A∗K have good reduction and the Poincaré bundle PK extends to a biextension P in
Biext1(A,A∗; Gm,R) on Néron models. Also hK , h

∗
K extend to morphisms h, h∗ over R and the

pull-back of P via h × h∗ provides a biextension PY in Biext1(Y, Y ∗; Gm,R). Moreover this is
trivial on generic fibres because of the existence of the trivialization sK .

Definition 5 ([15] §4.3). Let MK = [uK : YK → GK ] be a strict K-1-motive and Y ∗K the group
of characters of TK . The geometric monodromy of MK is a morphism

(2) µ : YK ⊗ Y ∗K → Q

defined as follows:

i) Suppose that GK has good reduction. Then PY ∈ Biext1(Y, Y ∗; Gm,R) is trivial on generic
fibres (see Remark 1). Hence the biextension PY is the pull-back of

0 → Gm,R → G → i∗Z → 0

via a unique3 µ0 ∈ Hom(YK ⊗ Y ∗K ,Z) = Hom(Y ⊗ Y ∗, i∗Z) = Biext0(Y, Y ∗; i∗Z). One sets
µ = µ0.

ii) In the general situation, GK reaches good reduction after a Galois extension K ′ of K. Now
the monodromy on K ′ is compatible with Galois action and can be descended to a µ as in
(2).

Observe that Q has to be thought of as the group of values of the valuation of the algebraic
closure of K with Z the group of values assumed on K.

Let Kun be the maximal unramified extension of K, v : (Kun)∗ → Z the valuation and Run

its valuation ring. Observe that in the hypothesis of i) there is a valuation vP on PK(Kun) and
that µ0 = vP ◦ sK holds. Moreover if the abelian part is trivial, then PK = Gm,K , hK and h∗K
are the structure morphisms and sK : YK ⊗ Y ∗K → Gm,K is the usual pairing (y, y∗) 7→ y∗(y).
Hence µ0(y, y∗) = v(y∗(y)). These results can be generalized. See also 4.6/6 in [15].

Lemma 2. Let notations be as above. Suppose that GK has good reduction over a finite field
extension L of K. Then the geometric monodromy pairing µ coincides with the pairing

YK ⊗ Y ∗K → Q, (y, y∗) 7→ 1
e
vL(y∗(t))

2 See for example [3] 10.2.14 and [1] II, 2.3.3.
3 Notations are those in [6] VIII; we used that Biext1(Y, Y ∗;G) ∼= Biext1(YK , Y ∗

K ; Gm,K).
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where e is the index of ramification of L/K, vL is the extension of the valuation of L to Lun,
t ∈ TK(Lun) is any point whose image in the component group Zd of TLun (as well as of GLun)
coincides with the image of uK(y) and y∗(t) ∈ (Lun)∗ for any y∗ : TLun → Gm,Lun .

Proof. We may reduce to the case L = K. As explained above µ0(y, y∗) is obtained via the
valuation on PK(Kun). Consider the push-out

0 // TK

y∗

��

// GK

gy∗

��

// AK
// 0

0 // Gm,K
// Gy∗ // AK

// 0

(3)

where Gy∗
∼= PK|AK×h∗(y∗). The valuation vP on PK(Kun) restricts to a vy∗ on Gy∗(Kun) and

µ0(y, y∗) = vy∗(gy∗ ◦ uK(y)) holds. Let now t ∈ TK(Kun) be a point having the same image as
uK(y) in the component group Zd. Then one has is vy∗(gy∗ ◦ uK(y)) = v(y∗(t) for any character
y∗ and uK(y)− t ∈ G(Run). To conclude it is now sufficient to observe that vy∗ ◦ gy∗ is zero on
G(Run) and that v(y∗(t)) = vy∗(gy∗t). ut

1.3. Devissage

Once having realized that the defect of good reduction is controlled by the geometric monodromy,
Raynaud explains, under the hypothesis that the geometric monodromy takes integer values, how
to decompose a strict 1-motive into the sum of two 1-motives, the first having potentially good
reduction and the second codifying the monodromy.

Theorem 1. Let MK = [uK : YK → GK ] be a strict K-1-motive such that the geometric mon-
odromy µ factors through Z. Then for any choice of a uniformizing parameter π of R there is a
canonical decomposition

(4) uK = u1
K,π + u2

K,π

where u2
K,π factors through the torus part TK and is given by the formula

u2
K,π : YK → TK = Hom(Y ∗K ,Gm,K) ι→ GK

y 7→ (y∗ 7→ πµ(y,y∗))(5)

while u1
K,π has potentially good reduction.

Proof. [15], 4.5.1 ut

Remark 2. If both GK and YK have good reduction (i.e. if MK comes from a log 1-motive), the
geometric monodromy factors through Z and the 1-motive u1

K,π in the previous decomposition
has good reduction.
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Remark 3. Let notations be as above and ρ : GK → AK be the morphism of GK in its abelian
quotient. It is clear that ρ◦uK = ρ◦u1

K,π has potentially good reduction. Moreover the push-out of
η(n, uK) with respect to ρn : nGK → nAK (the restriction of ρ to the kernels of n-multiplication)
is η(n, ρ ◦ uK). More precisely we have:

(6) nTK

w

��

nTK

τ

��
η(n, uK) : 0 //

nGK

ρn

��

//
nMK

g

��

h // YK/nYK
// 0

η(n, ρ ◦ uK) : 0 //
nAK

//
nM

A
K

f // YK/nYK
// 0

Suppose that the hypothesis of Theorem 1 holds. We wish to compare the sequence of finite
n-torsion group schemes η(n, uK) in (1) associated to uK with the sequences associated to u1

K,π

and u2
K,π.

Lemma 3. Let MK : [uK : YK → GK ] be a strict K-1-motive such that the geometric monodromy
factors through Z. Let uK = u1

K,π + u2
K,π be the decomposition of Theorem 1. Then η(n, uK) is

isomorphic to η(n, u1
K,π) + η(n, u2

K,π) where + denotes Baer’s sum.

Proof. Consider the homomorphism

Hom(YK , GK) ∂−→ Ext1(YK , nGK) ∼= Ext1Z/nZ(YK/nYK , nGK)

that associates to a 1-motive uK the pull-back of 0 → nGK → GK
n→ GK → 0 by uK , resp. the

sequence of cokernels of such pull-back. Here the subscript Z/nZ stands for extensions in the
category of Z/nZ-modules. We have already seen in Lemma 1 ii) that the isomorphism class of
η(n, uK) is ∂(uK). The result follows from the fact that ∂ is a homomorphism. ut

Lemma 4. Given a K-1-motive uK : Zr → Gd
m,K , (the isomorphism class of) the sequence

η(n, uK) extends over R if and only if u2
K,π is divisible by n, i.e. if and only if η(n, u2

K,π) is
isomorphic to the trivial sequence.

Proof. Recall the following diagram

Hom(Zr,Gd
m,R)

��

n // Hom(Zr,Gd
m,R)

��

∂ // Ext1(Zr,µd
n,R)

��

// 0

Hom(Zr,Gd
m,K) n //

��

Hom(Zr,Gd
m,K) ∂ //

��

Ext1(Zr,µd
n,K) // 0

Zrd
n // Zrd
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where as above ∂ is obtained by pull-back. Suppose now that η(n, uK) = ∂(uK) extends over
R. The same is true for η(n, u1

K,π) because u1
K,π has good reduction and hence also η(n, u2

K,π)
extends over R. Let wK be a 1-motive with good reduction such that η(n,wK) = η(n, u2

K,π).
Define w′K := wK − u2

K,π; observe that this is also the Raynaud decomposition of w′K and that
∂(w′K) = 0. Hence there exists a 1-motive w′′K such that n · w′′K = w′K . Let w′′K = w1

K,π + w2
K,π

be Raynaud’s decomposition. It is clear that the n-multiplication preserves Raynaud’s decom-
positions and hence n · w1

K,π = wK while n · w2
K,π = −u2

K,π. Hence u2
K,π is divisible by n.

ut

1.3.1. Geometric monodromy à la Kato. In the following we will work with group schemes as
sheaves of Z-modules on the flat site. We wish to understand better the K-1-motive u2

K,π in (4)
in order to compare Kato’s monodromy and Raynaud’s monodromy.

Given an étale group scheme NK isomorphic to some Zr over an algebraic closure of K,
denote by N∨K the étale group scheme Hom(NK ,Z) and by N∨D

K its Cartier dual. We have
Z∨D = Gm,K and N∨D

K = NK ⊗Z Gm,K . The geometric monodromy µ : YK ⊗Z Y
∗
K → Z of uK ,

provides a morphism

ν : YK −→ Hom(Y ∗K ,Z) =: (Y ∗K)∨(7)
y 7→ µ(y,−)

and hence a morphism of tori

(8) ν ⊗ id : YK ⊗Z Gm,K → (Y ∗K)∨ ⊗Z Gm,K = (Y ∗K)D = TK .

Let HK(1) denote the Cartier dual of the Pontrjagin dual4 for any finite étale K-group scheme
HK . Then µn = Z/nZ(1) and if n kills HK one has HK(1) = HK ⊗Z/nZ µn. Hence we can
introduce a “monodromy” homomorphism of level n

(9) νn : YK/nYK(1) = YK ⊗Z µn −→ (Y ∗K)∨ ⊗Z µn = nTK (↪→ nGK)

as the restriction of ν ⊗ id to the n-torsion subgroups. It was defined in [15] 4.6.
Consider now the Tate 1-motive

π : Z → Gm,K , 1 7→ π.

It is clear from (5) that u2
K,π has the following factorization

(10) YK

πY :=idYK
⊗π

−→ YK ⊗Z Gm,K
ν⊗id−→ (Y ∗K)∨ ⊗Z Gm,K = TK

ι−→ GK

y 7→ y ⊗ π 7→ µ(y,−)⊗ π = πµ(y,−)

where ν was defined in (7).

Lemma 5. Let (Y,G, uK) be a log 1-motive and denote by ι : TK → GK the torus part. Then
the homomorphism

Hom(Y,G)×Hom(YK ⊗Gm,K , TK) −→ Hom(YK , GK)
(u1, wK) 7→ u1

K + ι ◦ wK ◦ πY(11)

is an isomorphism.

4 The Pontrjagin dual of HK is Hom(HK , Q/Z).
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The homomorphism πY was defined in (10).

Proof. The surjectivity is clear because any homomorphism uK on the right hand side represents
a K-1-motive and we have just seen how to decompose uK as sum of a 1-motive u1

K,π and a
1-motive u2

K,π = ι◦(ν⊗ id)◦πYK
with ν the monodromy homomorphism. In our hypothesis u1

K,π

extends to a R-1-motive u1
π. Hence uK is the image of the pair (u1

π, ν ⊗ id). For the injectivity:
the first group on the left injects into Hom(YK , GK), so we are reduced to showing that given a
wK ∈ Hom(YK ⊗Gm,K , TK) the K-1-motive ι ◦ wK ◦ πY has good reduction if and only if wK

is trivial. Denote by µ(wK) the pairing corresponding to wK via the canonical isomorphisms

Hom(YK ⊗Gm,K , TK) = Hom(Y ∗K , Y
∨
K ) = Hom(YK ⊗ Y ∗K ,Z).

The image of (0, wK) via the map in (11) is a K-1-motive; let µ(wK) denote its geometric
monodromy. Such K-1-motive has good reduction if and only if µ(wK) = 0 and this last occurs
if and only if wK = 0. ut

We restrict again to the consideration of the 1-motive π : Z → Gm,K , 1 7→ π. Observe that
it satisfies the hypothesis of remark 2 and that in this case u1

K,π is trivial. Let denote by

(12) θπ
n,K : 0 → µn → nEK → Z/nZ → 0

the short exact sequence η(n,π). The following results will be used in Theorem 4 to compare
Raynaud’s monodromy and Kato’s monodromy.

Theorem 2. Let n be a positive integer and θπ
n,K the short exact sequence just defined. Suppose

that uK is a strict K-1-motive as in Theorem 1 with uK = u1
K,π + u2

K,π its Raynaud decomposi-
tion.

i) The geometric monodromy of uK and the one of u2
K,π coincide.

ii) The short exact sequence η(n, u2
K,π) associated to M2

K = [u2
K,π : YK → TK ] is isomorphic to

the push-out via νn of the sequence

θπ
n,K ⊗Z/nZ YK/nYK : 0 → µn ⊗Z/nZ YK/nYK → nEK ⊗Z/nZ YK/nYK → YK/nYK → 0

Proof. The first fact follows immediately from the definition of u2
K,π. For the second assertion,

consider the factorization of u2
K,π described in (10). It says that there is a commutative diagram

η(n,πY ) : 0 //
n(Y ∨K )D

νn

��

//
nM

π
K

��

// YK/nYK
// 0

η(n, u2
K,π) : 0 //

nTK
//
nM

2
K

// YK/nYK
// 0

where Mπ
K = [πY : YK → YK ⊗Gm,K ]. It is clear that η(n,πY ) = θπ

n,K ⊗ YK/nYK by definition
of πY . Hence η(n, u2

K,π) is isomorphic to νn∗(θπ
n,K ⊗YK/nYK), i.e to the push-out via νn of the

sequence θπ
n,K ⊗Z/nZ YK/nYK . ut
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Corollary 1. Suppose furthermore that YK and GK have good reduction and consider the fol-
lowing homomorphism

(13)
Ψ : Ext1Z/nZ( Y

nY , nG) × Hom( YK

nYK
(1), nGK) −→ Ext1Z/nZ( YK

nYK
, nGK)

(η1 , h) 7→ η1
K + h∗(θπ

n,K ⊗Z/nZ
YK

nYK
)

where η1
K means the restriction of η1 to generic fibres.

i) If uK : YK → GK is a K-1-motive with Raynaud decomposition uK = u1
K,π + u2

K,π, then the
class of η(n, uK) lies in the image of Ψ . More precisely it corresponds to the pair (η(n, u1

π), νn)
where νn is the “monodromy” homomorphism of level n as in (9) and u1

π is the R-1-motive
that extends u1

K,π.

ii) If YK
∼= Zr and GK

∼= Gd
m,K , then Ψ is an isomorphism.

Proof. The first assertion is an immediate consequence of the previous Theorem, part i). We
restrict then to the case nGK = µd

n and YK/nYK = Zr/nZr. For the surjectivity it is sufficient to
remark that any extension class on the right is represented by a η(n, uK) for a strict K-1-motive
uK because of the vanishing of H1(K,Gd

m,K) = Ext1(Z,Gd
m,K). For the injectivity: the group

of extensions on the left injects in the group of extensions on the right. It remains to check
that h∗(θπ

n,K ⊗ Zr/nZr) extends over R if and only if h = 0. Now, h : µr
n → µd

n extends to
many homomorphisms h̃K : Gr

m,K → Gd
m,K . Choose one of them and let uK : Zr → Gd

m,K be
h̃K ◦ πZr with πZr as in (10). It is clear that h coincides with the monodromy homomorphism
of level n of the K-1-motive uK . By hypothesis η(n, uK) ∼= h∗(θπ

n,K ⊗ Zr/nZr) extends over
R. Hence uK = u1

K,π + u2
K,π with u2

K,π divisible by n (see Lemma 4). This implies that the
monodromy of uK that equals the monodromy of u2

K,π is a multiple of n and hence its monodromy
homomorphism of level n is trivial, i.e. h = 0. ut

Theorem 2 ii) and its corollary are the only original results of the first part of this paper.
They become interesting once one realizes that Kato proves an analogous result for extensions
of finite logarithmic group schemes (cf. Theorem 3). The comparison of these two results makes
it possible to extend nMK to a finite logarithmic group scheme over R.

We close this section by giving an example that should clarify all the previous constructions.

1.3.2. Tate’s curve. Let n be a positive integer and

uK : Z → Gm,K ; 1 7→ q = επnr+s, 0 ≤ s ≤ n− 1, 0 ≤ r, ε ∈ R∗

an elliptic curve with split multiplicative reduction. The canonical decomposition of Theorem 1
provides u2

K,π : Z → Gm,K , 1 7→ πnr+s and u1
K,π : Z → Gm,K , 1 7→ ε. The geometric monodromy

µ : Z ⊗ Z → Z depends only on u2
K,π and it sends 1 ⊗ 1 to rn+ s. The “monodromy” homo-

morphism of level n, νn : Z/nZ ⊗ µn = µn → µn, is the s-multiplication. It is also clear that
η(n, u2

K,π) is isomorphic to s · θπ
n,K .
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2. Finite logarithmic group objects

For the theory of logarithmic spaces we refer to [12] and [9]. We need also some definitions and
results in [7], [8].

Let π be a fixed uniformizing element of R and T the spectrum of R with the standard log
structure given by the chart N → R, 1 7→ π. Denote by T log

fl the logarithmic flat site over T .
A finite (representable) logarithmic group G over R is a sheaf of abelian groups over T log

fl that
is represented by a fine saturated log-scheme over R, log flat and of Kummer type over R so
that its underlying scheme is finite over R. For an example, consider Tate’s elliptic curve EK

defined via π : Z → Gm,K , 1 7→ π. Kato shows how to extend EK to a group object Eπ in the
category of valuative logarithmic spaces over R. This is explained by Illusie in [12] 3.1. The kernel
of n-multiplication on Eπ, denoted by n(Eπ), is obtained via log blow-ups from a logarithmic
space having

(14) nE = Spec
(
⊕n−1

i=0

R[xi]
(xn

i − πi)

)
as underlying scheme. Moreover there is a short exact sequence of finite logarithmic groups given
by

(15) θπ
n : 0 → Z/nZ(1) → n(Eπ) → Z/nZ → 0.

(cf. [12] 3.2.1.4) whose restriction to generic fibres is the short exact sequence θπ
n,K that we used

in Theorem 2 (cf. [12] 3.2.1.4.).
Let now F (resp. H) be n-torsion finite (resp. finite étale) group schemes over R endowed

with the inverse image log structure. A result of Kato (cf. [7] p. 84) says that extensions (of
sheaves in T log

fl )

ηlog : 0 → F → Glog → H → 0

correspond bijectively (up to isomorphisms) to pairs (Gcl, N) where

ηcl : 0 → F → Gcl → H → 0

is a classical extension of group schemes over R and N : H(1) → F is a morphism of R-group
schemes where H(1) = H ⊗Z/nZ µn. Moreover ηlog is the Baer sum of ηcl and the push-out by
N of the extension θπ

n ⊗Z/nZ H.

Theorem 3 (Kato). Let notations be as above. There is an isomorphism

Ext1Rfl(H,F )×Hom(H(1), F ) ∼−→ ExtT log(H,F )
(ηcl, N) 7→ ηcl +N∗(θπ

n ⊗H)

Proof. cf. [7]. ut

Observe that the statement of this theorem is similar to that of Corollary 1. We will explain
in Theorem 4 that they are deeply related. Before proceeding we need the following result.
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Lemma 6. Let MK = [uK : YK → GK ] be a K-1-motive and suppose that it comes from a log
1-motive (Y,G, uK). Having fixed a uniformizing parameter π of R, let uK = u1

K,π + u2
K,π be

Raynaud’s decomposition of Theorem 1. Then:

i) u1
K,π extends to a R-1-motive u1

π;

ii) The monodromy homomorphism of level n of uK , i.e. νn : YK/nYK(1) → nGK , extends to a
homomorphism νn,R : Y/nY (1) → nG.

Proof. Both assertions are evident because it follows from the hypothesis that the torus part TK

of GK extends to a torus over R; hence also its group of characters Y ∗K extends to an étale group
over R, say Y ∗. This implies that the geometric monodromy takes values in Z and it extends to
a biadditive map Y ⊗Y ∗ → Z over R. This last provides the homomorphism νn,R we are looking
for. ut

We can now state the relation between Raynaud’s geometric monodromy of a K-1-motive
and Kato’s monodromy of its logarithmic BT-group.

Theorem 4. Let MK = [uK : YK → GK ] be a K-1-motive coming from a log 1-motive (Y,G, uK).
Let νn,R be the homomorphism in Lemma 6 with u1

π : Y → G the R-1-motive that extends the
u1

K,π of Raynaud’s decomposition.
The sequence η(n, uK) in (1) extends (up to isomorphisms) to a sequence of finite loga-

rithmic group schemes and precisely, in the notations of Theorem 3, to the one associated to
(η(n, u1

π), νn,R).
In particular, νn ( i.e. Raynaud’s monodromy homomorphism of level n associated to uK) is

Kato’s monodromy homomorphism N restricted to generic fibres.

Proof. We know from Lemma 3 and Theorem 2 that η(n, uK) is isomorphic to

η(n, u1
K,π) + (νn)∗(θπ

n,K ⊗ YK/nYK).

Moreover, as u1
K,π extends to an R-1-motive u1

π (cf. Lemma 6) also η(n, u1
K,π) extends to a se-

quence of classical group schemes η(n, u1
π); on the other hand the sequence θπ

n,K in (12) extends
to the sequence of logarithmic groups that we denoted by θπ

n in (15). Hence the sequence of loga-
rithmic groups η(n, u1

π)+(νn,R)∗(θπ
n⊗Y/nY ) restricted to generic fibres is (up to isomorphisms)

η(n, uK). ut
As all constructions above behave well with respect to inclusion homomorphisms pmMK →

pm+1MK we can conclude that:

Corollary 2. With hypothesis as above, let M1 denote the R-1-motive [u1
π : Y → G]. The

BT-group of uK , lim
→

(pmMK), extends to a logarithmic BT-group lim
→

(pmM1, νpm,R) where lim
→ pmM1

is the BT-group of M1
π.

Remark 4. As suggested in [10] 4.7 in the case of equal characteristic p one could use the previous
corollary for giving an alternative construction of the functor Dlog in loc. cit. that associate to
a log 1-motive over R a Dieudonné crystal.
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Remark 5. Let F = (Z/nZ)r and H = µd
n. The decomposition in Theorem 3 restricted to generic

fibres coincides with the isomorphism of Corollary 1. In particular this is true working with the
K-1-motive EK = [uK : Z → Gm,K ] given by 1 7→ q = επnr+s, 0 ≤ s ≤ n− 1, ε ∈ R∗. The kernel
of n-multiplication nEK extends (up to isomorphism) to a finite logarithmic group (nE

cl, N)
where N is the s-multiplication on µn and nE

cl is the finite group scheme that lies in the middle
of η(n, u1

π) for u1
π : Z → Gm,R, 1 7→ ε.

3. Monodromy on Dieudonné modules

Throughout this section R = W (k) and MK = [uK : YK → GK ] will be a fixed K-1-motive
with YK

∼= Zr. We will suppose that GK has good reduction and its extension over R, G,
has split torus part of rank d > 0. We have seen in Corollary 2 that under these hypotheses
the BT-group MK(p) := lim

→
(pmMK) associated to uK extends to a logarithmic BT-group, say

M(p)log = (M(p), N) where M(p) = lim
→

(pmM1
π) is a classical BT-group over R and

N : Y ⊗Z µp∞ → Y ∗∨ ⊗ µp∞ → lim
→

(pmG)

is the monodromy homomorphism: the first morphism is νR ⊗ id where νR is the extension of
ν : YK → Y ∗∨K in (7) over R, which exists since YK , Y

∗
K are unramified.

3.1. The identification of Dieudonné modules of Qp/Zp and µp∞

For the theory of Dieudonné modules we refer to [5]: If G is a BT-group over k, its Dieudonné
module is M(G) = Hom(G, ĈW k), where Hom means homomorphisms of k-formal groups. In
particular, M((Qp/Zp)k) = ζW (k) is a free W (k)-module of rank 1 whose canonical generator
ζ is the natural embedding of (Qp/Zp)k in ĈW k once Qp/Zp is identified with CW (Fp); more
precisely, ζ corresponds to the covector y = (. . . , y−2, y−1) ∈ ĈW k(kQp/Zp) defined by y−i =∑

a∈Qp/Zp
a−ifa, where fa(b) = δab is the Kronecker delta.

Let us recall that elements of M(G) can also be described as isomorphism classes of rigidified
extensions of G by Ga,k (as fppf sheaves, cf. [11] §5.2 or [13] §15). Given a ϕ ∈ M(G), the
corresponding additive extension is obtained as the pull-back via ϕ of the extension

0 → Ga,k → ĈW k
V→ ĈW k → 0

where V is the Verschiebung of ĈW k; it will be denoted by ϕadd
p∞ . In particular, one can prove

that the extension

ζadd
p∞ : 0 → Ga,k → F → (Qp/Zp)k → 0,

is isomorphic to the push-out of

(16) ζp∞ : 0 → Z → Z[1/p]
f→ Qp/Zp → 0
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via the canonical homomorphism Z → Ga,k. Let σ : Qp/Zp → Z[1/p] be the section of f such
that 0 ≤ σ(a) < 1, for a ∈ Qp/Zp. The factor set of ζp∞ (and hence of ζadd

p∞ ) corresponding to
the section σ is then

(17) γ : (Qp/Zp)× (Qp/Zp) → Z ( → Ga,R), (a, b) 7→ [σ(a) + σ(b)]

where square brackets mean integral part. The extension ζadd
p∞ has a canonical lifting (ζadd

p∞ )R

to R obtained as the push-out of ζp∞ in (16) (now as a sequence over R) via the morphism
Z → Ga,R. The restriction of (ζadd

p∞ )R on generic fibres splits, and the map

h : lim
→

Z/piZ = Qp/Zp → Ga,K , a 7→ σ(a)

is the trivialisation. Let K[X] be the affine algebra of Ga,K and let h∗i : K[X] → KZ/piZ, i > 0,
be the corresponding K-homomorphisms; one gains an element

(18) h∗(X) =
∑

a∈Qp/Zp

σ(a)fa ∈ KQp/Zp = lim
←
KZ/piZ.

If P denotes the coproduct of KQp/Zp , then

Ph∗(X)− 1⊗̂h∗(X)− h∗(X)⊗̂1 =
∑

a,b∈Qp/Zp

[σ(a) + σ(b)]fa⊗̂fb ∈ RQp/Zp⊗̂RQp/Zp ;

this tells us that h∗(X) is an integral of second kind5 of RQp/Zp .
Moreover, the covector y, and hence ζ, can be recovered from h∗(X). In fact by a direct

computation one can check that h∗(X) =
∑∞

i=0 p
−iŷpi

−i, where ŷ−i ∈ RQp/Zp is a lifting of
y−i ∈ kQp/Zp .

Also the Dieudonné module of µp∞ is a free W (k)-module of rank 1. Let R[[Y ]] be the affine
algebra of µp∞,R, where Y is the canonical parameter and let l(Y ) ∈ Z(p)[[Y ]] be the Artin–Hasse
logarithm of 1 + Y , i.e.

exp(−l(Y )− p−1l(Y )p − p−2l(Y )p2
− . . . ) = 1 + Y,

then, M((µp∞)k) = δW (k), where δ = (. . . , l0(Y0), l0(Y0)), and l0(Y0) is the image of l(Y ) in the
affine algebra of µp∞,k.

Let us remark that −log(1 + Y ) = l(Y ) + p−1l(Y )p + p−2l(Y )p2
+ . . . is the integral of first

kind of (µp∞)R obtained by lifting δ.
Let (Qp/Zp)∨k = lim−→(Z/pnZ)∨k be the Pontrjagin dual of (Qp/Zp)k; then µp∞,k is the Cartier

dual of (Qp/Zp)∨k ; as a consequence there exist two perfect pairings of W (k)−modules:

〈−,−〉C : M(µp∞,k)×M((Qp/Zp)∨k ) →W (k) 〈−,−〉P : M((Qp/Zp)k)×M((Qp/Zp)∨k ) →W (k).

5 We recall that given the algebra A of a formal group over R, an integral of the second kind of A
is an element f ∈ A⊗̂RK such that df ∈ ΩR(A) and Pf − f⊗̂1 − 1⊗̂f ∈ A⊗̂A, where P denotes the
coproduct in A; we will denote by I2(A) the R-module of integrals of the second kind. Moreover if
Pf − f⊗̂1− 1⊗̂f = 0, f is called an integral of the first kind.
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We will denote by

(19) id(1) : M(µp∞,k) → M((Qp/Zp)k)

the W (k)−isomorphism such that

〈m,n〉C = 〈id(1)(m), n〉P

for every m ∈ M(µp∞,k) and n ∈ M((Qp/Zp)∨k ). One can check that id(1)(δ) = ζ, so that

F ◦ id(1) ◦ V = id(1).

3.2. Monodromy and additive extensions

We want to define a W (k)-endomorphism of the Dieudonné module M(M(p)k) depending on
the monodromy N . (See also [7] 5.2.2.) We proceed as follows:

M(Y ∗∨ ⊗ µp∞,k)
M(Nk) // M(Y ⊗Z µp∞,k)

idY (1)// M(Y ⊗Z Qp/Zp)k

��
M(M(p)k)

OO

N // M(M(p)k)

where the vertical map on the left comes from the obvious inclusion

Y ∗∨ ⊗ µpn,k = lim
→

(pmTk) → lim
→

(pmM1
π,k)

and the vertical map on the right is obtained from the projection

lim
→

(pmM1
π,k) → Y ⊗Z (Qp/Zp)k.

Recall now that both Y and Y ∗ are constant groups and hence

(20) M(Y ∗∨ ⊗ µp∞,k) = Y ∗ ⊗M(µp∞,k), M(Y ⊗ µp∞,k) = Y ∨ ⊗Z M(µp∞,k).

The morphism M(Nk) is then
M(Nk) = ν∨ ⊗ id,

where ν∨ : Y ∗ → Y ∨ comes from the geometric monodromy µ and is the transpose of ν in (7)
(on special fibres). Using decompositions as in (20) we can define

(21) idY (1) := id⊗ id(1) : Y ∨ ⊗M(µp∞,k) → Y ∨ ⊗M((Qp/Zp)k)

where id(1) is the canonical identification explained in (19). The map idY (1) is an isomorphism
of W (k)-modules such that F ◦ idY (1) ◦ V = idY (1) and the dotted arrow N turns out to be a
W (k)-homomorphism such that N 2 = 0 and FNV = N .

We want now to describe how the composition idY (1) ◦ M(Nk) works: Given an element
χ⊗ δ ∈ Y ∗ ⊗M(µp∞,k), with δ the canonical generator of M(µp∞,k),

(idY (1) ◦M(Nk)) (χ⊗ δ) = idY (1) (ν∨(χ)⊗ δ) = ν∨(χ)⊗ ζ.
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Remark 6. The construction above could also be done restricting to kernels of pn-multiplication
pnM and hence working with the monodromy homomorphism of level pn,

νpn : Y ⊗ Z/pnZ → Y ∗ ⊗ µpn .

This is what Kato does in [7] 5.2.2. Hence the construction above is simply a way to summarize
Kato’s construction for all pn.

The element ν∨(χ)⊗ζ ∈ Y ∨⊗M((Qp/Zp)k) = M(Y ⊗(Qp/Zp)k) can be described in different
ways; we give here some examples without proofs:

i) If we interpret it as extension of Y ⊗ (Qp/Zp)k by the additive group Ga,k, ν∨(χ) ⊗ ζ is
represented by the pull-back of the sequence ζadd

p∞ with respect to

(ν∨(χ), id) : Y ⊗Z Qp/Zp → Qp/Zp.

ii) Given an extension of Qp/Zp by Ga,k, the push-out with respect to the m-multiplication and
the pull-back with respect to the m-multiplication provide isomorphic sequences. In a similar
way one proves that the sequence (ν∨(χ), id)∗ζadd

p∞ is also isomorphic to the push-out with
respect to (ν∨(χ), id) of the sequence Y ⊗ ζadd

p∞ .
iii) Starting with the 1-motive π : Z → Gm,K , consider the sequence

0 → Gm,K → FK → Qp/Zp → 0

obtained first applying push-out µpn → Gm,K to the sequence η(pn,π) as in (1) and then
passing to limit on Z/pnZ. The sequence extends over R (passing to Néron models) and then
provides a sequence on component groups

0 → Z → φF → Qp/Zp → 0

over k that coincides with the opposite of the sequence ζp∞ in (16). The minus sign depends
on Lemma 1.
More generally, given the 1-motive u2

π,K : YK → TK and a character χ ∈ Y ∗, the sequence
ν∨(χ) ⊗ ζ is obtained as follows: first consider the push-out pnTK → TK in η(pn, u2

π,K) and
then pass to limit on YK/p

nYK . At this point we have a sequence

(22) 0 → TK → FK → YK ⊗Qp/Zp → 0.

Passing to Néron models and taking the induced sequence on component groups we get a
sequence

(23) 0 → Y ∗∨ → φF → Y ⊗Qp/Zp → 0.

This sequence is nothing else than the opposite of push-out with respect to ν : Y → Y ∗∨ of the
sequence Y ⊗ζp∞ . Once fixed a character χ ∈ Y ∗, we can consider the induced homomorphism
χ∨ : Y ∗∨ → Z (evaluation at χ). Now the additive extension turns out to be opposite of the
push-out of (23) via the composition of χ∨ with the canonical homomorphism Z → Ga,k.
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iv) We can also describe ν∨(χ) ⊗ ζ in terms of integrals of the second kind generalizing what
was done in (17) and (18).
Once fixed an isomorphism Y ∼= ⊕iZei, the factor set γ in (17) provides a factor set of
Y ⊗ ζadd

p∞

Y ⊗ γ : Y ⊗ (Qp/Zp)× Y ⊗ (Qp/Zp) → Y ⊗Z Z,(∑
i

ei ⊗ ai,
∑

i

ei ⊗ bi

)
7→
∑

i

ei ⊗ [σ(ai) + σ(bi)]

and hence a factor set

Y ⊗ (Qp/Zp)× Y ⊗ (Qp/Zp) → Ga,R,(∑
i

ei ⊗ ai,
∑

i

ei ⊗ bi

)
7→
∑

i

[σ(ai) + σ(bi)]µ(ei, χ)(24)

of (ν∨(χ), id)∗(Y ⊗ζadd
p∞ ). This factor set becomes trivial on generic fibres and a trivialization

is given by
h : YK ⊗Qp/Zp → Ga,K ,

∑
i

ei ⊗ ai 7→ µ(ei, χ)σ(ai).

If we read this trivialization in terms of formal groups and then pass to the affine algebras,
h corresponds to a K-homomorphism

h∗ : K[X] → K⊕iQp/Zpei , X 7→
∑

a∈⊕iQp/Zpei

∑
i

µ(ei, χ)σ(ai)fa

where fa : ⊕i Qp/Zpei → K is 1 in a and 0 otherwise. Also in this case h∗(X) is an integral
of the second kind in K⊕iQp/Zpei that is sent to the class of (ν∨(χ), id)∗(Y ⊗ ζadd

p∞ ) via the
map

I2(Y ⊗Qp/Zp) → M(Y ⊗Qp/Zp).

Remark 7. The above constructions involve the part u2
K,π in Raynaud’s decomposition of the

1−motive uK . In particular, the multiplicative factor set

YK ⊗ (Qp/Zp)× YK ⊗ (Qp/Zp) → Gm,K(∑
i

ei ⊗ ai,
∑

i

ei ⊗ bi

)
7→ π−

∑
i[σ(ai)+σ(bi)]µ(ei,χ),(25)

whose valuation is the opposite of the additive factor set in (24), gives the extension obtained
by taking the push-out with respect to χ of the sequence (22). If we think of the valuation as
a sort of logarithm killing elements in R∗, something similar in form, even if quite different in
nature, happens when working with 1-motives of the type u1

K,π : YK → TK , and u2
K,π = 0: Also

in the present situation we have a multiplicative factor set, it may be chosen as follows:(∑
i

ei ⊗ ai,
∑

i

ei ⊗ bi

)
7→
∏

i

u(ei, χ)−[σ(ai)+σ(bi)],(26)
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where the u(ei, χ) are principal units in R, so that the corresponding sequence extends to R.
Now, we can obtain from this an additive factor set by just taking the p-adic logarithm. As
before, the additive factor set we get,(∑

i

ei ⊗ ai,
∑

i

ei ⊗ bi

)
7→
∑

i

−[σ(ai) + σ(bi)]log(ui)

is trivial on generic fibres and its trivialisation provides an integral of the second kind h(χ) ∈
KQp/Zp and the BT–group of u1

K,π is completely determined by the W (k)-module generated by
the h(χ), as χ varies in the group of the characters of TR (cf. [5], IV). Finally, let us observe
that if one is just interested in computing the monodromy, then the use of the valuation is quite
appropriate, but if one needs to consider the integrals of uK,π = u1

K,π + u2
K,π, i.e. one needs

to integrate logarithmic differentials (in the style of [2]), one is forced to extend the p−adic
logarithm defining log π in a way allowing one to distinguish the integrals of u1

K,π from those of
u2

K,π.

4. The finite logarithmic group that extends nMK

Throughout this section we work with a strict K-1-motive uK : Zr → GK where GK is a semia-
belian scheme with split torus part Gd

m,K and with abelian quotient AK having good reduction.
Given the n-torsion nMK of such a 1-motive, we know from Theorem 4 that it extends to a finite
logarithmic group over R, nM

log, but we still know little concerning the scheme nM underlying
nM

log. In this section we are going to describe the logarithmic group scheme nM
log for any n and

precisely we will show that nM
log is the valuative space associated to (Spec (nA) ,MA) where

nA is an algebra over R, constructed in a somewhat canonical way, and MA is a logarithmic
structure on Spec (nA) such that the structure morphism over R induces a morphism of log
schemes (Spec (nA) ,MA) → T .

We have seen that nMK is an extension of YK/nYK by nG, hence a nGK-torsor over YK/nYK .
If nGK = µd

n, it is easy to describe the algebra of nMK ; cf. [14], [4]. For example for the Tate
curve π : Z → Gm,K we denoted nMK by

(27) nEK = Spec
(
KZ/nZ[x]/(xn − bπ,n)

)
with bπ,n : =

∑n−1
j=0 π

jvj , where {v0, · · · , vn−1} is the canonical basis of KZ/nZ. See also (14).
For the general case, we read from (6) that nMK is indeed a µd

n-torsor over the finite K-group
scheme nM

A
K . Recalling that Pic(nM

A
K) = 0, nMK can easily be described via [14] III §4.

Lemma 7. Let BK be the algebra of nM
A
K . Then

nMK = Spec (BK [T1, · · · , Td]/(Tn
1 − b1, . . . , T

n
d − bd))

for suitable bi ∈ B∗K , i = 1, . . . , d.

We need now to describe how the bi above depend on Raynaud’s decomposition of the
1-motive uK .
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4.1. The 1-motive π−1

Before proceeding with the description of nMK we need to know what happens when working
with the 1-motive π−1 : Z → Gm,K , 1 7→ π−1. Its n-torsion group scheme is

(28) nE
1
π

K = Spec

(
KZ/nZ[x]

(xn −
∑n−1

i=0 π
−ivi)

)

with {v0, · · · , vn−1} the canonical base of KZ/nZ over K. It is clear that we can not extend its
algebra over R via the equation xn −

∑n−1
i=0 π

−ivi. However, nE
1
π is isomorphic to the group

scheme obtained from (15) by push-out with respect to −1 or by pull-back with respect to −1.
Hence it is also

(29) nE
1
π

K
∼= Spec

(
KZ/nZ[y]

(yn − v0 −
∑n−1

i=1 π
n−ivi)

)
because −1: Z → Z sends v0 7→ v0, vi 7→ vn−i for i > 0. Moreover this scheme extends over R
to

(30) nE
1
π = Spec

(
RZ/nZ[y]

(yn − v0 −
∑n−1

i=1 π
n−ivi)

)
.

We can endow nE
1
π with the logarithmic structure coming from the special fibre and it becomes

a logarithmic group scheme over R. Denote by n(E
1
π ) its valuative logarithmic space; this lies

in the middle of −θπ
n for θπ

n as in (15).
Another decomposition of a 1-motive that will be useful later is the following:

Lemma 8. Let uK be a 1-motive as in Theorem 1. Suppose furthermore that YK is split and
also the torus part TK of GK is split. Once fixed a uniformizing parameter π ∈ R, a basis (ej)j

of YK
∼= Zr and a basis (e∗i )i of Y ∗K there are decompositions

uK = u1
K,π + u2

K,π = u1
K,π + u+

K,π + u−K,π

where the first one is the decomposition in Theorem 1. The second decomposition is uniquely
determined by the following conditions:

– u±K,π : YK → GK factor through the torus part.

– If µ+ (resp. µ−) denotes the geometric monodromy of u+
K,π (resp. of u−K,π), then one has

µ+(ej , e
∗
i ) ≥ 0 (resp. µ−(ej , e

∗
i ) ≤ 0).

– u2
K,π = u+

K,π + u−K,π and µ = µ+ + µ−.

Proof. We are reduced to working with u2
K,π. We define

µ+ : YK ⊗ Y ∗K → Z, (ej , e
∗
i ) →

{
µ(ej , e

∗
i ) if this is positive

0 otherwise

Similar for µ−. Moreover u±K,π is defined as done for u2
K,π in (10) with µ± in place of µ. ut
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Remark 8. Recall the decomposition in Lemma 8 and the factorization u2
K,π = (ν ⊗ id)πY . Let

us construct ν± : YK → (Y ∗K)∨ from the geometric monodromy µ± as in (7). Then we have
factorizations u+

K,π = (ν+ ⊗ id)πY (resp. u−K,π = (ν− ⊗ id)π−1
Y ) with

π−1
Y : YK → YK ⊗Z Gm,K , y 7→ y ⊗ π−1.

4.2. A general result on short exact sequences

Looking at the diagram (6) where nTK = µd
n we realize that we should move our attention from

the horizontal sequence in the middle η(n, uK) to the vertical sequence in the middle, because,
as we have already observed µn-torsors can easily be described. Moreover we need to know how
such a ”vertical sequence” depends on the analogous sequences for u1

π,K and u2
π,K . For this we

need a general result.

Let ψ̄ : 0 → I
w→ L

k→ P → 0 be an exact sequence of group schemes over a base scheme S.
Let N be another group scheme over S and consider two extensions ηi : 0 → L→M i → N → 0,
i = 1, 2. Let η : 0 → L → M → N → 0 be a sequence isomorphic to the Baer sum η1 + η2.
Consider then the following diagrams

I � _

w

��

I � _

τ i

��
ηi : 0 // L

k
����

// M i

gi

����

hi
// N // 0

0 // P // Qi
fi

// N // 0

I � _

w

��

I � _

τ

��
η : 0 // L

k
����

// M

g
����

h // N // 0

0 // P // Q
f // N // 0

where the vertical sequence on the left is ψ̄ and the upper horizontal sequence is ηi for i = 1, 2
(resp. η). Call ψi for i = 1, 2 (resp. ψ) the vertical sequence in the middle. Suppose now that
there is a sequence

η̃2 : 0 → I → M̃2 → N → 0

such that η2 = w∗η̃
2. Summarizing we have

η ∼= η1 + w∗η̃
2.

We are going to see that a similar relation holds also for the vertical sequences ψ,ψ1.
Now k∗w∗η̃

2 is isomorphic to the trivial extension and we choose a section σ of f2. Moreover
k∗η ∼= k∗η

1 and there is then an isomorphism ισ : Q→ Q1 depending on σ. It is also not difficult
to check that

(31) ψ ∼= (ισ)∗ψ1 + (σf)∗ψ2
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Consider also the following push-out diagram

η̃2 : 0 // I

w

��

τ2

  @
@

@
@

// M̃2

δ

��

h̃2
// N // 0

w∗η̃
2 = η2 : 0 // L

k

��

// M2

g2

��

h2
// N // 0

k∗η
2 : 0 // P // Q2

f2
// N // 0

where lower sequence is isomorphic to the trivial one. We denoted by ψ2 the exact sequence
involving g2 and τ2. There exists then a canonical homomorphism σc : N → Q2 such that

σch̃2 = g2δ;

it is not difficult to check that σc is a section of f2. Moreover by construction it satisfies

(σc)∗ψ2 ∼= η̃2

Taking now σ = σc in (31) and setting ι : = ισ
c

we get that

(32) ψ ∼= ι∗ψ1 + f∗η̃2 .

4.3. nMK as torsor under µd
n

Let uK be a 1-motive as in Theorem 1. We have then a decomposition uK = u1
K,π +u2

K,π and an
isomorphism of sequences η(n, uK) ∼= η(n, u1

K,π)+η(n, u2
K,π) for η(n,−) the sequence introduced

in (1).
The n-torsion pnMK of uK lies in the middle of η(n, uK) and we have already seen what it

looks like in Lemma 7. Moreover η(n, u2
K,π) = w∗η(n, ũ2

K), where the 1-motive ũ2
K : YK → TK is

obtained from u2
K,π by forgetting the inclusion TK → GK and w is this inclusion restricted to

kernels of n-multiplication. Hence we are in the situation of the subsection 4.2.
Considering diagram (6) for η(n, u1

K,π) in place of η(n, uK,π) we get

(33) nTK

w

��

nTK

τ1

��
η(n, u1

K,π) : 0 //
nGK

ρn

��

//
nM

1
K

g1

��

h1
// YK/nYK

// 0

η(n, ρu1
K,π) : 0 //

nAK
// Q1

K

f1
// YK/nYK

// 0.

Let ψ(n, u1
K,π) be the vertical sequence in the middle of this diagram and ψ(n, uK,π) the corre-

sponding vertical sequence in the middle of (6). By (32) we have

(34) ψ(n, uK) ∼= ι∗ψ(n, u1
K,π) + f∗η(n, ũ2

K)
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for ι the isomorphism nM
A
K → Q1

K constructed as in §4.2 By abuse of notations, we denote by
nM

1
K also the group scheme in the middle of ι∗ψ(n, u1

K,π); indeed it is isomorphic to the one in
the middle of η(n, u1

K,π). The scheme nM
1
K is a µd

n-torsor over nM
A
K and hence

nM
1
K
∼= Spec

(
BK [T1, · · · , Td]/(Tn

1 − b
(1)
1 , . . . , Tn

d − b
(1)
d )
)
.

On the other hand, call nM̃
2
K the group in the middle of η(n, ũ2

K). It is a µd
n-torsor over Zr/nZr

and hence it has the form

nM̃
2
K
∼= Spec

(
KZr/nZr

[T1, · · · , Td]/(Tn
1 − b

(2)
1 , . . . , Tn

d − b
(2)
d )
)
.

Hence the group in the middle of f∗η(n, ũ2
K,π) will be

Spec
(
BK [T1, · · · , Td]/(Tn

1 − b
(2)
1 , . . . , Tn

d − b
(2)
d )
)
.

Recall now that ũ2
K,π = u+

K,π +u−K,π by Lemma 8 and hence η(n, u2
K,π) ∼= η(n, u+

K,π)+η(n, u−K,π).
Let

Spec
(
KZr/nZr

[T1, · · · , Td]/(Tn
1 − b+1 , . . . , T

n
d − b+d )

)
be the group scheme in the middle of the sequence η(n, u+

K,π) and analogously for u−K,π with
elements b−i ∈ KZr/nZr

in place of b+i . Using the sequence

(35) 0 → µd
n(X) → Γ (X,OX)d∗ n→ Γ (X,OX)d∗ → H(X,µd

n) → 0

we may assume that b(2)i = b+i b
−
i and

bi = b
(1)
i b+i b

−
i for all 1 ≤ i ≤ d.

Recall now that the vertical sequence on the left in (6) or (33) extends over R because GK has
good reduction and that also nM

A
K extends to a finite group scheme over R, say nM

A = Spec (B),
because the K-1-motive

ρuK : Zr → GK → AK

has good reduction. Finally also η(n, u1
K,π) extends over R and hence the same is true for the

vertical sequence ψ(n, u1
K,π) and so we may assume b(1)i ∈ B∗. This implies that if we want to

extend nMK over R we have to understand better nM̃
2
K and hence b(2)i = b+i b

−
i . Recall the

description of u2
K,π in (10) where now YK = Zr and TK = Gd

m,K . It is an easy exercise to check
that

b+i = (bπ,n)
∑r

j=1 µ+(ej ,e∗i ) with bπ,n : =
n−1∑
j=0

πjvj ∈ RZr/nZr

,

with v0, . . . , vn−1 the standard basis of KZ/nZ (resp. of RZ/nZ), e1, . . . , er the usual basis of
Zr and e∗i the character in Y ∗K such that e∗i (Th) = δih, µ+ the geometric monodromy of u+

K,π.
Moreover µ+(ej , e

∗
i ) ≥ 0 by definition of u+

K,π; hence b+i ∈ B for all i. In a similar way

b−i = (bπ−1,n)
∑r

j=1−µ−(ej ,e∗i ) with bπ−1,n : = v0 +
n−1∑
i=1

πn−ivi ∈ RZ/nZ.
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Hence also b−i ∈ B for all i because µ−(ej , e
∗
i ) ≤ 0 by definition of u−K,π. Summarizing, bi =

b
(1)
i b

(2)
i = b

(1)
i b+i b

−
i ∈ B for all i. Hence nMK extends to a finite scheme over Spec (B)

(36) nM = Spec (B[T1, · · · , Td]/(Tn
1 − b1, . . . , T

n
d − bd)) .

The following lemma says that nM is indeed a “nice” model.

Lemma 9. Let notations be as above and endow nM
A = Spec (B) with the inverse image log

structure of the base T . Let (nM,M
nM ) be the scheme (36) with the logarithmic structure induced

by the special fibre. Then the canonical morphism nMK → nM
A
K extends to a unique morphism of

logarithmic groups over R. Moreover the following universal property holds: For any fine saturated
logarithmic scheme (S,MS) over (nM

A,M
nMA) there is a bijection between the scheme theoretic

morphisms SK → nMK over nM
A
K and the logarithmic morphisms (S,MS) → (nM,M

nM ) over
(nM

A,M
nMA).

Proof. We may assume S = Spec (C) affine. Any nM
A
K-morphism SK → nMK is described as

a homomorphism of BK-algebras ϕK : BK [T1, · · · , Tn]/(Tn
i − bi) → CK . The only problem for

the extension is to prove that the images of all Ti lie in C and more precisely in Γ (S,MS).
However bi = b

(1)
i b

(2)
i with b

(1)
i ∈ B∗ and b

(2)
i ∈ Γ (Y,MY ) for any logarithmic space over the

group Z/nZ endowed with the inverse image log structure because of the description of b(2)i in
terms of bπ,n and bπ−1,n. Moreover ϕK(Tn

i ) = ϕK(bi) ∈ Γ (S,MS). It is now sufficient to recall
that S is saturated to conclude that also ϕK(Ti) ∈ Γ (S,MS). ut

Proposition 1. Let notations be as above. The finite group scheme nMK over nM
A
K extends

(up to isomorphisms) to a finite logarithmic group nM
log that is the valuative logarithmic space

associated to a logarithmic scheme whose underlying scheme is

(37) nM = Spec (B[T1, · · · , Td]/(Tn
1 − b1, . . . , T

n
d − bd)) .

Moreover the diagram (6) extends to a diagram of finite logarithmic groups with nM
log in the

middle.

Proof. It remains only to prove that nM with the logarithmic structure induced by the special
fibre induces a group functor on the category of fine saturated logarithmic schemes over R, i.e.
it is in T log

fl . However this is immediate consequence of the previous lemma.
Also the assertion on the diagram follows applying the previous lemma. ut

Observe that we had already proved in Theorem 6 that nMK extends to a logarithmic group
over T , however, in the hypothesis of this section, it is possible to describe it in terms of algebras
and not only as a “sum” of two extensions.
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